Search results for: ultrasonic solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5757

Search results for: ultrasonic solution

5757 Ultrasonic Assisted Growth of ZnO Nanorods at Low Temperature

Authors: Khairul Anuar, Wai Yee Lee, Daniel C. S. Bien, Hing Wah Lee, Ishak Azid

Abstract:

This paper investigates the effect of ultrasonic treatment on ZnO nutrient solution prior to the growth of ZnO nanorods, where the seed layer is annealed at 50 and 100°C. The results show that the ZnO nanorods are successfully grown on the sample annealed at 50°C in the sonicated ZnO nutrient solution with a length and a diameter of approximately 8.025 µm and 92 nm, respectively. However, no ZnO nanorods structures are observed for the sample annealed at 50°C and grown in unsonicated ZnO nutrient solution. Meanwhile, the ZnO nanorods for the sample annealed at 100°C are successfully grown in both sonicated and unsonicated ZnO nutrient solutions. The length and diameter of the nanorods for the sample grown in the sonicated solution are 8.681 µm and 1.033 nm, whereas those for the sample grown in the unsonicated solution are 7.613 µm and 1.040 nm. This result shows that with ultrasonic treatment, the length of the ZnO nanorods increases by 14%, whereas their diameter is reduced by 0.7%, resulting in an increase of aspect ratio from 7:1 to 8:1. Electroconductivity and pH sensors are used to measure the conductivity and acidity level of the sonicated and unsonicated solutions, respectively. The result shows that the conductivity increases from 87 mS/cm to 10.4 mS/cm, whereas the solution pH decreases from 6.52 to 6.13 for the sonicated and unsonicated solutions, respectively. The increase in solution conductivity and acidity level elucidates the higher amount of zinc nutrient in the sonicated solution than in the unsonicated solution.

Keywords: ultrasonic treatment, low annealing temperature, ZnO nanostructure, nanorods

Procedia PDF Downloads 342
5756 Autonomous Control of Ultrasonic Transducer Drive System

Authors: Dong-Keun Jeong, Jong-Hyun Kim, Woon-Ha Yoon, Hee-Je Kim

Abstract:

In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system.

Keywords: ultrasonic transducer drive system, impedance change, sensorless, autonomous control algorithm

Procedia PDF Downloads 329
5755 Generic Hybrid Models for Two-Dimensional Ultrasonic Guided Wave Problems

Authors: Manoj Reghu, Prabhu Rajagopal, C. V. Krishnamurthy, Krishnan Balasubramaniam

Abstract:

A thorough understanding of guided ultrasonic wave behavior in structures is essential for the application of existing Non Destructive Evaluation (NDE) technologies, as well as for the development of new methods. However, the analysis of guided wave phenomena is challenging because of their complex dispersive and multimodal nature. Although numerical solution procedures have proven to be very useful in this regard, the increasing complexity of features and defects to be considered, as well as the desire to improve the accuracy of inspection often imposes a large computational cost. Hybrid models that combine numerical solutions for wave scattering with faster alternative methods for wave propagation have long been considered as a solution to this problem. However usually such models require modification of the base code of the solution procedure. Here we aim to develop Generic Hybrid models that can be directly applied to any two different solution procedures. With this goal in mind, a Numerical Hybrid model and an Analytical-Numerical Hybrid model has been developed. The concept and implementation of these Hybrid models are discussed in this paper.

Keywords: guided ultrasonic waves, Finite Element Method (FEM), Hybrid model

Procedia PDF Downloads 428
5754 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency

Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim

Abstract:

In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.

Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe

Procedia PDF Downloads 321
5753 Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic

Authors: Yasuyuki Nabeshima

Abstract:

Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void.

Keywords: tunnel, lining concrete, void, non-destructive inspection, ultrasonic

Procedia PDF Downloads 170
5752 Design of a Pulse Generator Based on a Programmable System-on-Chip (PSoC) for Ultrasonic Applications

Authors: Pedro Acevedo, Carlos Díaz, Mónica Vázquez, Joel Durán

Abstract:

This paper describes the design of a pulse generator based on the Programmable System-on-Chip (PSoC) module. In this module, using programmable logic is possible to implement different pulses which are required for ultrasonic applications, either in a single channel or multiple channels. This module can operate with programmable frequencies from 3-74 MHz; its programming may be versatile covering a wide range of ultrasonic applications. It is ideal for low-power ultrasonic applications where PZT or PVDF transducers are used.

Keywords: PSoC, pulse generator, PVDF, ultrasonic transducer

Procedia PDF Downloads 253
5751 Effect of Ultrasonic Treatment on the Suspension Stability, Zeta Potential and Contact Angle of Celestite

Authors: Kiraz Esmeli, Alper Ozkan

Abstract:

In this study, firstly, the effect of ultrasonic treatment on the stability of celestite suspension was investigated. In this context, the variations of the suspension stability with ultrasonic power, treatment time, immersion depth of ultrasonic probe, and treatment regime (batch and continuous) were determined. The experimental results showed that the suspension stability and zeta potential of celestite decreased with ultrasonic treatment. Also, the treatment time, immersion depth of probe, and treatment regime affected the stability of celestite suspension. Secondly, the effect of pre-treatment of the suspension with the ultrasonic process on the shear flocculation of celestite using sodium dodecyl sulfate (SDS) was studied and the variations of the flocculation, zeta potential, and contact angle of the mineral with SDS concentration were presented. It was found that the ultrasonic pre-treatment slightly improved the shear flocculation of celestite particles in accordance with the increase in the contact angles. In addition, the ultrasonic process again relatively reduced the magnitude of the negative potential of celestite particles in the presence of SDS.

