Search results for: observational learning
1549 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration
Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.
Abstract:
Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.Keywords: artificial intelligence, space exploration, space missions, deep learning
Procedia PDF Downloads 341548 The Innovation of English Materials to Communicate the Identity of Bangpoo, Samut Prakan Province, for Ecotourism
Authors: Kitda Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Mueang district, SamutSongkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: (1) The identity of Amphur (District) Mueang, SamutSongkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. (2) The communication of the identity of AmphurMueang, SamutSongkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of AmphurMueang, SamutSongkram province 2) WatPhetSamutWorrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep AmphurMueang, SamutSongkram province for ecotourism.Keywords: foreigner tourists, signified, semiotics, ecotourism
Procedia PDF Downloads 3051547 Truancy and Academic Performance of Colleges of Education Students in South Western Nigeria: Implication for Evaluation
Authors: Oloyede Akinniyi Ojo
Abstract:
This study investigated the relationship between truancy and academic performance of Colleges of Education students in southwestern, Nigeria. It also examined the relationship between College Physical environment and truancy behavior among students. Furthermore, it examined the relationship between male and female students involvement in truancy behavior. Purposive sampling was used to select four colleges of education in south-western Nigeria and 120 students per college were selected from year 3 while stratified sampling was used to select schools and courses. A total of 480 students participated in the study. Three research instruments were used for this study namely: Lecturers Attendance Record, Students Statement of Result and ‘College Environment Questionnaires’ (CEQ). Four research questions guided the study. Data was analyzed using descriptive, Chi-square and T-Test. CEQ was validated by a team of experts in the field of educational evaluation. Test reliability was established at an r=0-74. The study concluded that truancy exist in colleges of education and that there was a significant relationship between truancy and academic performance of male and female truants, the study also revealed that physical environment has so much effect on the truancy behavior of the students, hence the study recommended that effort should be made to provide attractive college environment for effective learning.Keywords: academic performance, colleges of education, students, truancy
Procedia PDF Downloads 1921546 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 1271545 Challenges of Technical and Engineering Students in the Application of Scientific Cancer Knowledge to Preserve the Future Generation in Sub-Saharan Africa
Authors: K. Shaloom Mbambu, M. Pascal Tshimbalanga, K. Ruth Mutala, K. Roger Kabuya, N. Dieudonné Kabeya, Y. L. Kabeya Mukeba
Abstract:
In this article, the authors examine the even more worrying situation of girls in sub-Saharan Africa. Two-girls on five are private of Global Education, which represents a real loss to the development of communities and countries. Cultural traditions, poverty, violence, early and forced marriages, early pregnancies, and many other gender inequalities were the causes of this cancer development. Namely, "it is no more efficient development tool that is educating girls." The non-schooling of girls and their lack of supervision by liberal professions have serious consequences for the life of each of them. To improve the conditions of their inferior status, girls to men introduce poverty and health risks. Raising awareness among parents and communities on the importance of girls' education, improving children's access to school, girl-boy equality with their rights, creating income, and generating activities for girls, girls, and girls learning of liberal trades to make them self-sufficient. Organizations such as the United Nations Organization can save the children. ASEAD and the AEDA group are predicting the impact of this cancer on the development of a nation's future generation must be preserved.Keywords: young girl, Sub-Saharan Africa, higher and vocational education, development, society, environment
Procedia PDF Downloads 2571544 Children Protection in the Digital Space
Authors: Beverly Komen
Abstract:
Online crimes have been on the rise in the recent days, especially with the hit of the covid-19 pandemic. The coronavirus pandemic has led to an unprecedented rise in screen time, this means more families are relying on technology and digital solutions to keep children learning, spending more time on the virtual platforms can leave children vulnerable to online abuse and exploitation. With ease access of affordable phones, internet, and increased online activities, all children are at risk of being abused online hence making the digital space unsafe for children. With these increased use of technology and its accessibility, children are at risk of facing challenges such as access to inappropriate content, online grooming, identity theft, cyber bullying, among other risks. The big question is; as we enjoy the benefits brought in by technology, how do we ensure that our children are save in this digital space? With the analysis of the current trends, there is a gap in knowledge on people’s understanding on child online protection and safety measures when using the digital space. A survey conducted among 50 parents in Nairobi in Kenya indicated that there is a gap in knowledge on online protection of children and over 50 % of the participants shared that for sure they have no idea on how to protect children online. This paper seeks to address the concept of child protection in the digital space and come up with viable solutions in protecting children from online vices.Keywords: child protection, digital space, online risks, online grooming, cyber bulying, online child sexual exploitation, and abuse
Procedia PDF Downloads 1871543 L2 Learning and Teaching through Digital Tools
Authors: Bâlc Denisa-Maria
Abstract:
