Search results for: distance learning education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13565

Search results for: distance learning education

7385 Perceived Physical Exercise Benefits among Staff of Tertiary Institutions in Adamawa State

Authors: Salihu Mohammed Umar

Abstract:

Perceived physical exercise benefits among staff of tertiary institutions in Adamawa State was investigated as a basis for formulating proper exercise intervention strategies. The study utilized descriptive survey design. The purpose of the study was to determine perceived exercise benefits among staff of tertiary institutions in Adamawa state, Nigeria. The instrument used for data collection was a questionnaire adapted from Exercise Benefit/Barrier Scale (EBBS) developed by Sechrist, Walker and Pender (1985) which was validated by five experts. Three hundred and thirty (330) copies of the questionnaire were distributed among study participants in six institutions of higher learning in Adamawa state. The scale comprised two components; Benefits and Barriers dimensions. To achieve this purpose, three research questions were posed. The instrument had a four response forced-choice Likert-type format with responses ranging from 4 = strongly agree (SA), 3 = Agree (A), 2 = Disagree (D) and 1 = Strongly Disagree (SD). The findings of the study revealed that both male and female staff in institutions of higher learning in Adamawa state perceived exercise as highly beneficial. However, male staff had higher perceived benefits score than their female counterparts. (Male: x̄ = 95.02. SD = 3.08) > female: x̄ = 94.04, SD = 4.35. There was also no significant difference in perceived exercise barriers between staff and students of tertiary institutions in Adamawa state. Based on the finding of the study, it was concluded that staff of tertiary institutions perceived exercise as highly beneficial. It was recommended that since staff of institutions of higher learning in Adamawa State irrespective of gender and religious affiliations have basic knowledge of perceived benefits of exercise, there is the need to explore programmes that will enable staff across the sub-groups to overcome barriers that could discourage physical exercise participation.

Keywords: perception, physical exercise, staff, benefits

Procedia PDF Downloads 316
7384 Municipal-Level Gender Norms: Measurement and Effects on Women in Politics

Authors: Luisa Carrer, Lorenzo De Masi

Abstract:

In this paper, we exploit the massive amount of information from Facebook to build a measure of gender attitudes in Italy at a previously impossible resolution—the municipal level. We construct our index via a machine learning method to replicate a benchmark region-level measure. Interestingly, we find that most of the variation in our Gender Norms Index (GNI) is across towns within narrowly defined geographical areas rather than across regions or provinces. In a second step, we show how this local variation in norms can be leveraged for identification purposes. In particular, we use our index to investigate whether these differences in norms carry over to the policy activity of politicians elected in the Italian Parliament. We document that females are more likely to sit in parliamentary committees focused on gender-sensitive matters, labor, and social issues, but not if they come from a relatively conservative town. These effects are robust to conditioning the legislative term and electoral district, suggesting the importance of social norms in shaping legislators’ policy activity.

Keywords: gender equality, gender norms index, Facebook, machine learning, politics

Procedia PDF Downloads 79
7383 Numerical Simulation of the Remaining Life of Ramshir Bridge over the Karoon River

Authors: M. Jalali Azizpour, V.Tavvaf, E. Akhlaghi, H. Mohammadi Majd, A. Shirani, S. M. Moravvej, M. Kazemi, A. R. Aboudi Asl, A. Jaderi

Abstract:

The static and corrosion behavior of the bridge using for pipelines in the south of country have been evaluated. The bridge was constructed more than 40 years ago on the Karoon River. Mentioned bridge is located in Khuzestan province and at a distance of 15 km east from the suburbs of Ahwaz. In order to determine the mechanical properties, the experimental tools such as measuring the thickness and static simulations based on the actual load were used. In addition, the metallurgical studies were used to achieve a rate of corrosion of pipes in the river and in the river bed. The aim of this project is to determine the remaining life of the bridge using mechanical and metallurgical studies.