Keywords: celestite, contact angle, suspension stability, ultrasonic treatment, zeta potential

Procedia PDF Downloads 196
5750 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity

Procedia PDF Downloads 386
5749 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force

Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak

Abstract:

In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.

Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity

Procedia PDF Downloads 209
5748 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength

Procedia PDF Downloads 338
5747 Blood Clot Emulsification via Ultrasonic Thrombolysis Device

Authors: Sun Tao, Lou Liang, Tan Xing Haw Marvin, Gu Yuandong Alex

Abstract:

Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment.

Keywords: microfabrication, blood clot, ultrasonic thrombolysis device, ultrasonic device

Procedia PDF Downloads 413
5746 Effect of Ultrasonic Vibration on the Dilution, Mechanical, and Metallurgical Properties in Cladding of 308 on Mild Steel

Authors: Sandeep Singh Sandhu, Karanvir Singh Ghuman, Parminder Singh Saini

Abstract:

The aim of the present investigation was to study the effect of ultrasonic vibration on the cladding of the AISI 308 on the mild steel plates using the shielded metal arc welding (SMAW). Ultrasonic vibrations were applied to molten austenitic stainless steel during the welding process. Due to acoustically induced cavitations and streaming there is a complete mixture of the clad metal and the base metal. It was revealed that cladding of AISI 308 over mild steel along with ultrasonic vibrations result in uniform and finer grain structures. The effect of the vibration on the dilution, mechanical properties and metallographic studies were also studied. It was found that the welding done using the ultrasonic vibration has the less dilution and CVN value for the vibrated sample was also high.

Keywords: surfacing, ultrasonic vibrations, mechanical properties, shielded metal arc welding

Procedia PDF Downloads 451
5745 Algae Growth and Biofilm Control by Ultrasonic Technology

Authors: Vojtech Stejskal, Hana Skalova, Petr Kvapil, George Hutchinson

Abstract:

Algae growth has been an important issue in water management of water plants, ponds and lakes, swimming pools, aquaculture & fish farms, gardens or golf courses for last decades. There are solutions based on chemical or biological principles. Apart of these traditional principles for inhibition of algae growth and biofilm production there are also physical methods which are very competitive compared to the traditional ones. Ultrasonic technology is one of these alternatives. Ultrasonic emitter is able to eliminate the biofilm which behaves as a host and attachment point for algae and is original reason for the algae growth. The ultrasound waves prevent majority of the bacteria in planktonic form becoming strongly attached sessile bacteria that creates welcoming layer for the biofilm production. Biofilm creation is very fast – in the serene water it takes between 30 minutes to 4 hours, depending on temperature and other parameters. Ultrasound device is not killing bacteria. Ultrasound waves are passing through bacteria, which retract as if they were in very turbulent water even though the water is visually completely serene. In these conditions, bacteria does not excrete the polysaccharide glue they use to attach to the surface of the pool or pond, where ultrasonic technology is used. Ultrasonic waves decrease the production of biofilm on the surfaces in the selected area. In case there are already at the start of the application of ultrasonic technology in a pond or basin clean inner surfaces, the biofilm production is almost absolutely inhibited. This paper talks about two different pilot applications – one in Czech Republic and second in United States of America, where the used ultrasonic technology (AlgaeControl) is coming from. On both sites, there was used Mezzo Ultrasonic Algae Control System with very positive results not only on biofilm production, but also algae growth in the surrounding area. Technology has been successfully tested in two different environments. The poster describes the differences and their influence on the efficiency of ultrasonic technology application. Conclusions and lessons learned can be possibly applied also on other sites within Europe or even further.

Keywords: algae growth, biofilm production, ultrasonic solution, ultrasound

Procedia PDF Downloads 227
5744 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method

Authors: W. Swiderski

Abstract:

In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.

Keywords: composite material, ultrasonic, infrared thermography, non-destructive testing

Procedia PDF Downloads 266
5743 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations

Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat

Abstract:

Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.

Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative

Procedia PDF Downloads 433
5742 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium

Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault

Abstract:

Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.

Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements

Procedia PDF Downloads 222
5741 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method

Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.

Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic

Procedia PDF Downloads 272
5740 A Design of Anisotropic Wet Etching System to Reduce Hillocks on Etched Surface of Silicon Substrate

Authors: Alonggot Limcharoen Kaeochotchuangkul, Pathomporn Sawatchai

Abstract:

This research aims to design and build a wet etching system, which is suitable for anisotropic wet etching, in order to reduce etching time, to reduce hillocks on the etched surface (to reduce roughness), and to create a 45-degree wall angle (micro-mirror). This study would start by designing a wet etching system. There are four main components in this system: an ultrasonic cleaning, a condenser, a motor and a substrate holder. After that, an ultrasonic machine was modified by applying a condenser to maintain the consistency of the solution concentration during the etching process and installing a motor for improving the roughness. This effect on the etch rate and the roughness showed that the etch rate increased and the roughness was reduced.

Keywords: anisotropic wet etching, wet etching system, hillocks, ultrasonic cleaning

Procedia PDF Downloads 87
5739 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 491
5738 Evaluation of Ultrasonic Techniques for the Estimation of Air Voids in Asphalt Concrete

Authors: Majid Zargar, Frank Bullen, Ron Ayers

Abstract:

One of the important factors in the design of asphalt concrete mixes is the accurate measurement of air voids and their variable distribution. Both can have significant impact on long and short term fatigue and creep behaviour under traffic. While some simple methods exist for overall evaluation of air voids, measuring air void distribution in asphalt concrete is very complex, involving expensive techniques such as X-ray methodologies. The research reported in the paper investigated the use of non-destructive ultrasonic techniques as an alternative to estimate the amount of air voids and their distribution within asphalt samples. Seventy-four Standard AC–14 asphalt samples made with three types of bitumen; Multigrade, PMB and C320 were analysed using ultrasonic techniques. The results have illustrated that ultrasonic testing has the potential of being a rapid, accurate and cost-effective method of estimating air void distribution in asphalt.

Keywords: asphalt concrete, air voids, ultrasonic, mechanical behaviour

Procedia PDF Downloads 316
5737 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment

Authors: Margarita Belousova

Abstract:

The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.

Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment

Procedia PDF Downloads 238
5736 Production and Characterization of Nanofibrillated Cellulose from Kenaf Core (Hibiscus cannabinus) via Ultrasonic

Authors: R. Rosazley, M. A. Izzati, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. A. Ainun Zuriyati

Abstract:

This study focuses on production and characterizations of nanofibrillated cellulose (NFC) from kenaf core. NFC was produced by employing ultrasonic treatments in aqueous solution. Field emission scanning electron microscope (FESEM) and scanning transmission electron microscopy (STEM) were used to study the size and morphology structure. The chemical and characteristics of the cellulose and NFC were studied using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscometer. Degrees of polymerization (DP) of cellulose and NFC were obtained via viscosity value. Results showed that 5 to 47 nm diameters of fibrils were measured. Moreover, the thermal stability of the NFC was increased as compared to the cellulose that confirmed by TGA analysis. It was also found that NFC had higher crystallinity and lower viscosity than the cellulose which were measured by XRD and viscometer, respectively. The NFC characteristics have enormous prospect related to bio-nanocomposite.

Keywords: crystallinity, kenaf core, nanofibrillated cellulose, ultrasonic

Procedia PDF Downloads 295
5735 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 81
5734 Non-Destructing Testing of Sandstones from Unconventional Reservoir in Poland with Use of Ultrasonic Pulse Velocity Technique and X-Ray Computed Microtomography

Authors: Michał Maksimczuk, Łukasz Kaczmarek, Tomasz Wejrzanowski

Abstract:

This study concerns high-resolution X-ray computed microtomography (µCT) and ultrasonic pulse analysis of Cambrian sandstones from a borehole located in the Baltic Sea Coast of northern Poland. µCT and ultrasonic technique are non-destructive methods commonly used to determine the internal structure of reservoir rock sample. The spatial resolution of the µCT images obtained was 27 µm, which enabled the author to create accurate 3-D visualizations of structure geometry and to calculate the ratio of pores volume to the total sample volume. A copper X-ray source filter was used to reduce image artifacts. Furthermore, samples Young’s modulus and Poisson ratio were obtained with use of ultrasonic pulse technique. µCT and ultrasonic pulse technique provide complex information which can be used for explorations and characterization of reservoir rocks.

Keywords: elastic parameters, linear absorption coefficient, northern Poland, tight gas

Procedia PDF Downloads 216
5733 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures

Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua

Abstract:

This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.

Keywords: acquisition, signal processing, ultrasound, SAFT, HMI

Procedia PDF Downloads 70
5732 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel

Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda

Abstract:

Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.

Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation

Procedia PDF Downloads 172
5731 Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers

Authors: J. Belovickis, V. Samulionis, J. Banys, M. V. Silibin, A. V. Solnyshkin, A. V. Sysa

Abstract:

Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers.

Keywords: carbon nanotubes, polymer composites, PVDF-TrFE, ultrasonic spectroscopy

Procedia PDF Downloads 311
5730 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion

Authors: E. A. Alshaafi, A. Prakash

Abstract:

Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.

Keywords: ultrasonic techniques, emulsion, characterization, droplet size

Procedia PDF Downloads 141
5729 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper

Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan

Abstract:

Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).

Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper

Procedia PDF Downloads 205
5728 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis

Procedia PDF Downloads 363