This paper aims to present some ways of preserving a language heritage in the global era. Teaching a second language to foreign students does not imply only teaching the grammar and the vocabulary in order to reach the 4 skills, but it means constant work on developing strategies to make the students aware of the heritage that the language they learn has. Teachers and professors need to be aware of the fact that language is in constant change, they need to adjust their techniques to the digital era, but they also have to be aware of the changes, the good and the bad parts of globalizations. How is it possible to preserve the patrimony of a certain language in a globalized era? What transformations does a language face in time? What does it mean to preserve the heritage of a language through L2 teaching? What makes a language special? What impact does it have on the foreign students? How can we, as teachers, preserve the heritage of our language? Would it be everything about books, films, music, cultural events or what else? How is it possible to include digital programs in your teaching and preserving the patrimony of a language at the same time? How does computational linguistics help us in teaching a certain language? All these questions will be tackled during the essay, with special accent on the definition of a language heritage, the new perspectives for teachers/ professors, everything in a multimodal and complex way of presenting the context. The objectives of this research are: - to present some ways of preserving the heritage of a certain language against globalization - to illustrate what preservation means for L2 teaching - to encourage teachers to be aware of their language patrimony The main contributions of my research are on moving the discussion of preserving a certain language patrimony in the context of L2 teaching.Keywords: preservation, globalization, language heritage, L2 teaching
Procedia PDF Downloads 641542 Students’ Perceptions of Formative Assessment Feedback: A Case Study for Undergraduate Students in Bahrain
Authors: Hasan Husain Ali Abdulnabi
Abstract:
Formative assessment feedback is increasingly practiced in higher education. Instructors allocate great time and effort to provide assessment feedback. However, educators are not sure about students’ perceptions, understanding and respond to the feedback given, as very limited research have been done about what students do with feedback and whether if they understand it. This study aims to explore students’ conceptions and perceptions of formative assessment feedback through questionnaire and focus group interviews. One hundred eighty undergraduate students doing different courses filled the questionnaire, and ten focus group discussions were conducted. Basic descriptive and content analyses were used to analyze students’ responses to the questionnaire, while grounded theory with open coding was used to analyze the focus group interviews. The study revealed that most students believe assessment feedback is helpful to improve their academic performance, and they take time to read, think and discuss their feedback. Also, the study shows most students understand the feedback given. However, students expressed that most of the written feedback given are too general, and they prefer individual oral feedback as it can lead to better understanding on how what and where to improve. The study concluded that students believe formative assessment feedback is valuable, students have reasonable understanding and respond to the feedback provided. However, this practice could be improved by requesting lecturers to make more specific feedback and communicate with students on the way of interpreting and using assessment feedback as a part of the learning and teaching process.Keywords: assessment, feedback, formative, undergraduate, higher education
Procedia PDF Downloads 891541 Students Reading and Viewing the American Novel in a University EFL/ESL Context: A Picture of Real Life
Authors: Nola Nahla Bacha
Abstract:
Research has indicated that ESL/EFL (nonnative students of English) students have difficulty in reading at the university as often times the requirements are long texts in which both cultural and linguistic factors impede their understanding and thus their motivation. This is especially the case in literature courses. It is the author’s view that if readings are selected according to the students’ interests and linguistic level, related to life situations and coupled with film study they will not only be motivated to read, but they will find reading interesting and exciting. They will view novels, and thus literature, as a picture of life. Students will also widen their vocabulary repertoire and overcome many of their linguistic problems. This study describes the procedure used in in a 20th Century American Novel class at one English medium university in Lebanon and explores students’ views on the novels assigned and their recommendations. Findings indicate that students significantly like to read novels, contrary to what some faculty claim and view the inclusion of novels as helping them with expanding their vocabulary repertoire and learning about real life which helps them linguistically, pedagogically, and above all personally during their life in and out of the university. Annotated texts, pictures and film will be used through technological aids to show how the class was conducted and how the students’ interacted with the novels assigned. Implications for teaching reading in the classroom are made.Keywords: language, literature, novels, reading, university teaching
Procedia PDF Downloads 3791540 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language
Authors: Samal Abzhanova, Saule Mussabekova
Abstract:
Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.Keywords: interactive education, interactive methods, system of education, teaching a language
Procedia PDF Downloads 2951539 An Informetrics Analysis of Research on Phishing in Scopus and Web of Science Databases from 2012 to 2021
Authors: Nkosingiphile Mbusozayo Zungu
Abstract:
The purpose of the current study is to adopt informetrics methods to analyse the research on phishing from 2012 to 2021 in three selected databases in order to contribute to global cybersecurity through impactful research. The study follows a quantitative research methodology. We opted for the positivist epistemology and objectivist ontology. The analysis focuses on: (i) the productivity of individual authors, institutions, and countries; (ii) the research contributions, using co-authorship as a measure of collaboration; (iii) the altmetrics of selected research contributions; (iv) the citation patterns and research impact of research on phishing; and (v) research contributions by keywords, to discover the concepts that are related to phishing. The preliminary findings favour developed countries in terms of quantity and quality of research in the domain. There are unique research trends and patterns in the developing countries, including those in Africa, that provide opportunities for research development in the domain in the region. This study explores an important research domain by using unexplored method in the region. The study supports the SDG Agenda 2030, such as ending abuse, exploitation, trafficking, and all other forms of violence and torture of children through the use of cyberspace (SDG 16). Further, the results from this study can inform research, teaching, and learning largely in Africa. Invariably, the study contributes to cybersecurity awareness that will mitigate cybersecurity threats against vulnerable communities.Keywords: phishing, cybersecurity, informetrics, information security
Procedia PDF Downloads 1151538 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 1971537 Daily Stand-up Meetings - Relationships with Psychological Safety and Well-being in Teams
Authors: Sarah Rietze, Hannes Zacher
Abstract:
Daily stand-up meetings are the most commonly used method in agile teams. In daily stand-ups, team members gather to coordinate and align their efforts, typically for a predefined period of no more than 15 minutes. The primary purpose is to ask and answer the following three questions: What was accomplished yesterday? What will be done today? What obstacles are impeding my progress? Daily stand-ups aim to enhance communication, mutual understanding, and support within the team, as well as promote collective learning from mistakes through daily synchronization and transparency. The use of daily stand-ups is intended to positively influence psychological safety within teams, which is the belief that it is safe to show oneself and take personal risks. Two studies will be presented, which explore the relationships between daily stand-ups, psychological safety, and psychological well-being. In a first study, based on survey results (n = 318), we demonstrated that daily stand-ups have a positive indirect effect on job satisfaction and a negative indirect effect on turnover intention through their impact on psychological safety. In a second study, we investigate, using an experimental design, how the use of daily stand-ups in teams enhances psychological safety and well-being compared to a control group that does not use daily stand-ups. Psychological safety is considered one of the most crucial cultural factors for a sustainable, agile organization. Agile approaches, such as daily stand-ups, are a critical part of the evolving work environment and offer a proactive means to shape and foster psychological safety within teams.Keywords: occupational wellbeing, agile work practices, psychological safety, daily stand-ups
Procedia PDF Downloads 661536 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3321535 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 921534 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 1401533 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent
Authors: Kwame Amoah
Abstract:
Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence
Procedia PDF Downloads 851532 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3171531 A Quantitative Analysis for the Correlation between Corporate Financial and Social Performance
Authors: Wafaa Salah, Mostafa A. Salama, Jane Doe
Abstract:
Recently, the corporate social performance (CSP) is not less important than the corporate financial performance (CFP). Debate still exists about the nature of the relationship between the CSP and CFP, whether it is a positive, negative or a neutral correlation. The objective of this study is to explore the relationship between corporate social responsibility (CSR) reports and CFP. The study uses the accounting-based and market-based quantitative measures to quantify the financial performance of seven organizations listed on the Egyptian Stock Exchange in 2007-2014. Then uses the information retrieval technologies to quantify the contribution of each of the three dimensions of the corporate social responsibility report (environmental, social and economic). Finally, the correlation between these two sets of variables is viewed together in a model to detect the correlations between them. This model is applied on seven firms that generate social responsibility reports. The results show a positive correlation between the Earnings per share (market based measure) and the economical dimension in the CSR report. On the other hand, total assets and property, plant and equipment (accounting-based measure) are positively correlated to the environmental and social dimensions of the CSR reports. While there is not any significant relationship between ROA, ROE, Operating income and corporate social responsibility. This study contributes to the literature by providing more clarification of the relationship between CFP and the isolated CSR activities in a developing country.Keywords: financial, social, machine learning, corporate social performance, corporate social responsibility
Procedia PDF Downloads 3121530 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol
Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani
Abstract:
Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.Keywords: heuristics routing, intelligent routing, VANET, route optimization
Procedia PDF Downloads 1801529 Developing a Moodle Course for Translation Theory and Methodology: The Importance of Theory in Translation Studies and Its Application
Authors: Antonia Tsaknaki
Abstract:
There are many and divergent views on how the science of translation should be taught in academic institutions or colleges, meaning as an independent study area or as part of Linguistics, Literature or Foreign Languages Departments. A much more debated issue refers to the question of whether translation theory should be included in syllabuses and study programs or the focus should be solely on practicing the profession, that is translating texts. This dissertation examines prevailing views on the significance of translation theory in translation studies in order to design an open course on moodle. Taking into account that there is a remarkable percentage of translation professionals who are self-taught without having any specific studies, the course aims at helping either translation students or professional translators familiarize with concepts, methods and problem-solving strategies that are considered necessary during the process. It is organized in four modules where the learner is guided through a series of topics (register, equivalence, decision-making, level of naturalness, Skopos theory etc); after completing these topics, they are given assignments (further reading) and texts to work on in order to practice the skills obtained. The course does not focus on a specific language pair and therefore is suitable for every individual who needs a theoretical background to boost their performance or for institutions seeking to save classroom time but not at the expense of learners’ skills.Keywords: MOOCs, moodle, online learning, open courses, translation, translation theory
Procedia PDF Downloads 1471528 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 2081527 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques
Authors: Pranjali Avinash Yadav-Deshmukh
Abstract:
Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction
Procedia PDF Downloads 3881526 A Collection of Voices on Higher Educational Access, Quality and Equity in Africa: A Systematic Review
Authors: Araba A. Z. Osei-Tutu, Ebenezer Odame, Joseph Bawa, Samuel Amponsah
Abstract:
Education is recognized as a fundamental human right and a catalyst for development. Despite progress in the provision of higher education on the African continent, there persist challenges with the tripartite areas of access, equity and quality. Therefore, this systematic review aimed at providing a comprehensive overview of conversations and voices of scholars on these three concepts in HE in Africa. The systematic review employed a thematic analysis approach, synthesizing findings from 38 selected sources. After a critical analysis of the sources included in the systematic review, deficits in access, quality, and equity were outlined, focusing on infrastructure, regional disparities, and privatization challenges. The review also revealed the weak enforcement of quality assurance measures. Strategies for improvement, proffered by the study, include expanding public sector HE, deregulating the educational sector, promoting open and distance learning, implementing preferential admission policies, and enhancing financial aid. This research contributes valuable insights for policymakers, educators, and stakeholders, fostering a collaborative approach to address challenges and promote holistic development in African higher education.Keywords: access, equity, quality, higher education, Africa, systematic review, strategies
Procedia PDF Downloads 771525 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals
Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti
Abstract:
Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.Keywords: neuroinformatics, bioinformatics, network tools, brain mapping
Procedia PDF Downloads 1831524 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 2331523 Analyzing Students' Writing in an English Code-Mixing Context in Nepali: An Ecological and Systematic Functional Approach
Authors: Binod Duwadi
Abstract:
This article examines the language and literacy practices of English Code-mixing in Nepalese Classroom. Situating the study within an ecological framework, a systematic functional linguistic (SFL) approach was used to analyze students writing in two Neplease schools. Data collection included interviews with teachers, classroom observations, instructional materials, and focal students’ writing samples. Data analyses revealed vastly different language ecologies between the schools owing to sharp socioeconomic stratification, the structural organization of schools, and the pervasiveness of standard language ideology, with stigmatizes English code mixing (ECM) and privileges Standard English in schools. Functional analysis of students’ writing showed that the nature of the writing tasks at the schools created different affordances for exploiting lexicogrammatically choices for meaning making-enhancing them in the case of one school but severely restricting them in the case of another- perpetuating the academic disadvantage for code mixing speakers. Recommendations for structural and attitudinal changes through teacher training and implementation of approaches that engage students’ bidialectal competence for learning are made as important first steps towards addressing educational inequities in Nepalese schools.Keywords: code-mixing, ecological perspective, systematic functional approach, language and identity
Procedia PDF Downloads 1241522 Elite Female Football Coaches’ Experiences and Reflections in a Male-dominated Environment: The Case of Ghana
Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong
Abstract:
The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching, including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders, including Ghana Football Association (GFA), to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.Keywords: elite female football coaches, career experiences, gender, motives, trajectories
Procedia PDF Downloads 701521 Elite Female Football Coaches’ Experiences and Reflections in a Male-Dominated Environment: The Case of Ghana
Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong
Abstract:
The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders including Ghana Football Association (GFA) to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.Keywords: elite female football coaches, career experiences, gender, motives, trajectories
Procedia PDF Downloads 621520 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 138