Keywords: FEM, stress, corrosion, bridge

Procedia PDF Downloads 475
7382 Glocalization of Journalism and Mass Communication Education: Best Practices from an International Collaboration on Curriculum Development

Authors: Bellarmine Ezumah, Michael Mawa

Abstract:

Glocalization is often defined as the practice of conducting business according to both local and global considerations – this epitomizes the curriculum co-development collaboration between a journalism and mass communications professor from a university in the United States and the Uganda Martyrs University in Uganda where a brand new journalism and mass communications program was recently co-developed. This paper presents the experiences and research result of this initiative which was funded through the Institute of International Education (IIE) under the umbrella of the Carnegie African Diaspora Fellowship Program (CADFP). Vital international and national concerns were addressed. On a global level, scholars have questioned and criticized the general Western-module ingrained in journalism and mass communication curriculum and proposed a decolonization of journalism curricula. Another major criticism is the concept of western-based educators transplanting their curriculum verbatim to other regions of the world without paying greater attention to the local needs. To address these two global concerns, an extensive assessment of local needs was conducted prior to the conceptualization of the new program. The assessment of needs adopted a participatory action model and captured the knowledge and narratives of both internal and external stakeholders. This involved review of pertinent documents including the nation’s constitution, governmental briefs, and promulgations, interviews with governmental officials, media and journalism educators, media practitioners, students, and benchmarking the curriculum of other tertiary institutions in the nation. Information gathered through this process served as blueprint and frame of reference for all design decisions. In the area of local needs, four key factors were addressed. First, the realization that most media personnel in Uganda are both academically and professionally unqualified. Second, the practitioners with academic training were found lacking in experience. Third, the current curricula offered at several tertiary institutions are not comprehensive and lack local relevance. The project addressed these problems thus: first, the program was designed to cater to both traditional and non-traditional students offering opportunities for unqualified media practitioners to get their formal training through evening and weekender programs. Secondly, the challenge of inexperienced graduates was mitigated by designing the program to adopt the experiential learning approach which many refer to as the ‘Teaching Hospital Model’. This entails integrating practice to theory - similar to the way medical students engage in hands-on practice under the supervision of a mentor. The university drew a Memorandum of Understanding (MoU) with reputable media houses for students and faculty to use their studios for hands-on experience and for seasoned media practitioners to guest-teach some courses. With the convergence functions of media industry today, graduates should be trained to have adequate knowledge of other disciplines; therefore, the curriculum integrated cognate courses that would render graduates versatile. Ultimately, this research serves as a template for African colleges and universities to follow in their quest to glocalize their curricula. While the general concept of journalism may remain western, journalism curriculum developers in Africa through extensive assessment of needs, and focusing on those needs and other societal particularities, can adjust the western module to fit their local needs.

Keywords: curriculum co-development, glocalization of journalism education, international journalism, needs assessment

Procedia PDF Downloads 129
7381 Risk Factors Associated to Low Back Pain among Active Adults: Cross-Sectional Study among Workers in Tunisian Public Hospital

Authors: Lamia Bouzgarrou, Irtyah Merchaoui, Amira Omrane, Salma Kammoun, Amine Daafa, Neila Chaari

Abstract:

Backgrounds: Currently, low back pain (LBP) is one of the most prevalent public health problems, which caused severe morbidity among a large portion of the adult population. It is also associated with heavy direct and indirect costs, in particular, related to absenteeism and early retirement. Health care workers are one of most occupational groups concerned by LBP, especially because of biomechanical and psycho-organizational risk factors. Our current study aims to investigate risk factors associated with chronic low back pain among Tunisian caregivers in university-hospitals. Methods: Cross-sectional study conducted over a period of 14 months, with a representative sample of caregivers, matched according to age, sex and work department, in two university-hospitals in Tunisia. Data collection included items related to socio-professional characteristics, the evaluation of the working capacity index (WAI), the occupational stress (Karazek job strain questionnaire); the quality of life (SF12), the musculoskeletal disorders Nordic questionnaire, and the examination of the spine flexibility (distance finger-ground, sit-stand maneuver and equilibrium test). Results: Totally, 293 caregivers were included with a mean age equal to 42.64 ± 11.65 years. A body mass index (BMI) exceeding 30, was noted in 20.82% of cases. Moreover, no regular physical activity was practiced in 51.9% of cases. In contrast, domestic activity equal or exceeding 20 hours per week, was reported by 38.22%. Job strain was noted in 19.79 % of cases and the work capacity was 'low' to 'average' among 27.64% of subjects. During the 12 months previous to the investigation, 65% of caregivers complained of LBP, with pain rated as 'severe' or 'extremely severe' in 54.4% of cases and with a frequency of discomfort exceeding one episode per week in 58.52% of cases. During physical examination, the mean distance finger-ground was 7.10 ± 7.5cm. Caregivers assigned to 'high workload' services had the highest prevalence of LBP (77.4%) compared to other categories of hospital services, with no statistically significant relationship (P = 0.125). LBP prevalence was statistically correlated with female gender (p = 0.01) and impaired work capacity (p < 10⁻³). Moreover, the increase of the distance finger-ground was statistically associated with LBP (p = 0.05), advanced age (p < 10⁻³), professional seniority (p < 10⁻³) and the BMI ≥ 25 (p = 0.001). Furthermore, others physical tests of spine flexibility were underperformed among LBP suffering workers with a statistically significant difference (sit-stand maneuver (p = 0.03); equilibrium test (p = 0.01)). According to the multivariate analysis, only the domestic activity exceeding 20H/week, the degraded quality of physical life, and the presence of neck pain were significantly corelated to LBP. The final model explains 36.7% of the variability of this complaint. Conclusion: Our results highlighted the elevate prevalence of LBP among caregivers in Tunisian public hospital and identified both professional and individual predisposing factors. The preliminary analysis supports the necessity of a multidimensional approach to prevent this critical occupational and public health problem. The preventive strategy should be based both on the improvement of working conditions, and also on lifestyle modifications, and reinforcement of healthy behaviors in these active populations.

Keywords: health care workers, low back pain, prevention, risk factor

Procedia PDF Downloads 153
7380 Using the Technological, Pedagogical, and Content Knowledge (TPACK) Model to Address College Instructors Weaknesses in Integration of Technology in Their Current Area Curricula

Authors: Junior George Martin

Abstract:

The purpose of this study was to explore college instructors’ integration of technology in their content area curriculum. The instructors indicated that they were in need of additional training to successfully integrate technology in their subject areas. The findings point to the implementation of a proposed the Technological, Pedagogical, and Content Knowledge (TPACK) model professional development workshop to satisfactorily address the weaknesses of the instructors in technology integration. The professional development workshop is proposed as a rational solution to adequately address the instructors’ inability to the successful integration of technology in their subject area in an effort to improve their pedagogy. The intense workshop would last for 5 days and will be designed to provide instructors with training in areas such as a use of technology applications and tools, and using modern methodologies to improve technology integration. Exposing the instructors to the specific areas identified will address the weaknesses they demonstrated during the study. Professional development is deemed the most appropriate intervention based on the opportunities it provides the instructors to access hands-on training to overcome their weaknesses. The purpose of the TPACK professional development workshop will be to improve the competence of the instructors so that they are adequately prepared to integrate technology successfully in their curricula. At the end of the period training, the instructors are expected to adopt strategies that will have a positive impact on the learning experiences of the students.

Keywords: higher education, modern technology tools, professional development, technology integration

Procedia PDF Downloads 312
7379 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry

Authors: Samuel Ntsanwisi

Abstract:

This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.

Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning

Procedia PDF Downloads 61
7378 Indigenous Pre-Service Teacher Education: Developing, Facilitating, and Maintaining Opportunities for Retention and Graduation

Authors: Karen Trimmer, Raelene Ward, Linda Wondunna-Foley

Abstract:

Within Australian tertiary institutions, the subject of Aboriginal and Torres Strait Islander education has been a major concern for many years. Aboriginal and Torres Strait Islander teachers are significantly under-represented in Australian schools and universities. High attrition rates in teacher education and in the teaching industry have contributed to a minimal growth rate in the numbers of Aboriginal and Torres Strait Islander teachers in previous years. There was an increase of 500 Indigenous teachers between 2001 and 2008 but these numbers still only account for one percent of teaching staff in government schools who identified as Aboriginal and Torres Strait Islander Australians (Ministerial Council for Education, Early Childhood Development and Youth Affairs 2010). Aboriginal and Torres Strait Islander teachers are paramount in fostering student engagement and improving educational outcomes for Indigenous students. Increasing the numbers of Aboriginal and Torres Strait Islander teachers is also a key factor in enabling all students to develop understanding of and respect for Aboriginal and Torres Strait Islander histories, cultures, and language. An ambitious reform agenda to improve the recruitment and retention of Aboriginal and Torres Strait Islander teachers will be effective only through national collaborative action and co-investment by schools and school authorities, university schools of education, professional associations, and Indigenous leaders and community networks. Whilst the University of Southern Queensland currently attracts Indigenous students to its teacher education programs (61 students in 2013 with an average of 48 enrollments each year since 2010) there is significant attrition during pre-service training. The annual rate of exiting before graduation remains high at 22% in 2012 and was 39% for the previous two years. These participation and retention rates are consistent with other universities across Australia. Whilst aspirations for a growing number of Indigenous people to be trained as teachers is present, there is a significant loss of students during their pre-service training and within the first five years of employment as a teacher. These trends also reflect the situation where Aboriginal and Torres Strait Islander teachers are significantly under-represented, making up less than 1% of teachers in schools across Australia. Through a project conducted as part the nationally funded More Aboriginal and Torres Strait Islander Teachers Initiative (MATSITI) we aim to gain an insight into the reasons that impact Aboriginal and Torres Strait Islander student’s decisions to exit their program. Through the conduct of focus groups and interviews with two graduating cohorts of self-identified Aboriginal and Torres Strait Islander students, rich data has been gathered to gain an understanding of the barriers and enhancers to the completion of pre-service qualification and transition to teaching. Having a greater understanding of these reasons then allows the development of collaborative processes and procedures to increase retention and completion rates of new Indigenous teachers. Analysis of factors impacting on exit decisions and transitions has provided evidence to support change of practice, redesign and enhancement of relevant courses and development of policy/procedures to address identified issues.

Keywords: graduation, indigenous, pre-service teacher education, retention

Procedia PDF Downloads 471
7377 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 118
7376 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano

Abstract:

Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.

Keywords: machine learning, recommender system, software platform, support vector machine

Procedia PDF Downloads 134
7375 Factors Affecting the Operations of Vocational and Technical Training Institutions in Zambia: A Case of Lusaka and Southern Provinces in Zambia

Authors: Jabulani Mtshiya, Yasmin Sultana-Muchindu

Abstract:

Technical and Vocational Education (TVE) is the platform on which developed nations have built their economic foundations, which have led them to attain high standards of living. Zambia has put up educational systems aimed at empowering the citizens and building the economy. Nations such as China, the United States America, and several other European nations are such examples. Despite having programs in Technical and Vocations Education, the Zambian economy still lags, and the industries contributing merger to Gross Domestic Product. This study addresses the significance of Technical and Vocational Education and how it can improve the livelihood of citizens. It addresses aspects of development and productivity and highlights the problems faced by learners in Lusaka and Southern provinces in Zambia. The study employed qualitative research design in data collection and a method of descriptive data analysis was used in order to bring out the description of the prevailing state of affairs in TVE in the perspective of learners. This meant that the respondents indicated their views and thoughts toward TVE. The study collected information through research questionnaires. The findings showed that TVE is regarded important by government and various stakeholders and that it is also regarded important by learners. The findings also showed that stakeholders and society need to pay particular attention to the development of TVE in order to improve the livelihood of citizens and to improve the national economy. Just like any other developed nation that used TVE to develop their industries, Zambia also has the potential to train its youth and to equip them with the necessary skills required for them to contribute positively to the growth of industries and the growth of the economy. Deliberate steps need to be taken by the government and stakeholders to apply and make firm the TVE policies that were laid. At the end of the study recommendations were made; that government should put in the right measures in order to harness the potential at hand. Further on, recommendations were made to carry out this research at the national level and also to conduct it using the quantitative research method, and that government should be consistent to its obligations of funding and maintaining TVE institutions in order for them to be able to operate effectively.

Keywords: education, technical, training, vocational

Procedia PDF Downloads 163
7374 Impacts of Computer Assisted Instruction and Gender on High-Flyers Pre-Service Teachers' Attitude towards Agricultural Economics in Southwest Nigeria

Authors: Alice Morenike Olagunju, Olufemi A. Fakolade, Abiodun Ezekiel Adesina, Olufemi Akinloye Bolaji, Oriyomi Rabiu

Abstract:

The use of computer-assisted instruction(CAI) has been suggested as a way out of the problem of Colleges of Education (CoE) in Southwest, Nigeria persistent high failure rate in and negative attitude towards Agricultural Economics (AE).The impacts of this are yet unascertained on high-flyers. This study, therefore, determined the impacts of CAI onhigh-flyers pre-service teachers’ attitude towards AE concepts in Southwest, Nigeria. The study adopted pretest-posttest, control group, quasi-experimental design. Six CoE with e-library facilities were purposively selected. Fourty-nine 200 level Agricultural education students offering introduction to AE course across the six CoE were participants. The participants were assigned to two groups (CAI, 22 and control, 27). Treatment lasted eight weeks. The AE Attitude Scale(r=0.80), Instructional guides and Teacher Performance Assessment Sheets were used for data collection. Data were analysed using t-test. The participants were 62.8% male with mean age of 22 years. Treatment had significant effects on high-flyers pre-service teachers’ attitude (t = 17.44; df = 47, p < .5). Participants in CAI ( =71.03) had higher post attitude mean score compared to those in control ( = 64.92) groups. Gender had no significant effect on attitude (t= 3.06; df= 47, p > .5). The computer assisted instructional mode enhanced students’ attitude towards Agricultural Economics concepts. Therefore, CAI should be adopted for improved attitude towards agricultural economics concepts among high-flyers pre-service teachers.

Keywords: attitude towards agricultural economics concepts, colleges of education in southwest Nigeria, computer-assisted instruction, high-flyers pre-service teachers

Procedia PDF Downloads 249
7373 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 146
7372 Nontraditional Online Student Perceptions of Student Success Conditions

Authors: Carrie Prendergast, Lisa Bortman

Abstract:

The focus of this presentation will be on non-traditional (adult) students as they seek their Bachelors’ degrees online. This presentation will specifically examine nontraditional online student perceptions of Tinto’s success conditions: expectations, support, assessment, and engagement. Expectations include those of the student, the faculty and the institution. Support includes academic, social, and financial support. Feedback and assessment encompasses feedback in the classroom, upon entry, and on an institutional level. The fourth success condition is involvement or engagement of students with their peers and faculty in both academic and social contexts. This program will review and discuss a rich, detailed description of the lived experience of the nontraditional online student to add to the paucity of research on this understudied population and guide higher education professionals in supporting this growing population of students.

Keywords: adult students, online education, student success, vincent tinto

Procedia PDF Downloads 373
7371 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling

Procedia PDF Downloads 500
7370 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory

Authors: Marilei Amadeu Sabino

Abstract:

The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).

Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology

Procedia PDF Downloads 337
7369 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 103
7368 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 187
7367 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features

Authors: Asmaa Shehata

Abstract:

Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.

Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning

Procedia PDF Downloads 256
7366 Use of Progressive Feedback for Improving Team Skills and Fair Marking of Group Tasks

Authors: Shaleeza Sohail

Abstract:

Self, and peer evaluations are some of the main components in almost all group assignments and projects in higher education institutes. These evaluations provide students an opportunity to better understand the learning outcomes of the assignment and/or project. A number of online systems have been developed for this purpose that provides automated assessment and feedback of students’ contribution in a group environment based on self and peer evaluations. All these systems lack a progressive aspect of these assessments and feedbacks which is the most crucial factor for ongoing improvement and life-long learning. In addition, a number of assignments and projects are designed in a manner that smaller or initial assessment components lead to a final assignment or project. In such cases, the evaluation and feedback may provide students an insight into their performance as a group member for a particular component after the submission. Ideally, it should also create an opportunity to improve for next assessment component as well. Self and Peer Progressive Assessment and Feedback System encourages students to perform better in the next assessment by providing a comparative analysis of the individual’s contribution score on an ongoing basis. Hence, the student sees the change in their own contribution scores during the complete project based on smaller assessment components. Self-Assessment Factor is calculated as an indicator of how close the self-perception of the student’s own contribution is to the perceived contribution of that student by other members of the group. Peer-Assessment Factor is calculated to compare the perception of one student’s contribution as compared to the average value of the group. Our system also provides a Group Coherence Factor which shows collectively how group members contribute to the final submission. This feedback is provided for students and teachers to visualize the consistency of members’ contribution perceived by its group members. Teachers can use these factors to judge the individual contributions of the group members in the combined tasks and allocate marks/grades accordingly. This factor is shown to students for all groups undertaking same assessment, so the group members can comparatively analyze the efficiency of their group as compared to other groups. Our System provides flexibility to the instructors for generating their own customized criteria for self and peer evaluations based on the requirements of the assignment. Students evaluate their own and other group members’ contributions on the scale from significantly higher to significantly lower. The preliminary testing of the prototype system is done with a set of predefined cases to explicitly show the relation of system feedback factors to the case studies. The results show that such progressive feedback to students can be used to motivate self-improvement and enhanced team skills. The comparative group coherence can promote a better understanding of the group dynamics in order to improve team unity and fair division of team tasks.

Keywords: effective group work, improvement of team skills, progressive feedback, self and peer assessment system

Procedia PDF Downloads 187
7365 Applying the View of Cognitive Linguistics on Teaching and Learning English at UFLS - UDN

Authors: Tran Thi Thuy Oanh, Nguyen Ngoc Bao Tran

Abstract:

In the view of Cognitive Linguistics (CL), knowledge and experience of things and events are used by human beings in expressing concepts, especially in their daily life. The human conceptual system is considered to be fundamentally metaphorical in nature. It is also said that the way we think, what we experience, and what we do everyday is very much a matter of language. In fact, language is an integral factor of cognition in that CL is a family of broadly compatible theoretical approaches sharing the fundamental assumption. The relationship between language and thought, of course, has been addressed by many scholars. CL, however, strongly emphasizes specific features of this relation. By experiencing, we receive knowledge of lives. The partial things are ideal domains, we make use of all aspects of this domain in metaphorically understanding abstract targets. The paper refered to applying this theory on pragmatics lessons for major English students at University of Foreign Language Studies - The University of Da Nang, Viet Nam. We conducted the study with two third – year students groups studying English pragmatics lessons. To clarify this study, the data from these two classes were collected for analyzing linguistic perspectives in the view of CL and traditional concepts. Descriptive, analytic, synthetic, comparative, and contrastive methods were employed to analyze data from 50 students undergoing English pragmatics lessons. The two groups were taught how to transfer the meanings of expressions in daily life with the view of CL and one group used the traditional view for that. The research indicated that both ways had a significant influence on students' English translating and interpreting abilities. However, the traditional way had little effect on students' understanding, but the CL view had a considerable impact. The study compared CL and traditional teaching approaches to identify benefits and challenges associated with incorporating CL into the curriculum. It seeks to extend CL concepts by analyzing metaphorical expressions in daily conversations, offering insights into how CL can enhance language learning. The findings shed light on the effectiveness of applying CL in teaching and learning English pragmatics. They highlight the advantages of using metaphorical expressions from daily life to facilitate understanding and explore how CL can enhance cognitive processes in language learning in general and teaching English pragmatics to third-year students at the UFLS - UDN, Vietnam in personal. The study contributes to the theoretical understanding of the relationship between language, cognition, and learning. By emphasizing the metaphorical nature of human conceptual systems, it offers insights into how CL can enrich language teaching practices and enhance students' comprehension of abstract concepts.

Keywords: cognitive linguisitcs, lakoff and johnson, pragmatics, UFLS

Procedia PDF Downloads 36
7364 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 322
7363 Disability and Sexuality: A Human Right Approach to Sexual and Reproductive Health of the Hearing Impaired Adolescents In Developing Countries

Authors: Doctor Akanle Florence Foluso

Abstract:

Access to health care and people’s ability to having a responsible, satisfying and safe sexual life is clearly a defined human right of people with hearing impairment and others with disabilities this paper looks at disability and sexuality: a human right approach to sexual and reproductive health of the hearing impaired adolescents in developing countries. This paper investigates the extent to which the hearing impaired has a satisfying, safe sexual life and whether their human right in regards to information education is violated. The study population consists of all hearing impaired adolescents and young adults aged 10-24 years who are currently enrolled in the primary and secondary schools in Nigeria. A sample of 389 hearing impaired adolescents was selected, an adapted version of the illustrative questionnaire for interview – survey by Johncleland was used to collect the data. A correlation of 0.80 was obtained at p<0.05 level of significance. Teachers in the schools of the deaf who used sign language were used in the administration of the questionnaire. The data generated were analyzed using Frequency Counts, Percentages, Means and Standard Deviation to give a Summary on responses on access to information, education, voluntary testing and counselling and other reproductive services. This is to investigate if the sexual and reproductive right violated or protected. Findings show that a gap exists in the level of knowledge of SRH services, voluntary counselling because more than half the respondents are not aware of these services in their community. Access to information, education and health services are rights denied the hearing impaired. So their SRH rights are violated.

Keywords: sexual right diability, family planning, pregnancy, diability

Procedia PDF Downloads 63
7362 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 45
7361 Some Factors Affecting to Farm Size of Duck Farming

Authors: Veronica Sri Lestari, Ahmad Ramadhan Siregar

Abstract:

The purpose of this research was to know some factors affecting farm size of duck farming (case study in Pinrang district, South Sulawesi). This research was conducted in 2013. Total sample was 45 duck farmers which were selected from 6 regions in Mattiro Sompe sub district, Pinrang district, South Sulawesi province through stratified random sampling. Data were collected through interviews using questionnaires and observation. Multiple regression equation was used to analyze the data. Dependent variable was duck population, while age of respondents, farming experience, land size, education, and income level as independent variables. This research revealed that R2 was 0.920. Simultaneously, age of respondents, farming experience, land size, education, and income level significantly influenced farm size of duck farming (P < 1%). Only income influenced farm size of duck farming (P < 1%).

Keywords: duck, dry system, factors, farm-size

Procedia PDF Downloads 505
7360 Constant Dimension Codes via Generalized Coset Construction

Authors: Kanchan Singh, Sheo Kumar Singh

Abstract:

The fundamental problem of subspace coding is to explore the maximum possible cardinality Aq(n, d, k) of a set of k-dimensional subspaces of an n-dimensional vector space over Fq such that the subspace distance satisfies ds(W1, W2) ≥ d for any two distinct subspaces W1, W2 in this set. In this paper, we construct a new class of constant dimension codes (CDCs) by generalizing the coset construction and combining it with CDCs derived from parallel linkage construction and coset construction with an aim to improve the new lower bounds of Aq(n, d, k). We found a remarkable improvement in some of the lower bounds of Aq(n, d, k).

Keywords: constant dimension codes, rank metric codes, coset construction, parallel linkage construction

Procedia PDF Downloads 21
7359 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
7358 Measurement Tools of the Maturity Model for IT Service Outsourcing in Higher Education Institutions

Authors: Victoriano Valencia García, Luis Usero Aragonés, Eugenio J. Fernández Vicente

Abstract:

Nowadays, the successful implementation of ICTs is vital for almost any kind of organization. Good governance and ICT management are essential for delivering value, managing technological risks, managing resources and performance measurement. In addition, outsourcing is a strategic IT service solution which complements IT services provided internally in organizations. This paper proposes the measurement tools of a new holistic maturity model based on standards ISO/IEC 20000 and ISO/IEC 38500, and the frameworks and best practices of ITIL and COBIT, with a specific focus on IT outsourcing. These measurement tools allow independent validation and practical application in the field of higher education, using a questionnaire, metrics tables, and continuous improvement plan tables as part of the measurement process. Guidelines and standards are proposed in the model for facilitating adaptation to universities and achieving excellence in the outsourcing of IT services.

Keywords: IT governance, IT management, IT services, outsourcing, maturity model, measurement tools

Procedia PDF Downloads 592
7357 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants

Authors: Mehmet Akif Bütüner, İlhan Koşalay

Abstract:

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.

Keywords: hydroelectric, governor, anomaly detection, machine learning, regression

Procedia PDF Downloads 97
7356 Impact of Instructional Mode and Medium of Instruction on the Learning Outcomes of Secondary Level School Children

Authors: Dipti Parida, Atasi Mohanty

Abstract:

The focus of this research is to examine the interaction effect of flipped teaching and traditional teaching mode across two different medium (English and Odia) of instructional groups. Both Science and History subjects were taken to be taught in the Class- VIII in two different instructional mode/s. In total, 180 students of Class-VIII of both Odia and English medium schools were taken as the samples of this study; 90 participants (each group) were from both English and Odia medium schools ; 45 participants of each of these two groups were again assigned either to flip or traditional teaching method. We have two independent variables and each independent variable with two levels. Medium and mode of instruction are the two independent variables. Medium of instruction has two levels of Odia medium and English medium groups. The mode of instruction has also two levels of flip and traditional teaching method. Here we get 4 different groups, such as Odia medium students with traditional mode of teaching (O.M.T), Odia medium students with flipped mode of teaching (O.M.F), English medium students with traditional mode of teaching (E.M.T) and English medium students with flipped mode of teaching (E.M.F). Before the instructional administration, these four groups were given a test on the concerned topic to be taught. Based on this result, a one-way ANOVA was computed and the obtained result showed that these four groups don’t differ significantly from each other at the beginning. Then they were taught the concerned topic either in traditional or flip mode of teaching method. After that a 2×2×2 repeated measures ANOVA was done to analyze the group differences as well as the learning outcome before and after the teaching. The result table also shows that in post-test the learning outcome is highest in case of English medium students with flip mode of instruction. From the statistical analysis it is clear that the flipped mode of teaching is as effective for Odia medium students as it is for English medium students.

Keywords: medium of instruction, mode of instruction, test mode, vernacular medium

Procedia PDF Downloads 355