Search results for: comprehensive sexuality education
3962 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis
Authors: Pratima Kumari, Sukha Ranjan Samadder
Abstract:
This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach
Procedia PDF Downloads 523961 The Lived Experiences of South African Female Offenders and the Possible Links to Recidivism Due to their Exclusion from Educational Rehabilitation Programmes
Authors: Jessica Leigh Thornton
Abstract:
The South African Constitution outlines provisions for every detainee and sentenced prisoner in relation to the human rights recognized in the country since 1994; but currently, across the country, prisons have yet to meet many of these criteria. Consequently, their day-to-day lives are marked by extreme lack of privacy, high rates of infection, poor nutrition, and deleterious living conditions, which steadily erode prisoners’ mental and physical capacities rather than rehabilitating inmates so that they can effectively reintegrate into society. Even more so, policy reform, advocacy, security, and rehabilitation programs continue to be based on research and theories that were developed to explain the experiences of men, while female offenders are seen as the “special category” of inmates. Yet, the experiences of women and their pathways to incarceration are remarkably different from those of male offenders. Consequently, little is known about the profile, nature and contributing factors and experiences of female offenders which has impeded a comprehensive and integrated understanding of the subject of female criminality. The number of women globally in correctional centers has more than doubled over the past fifteen years (these increases vary from prison to prison and country to country). Yet, female offenders have largely been ignored in research even though the minority status of female offenders is a phenomenon that is not peculiar to South Africa as the number of women incarcerated has increased by 68% within the decade. Within South Africa, there have been minimal studies conducted on the gendered experience of offenders. While some studies have explored the pathways to female offending, gender-sensitive correctional programming for women that respond to their needs has been overlooked. This often leads to a neglect of the needs of female offenders, not only in terms of programs and services delivery to this minority group but also from a research perspective. In response, the aim of the proposed research is twofold: Firstly, the lived experiences and views of rehabilitation and reintegration of female offenders will be explored. Secondly, the various pathways into and out of recidivism amongst female offenders will be investigated regarding their inclusion in educational rehabilitation.Keywords: female incarceration, educational rehabilitation, exclusion, experiences of female offenders
Procedia PDF Downloads 2713960 The Role of Maladaptive Personality Traits in Obesity Treatment – Quantitative Study
Authors: Judita Konečná, Dagmar Halo, Martin Matoulek
Abstract:
Background: Personality pathology does not have to be a contraindication nor an obstacle in obesity treatment, or eventually, surgical treatment. Detection of specific maladaptive personality traits can help us understand the manner of behavior leading to obesity as well as to address the treatment better. Objective: Using The Personality Inventory for DSM-5 (PID-5) in combination with clinical interviews with the goal of gaining a psychological evaluation to set the treatment procedure. Data was collected from more than 400 patients to detect differences in constellations of maladaptive personality traits based on BMI, DM2 and gender. Conclusions: Besides the fact that a psychological evaluation can help address the treatment better, analyses showed that it is also useful to detect specific groups of patients. Implications for clinical practice are discussed, as well as recommendations for group education programs based on quantitative research.Keywords: bariatric surgery, obesity, personality traits, PID-5, treatment
Procedia PDF Downloads 2263959 Fairness in Grading of Work-Integrated Learning Assessment: Key Stakeholders’ Challenges and Solutions
Authors: Geraldine O’Neill
Abstract:
Work-integrated learning is a valuable learning experience for students in higher education. However, the fairness of the assessment process has been identified as a challenge. This study explored solutions to this challenge through interviews with expert authors in the field and workshops across nine different disciplines in Ireland. In keeping with the use of a participatory and action research methodology, the key stakeholders in the process, the students, educators, and practitioners, identified some solutions. The solutions included the need to: clarify the assessments’ expectations; enhance the flexibility of the competencies, reduce the number of competencies; use grading scales with lower specificity; support practitioner training, and empower students in the assessment process. The results are discussed as they relate to interactional, procedural, and distributive fairness.Keywords: competencies, fairness, grading scales, work-integrated learning
Procedia PDF Downloads 1233958 Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species
Authors: Ramatu I. Sha’aba, Mathias A. Chia, Abdullahi B. Alhassan, Yisa A. Gana, Ibrahim M. Gadzama
Abstract:
Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna.Keywords: algae, analgesic drug, daphnia magna, toxicity
Procedia PDF Downloads 773957 The Impact of Feuerstein Enhancement of Learning Potential to the Integration of Children from Socially Disadvantaged Backgrounds into Society
Authors: Michal Kozubík, Svetlana Síthová
Abstract:
Aim: Aim of this study is to introduce the method of instrumental enrichment to people who works in the helping professions, and show further possibilities of its realization with children from socially disadvantaged backgrounds into society. Methods: We focused on Feuerstein’s Instrumental Enrichment method, its theoretical grounds and practical implementation. We carried out questionnaires and directly observed children from the disadvantaged background in Partizánske district. Results: We outlined the issues of children from disadvantaged social environment and their opportunity of social integration using the method. The findings showed the utility of Feuerstein method. Conclusions: We conclude that Feuerstein methods are very suitable for children from socially disadvantaged background and importance of social workers and special educator co-operation.Keywords: Feuerstein, inclusion, education, socially disadvantaged background
Procedia PDF Downloads 3103956 Corn Flakes Produced from Different Cultivars of Zea Mays as a Functional Product
Authors: Milenko Košutić, Jelena Filipović, Zvonko Nježić
Abstract:
Extrusion technology is thermal processing that is applied to improve the nutritional, hygienic, and physical-chemical characteristics of the raw material. Overall, the extrusion process is an efficient method for the production of a wide range of food products. It combines heat, pressure, and shear to transform raw materials into finished goods with desired textures, shapes, and nutritional profiles. The extruded products’ quality is remarkably dependent upon feed material composition, barrel temperature profile, feed moisture content, screw speed, and other extrusion system parameters. Given consumer expectations for snack foods, a high expansion index and low bulk density, in addition to crunchy texture and uniform microstructure, are desired. This paper investigates the effects of simultaneous different types of corn (white corn, yellow corn, red corn, and black corn) addition and different screw speed (350, 500, 650 rpm) on the physical, technological, and functional properties of flakes products. Black corn flour and screw speed at 350 rpm positively influenced physical, technological characteristics, mineral composition, and antioxidant properties of flake products with the best total score analysis of 0,59. Overall, the combination of Tukey's HSD test and PCA enables a comprehensive analysis of the observed corn products, allowing researchers to identify them. This research aims to analyze the influence of different types of corn flour (white corn, yellow corn, red corn, and black corn) on the nutritive and sensory properties of the product (quality, texture, and color), as well as the acceptance of the new product by consumers on the territory of Novi Sad. The presented data point that investigated corn flakes from black corn flour at 350 rpm is a product with good physical-technological and functional properties due to a higher level of antioxidant activity.Keywords: corn types, flakes product, nutritive quality, acceptability
Procedia PDF Downloads 553955 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate
Authors: Abderrahmane Soufi
Abstract:
The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating
Procedia PDF Downloads 573954 A Comparative Analysis of Conventional and Organic Dairy Supply Chain: Assessing Transport Costs and External Effects in Southern Sweden
Authors: Vivianne Aggestam
Abstract:
Purpose: Organic dairy products have steadily increased with consumer popularity in recent years in Sweden, permitting more transport activities. The main aim of this study was to compare the transport costs and the environmental emissions made by the organic and conventional dairy production in Sweden. The objective was to evaluate differences and environmental impacts of transport between the two different production systems, allowing a more transparent understanding of the real impact of transport within the supply chain. Methods: A partial attributional Life Cycle Assessment has been conducted based on a comprehensive survey of Swedish farmers, dairies and consumers regarding their transport needs and costs. Interviews addressed the farmers and dairies. Consumers were targeted through an online survey. Results: Higher transport inputs from conventional dairy transportation are mainly via feed and soil management on farm level. The regional organic milk brand illustrate less initial transport burdens on farm level, however, after leaving the farm, it had equal or higher transportation requirements. This was mainly due to the location of the dairy farm and shorter product expiry dates, which requires more frequent retail deliveries. Organic consumers tend to use public transport more than private vehicles. Consumers using private vehicles for shopping trips primarily bought conventional products for which price was the main deciding factor. Conclusions: Organic dairy products that emphasise its regional attributes do not ensure less transportation and may therefore not be a more “climate smart” option for the consumer. This suggests that the idea of localism needs to be analysed from a more systemic perspective. Fuel and regional feed efficiency can be further implemented, mainly via fuel type and the types of vehicles used for transport.Keywords: supply chains, distribution, transportation, organic food productions, conventional food production, agricultural fossil fuel use
Procedia PDF Downloads 4543953 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions
Procedia PDF Downloads 503952 Operating Characteristics of Point-of-Care Ultrasound in Identifying Skin and Soft Tissue Abscesses in the Emergency Department
Authors: Sathyaseelan Subramaniam, Jacqueline Bober, Jennifer Chao, Shahriar Zehtabchi
Abstract:
Background: Emergency physicians frequently evaluate skin and soft tissue infections in order to differentiate abscess from cellulitis. This helps determine which patients will benefit from incision and drainage. Our objective was to determine the operating characteristics of point-of-care ultrasound (POCUS) compared to clinical examination in identifying abscesses in emergency department (ED) patients with features of skin and soft tissue infections. Methods: We performed a comprehensive search in the following databases: Medline, Web of Science, EMBASE, CINAHL and Cochrane Library. Trials were included if they compared the operating characteristics of POCUS with clinical examination in identifying skin and soft tissue abscesses. Trials that included patients with oropharyngeal abscesses or that requiring abscess drainage in the operating room were excluded. The presence of an abscess was determined by pus drainage. No pus seen on incision or resolution of symptoms without pus drainage at follow up, determined the absence of an abscess. Quality of included trials was assessed using GRADE criteria. Operating characteristics of POCUS are reported as sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR-) ratios and the respective 95% confidence intervals (CI). Summary measures were calculated by generating a hierarchical summary receiver operating characteristic model (HSROC). Results: Out of 3203 references identified, 5 observational studies with 615 patients in aggregate were included (2 adults and 3 pediatrics). We rated the quality of 3 trials as low and 2 as very low. The operating characteristics of POCUS and clinical examination in identifying soft tissue abscesses are presented in the table. The HSROC for POCUS revealed a sensitivity of 96% (95% CI = 89-98%), specificity of 79% (95% CI = 71-86), LR+ of 4.6 (95% CI = 3.2-6.8), and LR- of 0.06 (95% CI = 0.02-0.2). Conclusion: Existing evidence indicates that POCUS is useful in identifying abscesses in ED patients with skin or soft tissue infections.Keywords: abscess, point-of-care ultrasound, pocus, skin and soft tissue infection
Procedia PDF Downloads 3683951 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning
Authors: R. Abdulrahman, A. Eardley, A. Soliman
Abstract:
The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)
Procedia PDF Downloads 1833950 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making
Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson
Abstract:
Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty
Procedia PDF Downloads 1243949 A Comparative Study of the Proposed Models for the Components of the National Health Information System
Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi
Abstract:
National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.Keywords: National Health Information System, components of the NHIS, Lippeveld Model
Procedia PDF Downloads 4203948 Towards Developing a Strategic Framework for Sustainable Knowledge Economy
Authors: Hamid Alalwany, Nabeel A. Koshak, Mohammad K. Ibrahim
Abstract:
Both knowledge economy and sustainable development are considered key dimensions in the policy action lines of many developed and developing countries. In this context, universities and other higher education institutes have a vital role in developing and sustaining wellbeing communities. In this paper, the authors’ aim is to address the links between the concepts of innovation and entrepreneurial capacity and knowledge economy, and to utilize the approach of intellectual capital development in building a sustainable knowledge economy. The paper will contribute to two discourses: (1) Developing a common understanding of the intersection aspects between the three concepts: Knowledge economy, Innovation and entrepreneurial system, and sustainable development; (2) Paving the road towards developing an integrated multidimensional framework for sustainable knowledge economy.Keywords: innovation and entrepreneurial capacity, intellectual capital development, sustainable development, sustainable knowledge economy.
Procedia PDF Downloads 5323947 A Quantitative Assessment of the Social Marginalization in Romania
Authors: Andra Costache, Rădiţa Alexe
Abstract:
The analysis of the spatial disparities of social marginalization is a requirement in the present-day socio-economic and political context of Romania, an East-European state, member of the European Union since 2007, at present faced with the imperatives of the growth of its territorial cohesion. The main objective of this article is to develop a methodology for the assessment of social marginalization, in order to understand the intensity of the marginalization phenomenon at different spatial scales. The article proposes a social marginalization index (SMI), calculated through the integration of ten indicators relevant for the two components of social marginalization: the material component and the symbolical component. The results highlighted a strong connection between the total degree of social marginalization and the dependence on social benefits, unemployment rate, non-inclusion in the compulsory education, criminality rate, and the type of pension insurance.Keywords: Romania, social marginalization index, territorial disparities, EU
Procedia PDF Downloads 3433946 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad
Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar
Abstract:
Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.Keywords: clinics, decontamination, management, medical waste
Procedia PDF Downloads 773945 Increased Availability and Accessibility of Family Planning Services: An Approach Leading to Improved Contraceptive Uptake and Reproductive Behavior of Women Living in Pakistan
Authors: Lutaf Ali, Haris Ahmed, Hina Najmi
Abstract:
Background: Access, better counseling and quality in the provision of family planning services remain big challenges. Sukh Initiative (a project of three different foundations) is a multi-pronged approach, working in one million underserved population residing peri urban slums in Karachi and providing door to door services by lady health workers (LHWs) and community health workers (CHWs) linked with quality family planning and reproductive (FP/RH) services both at public and private health care facilities. Objective: To assess the improvement in family planning and reproductive health behavior among MWRAs by improving access in peri-urban-underserved population of Karachi. Methodology: Using cross sectional study design 3866 married women with reproductive age (MWRAs) were interviewed in peri urban region of Karachi during November 2016 to January 2017. All face to face structured interviews were conducted with women aged 15-49 currently living with their husbands. Based on the project intervention question on reproductive health were developed and questions on contraceptive use were adopted from PDHS- Pakistan 2013. Descriptive and inferential analysis was performed on SPSS version 22. Results: 65% of population sample are literate, 51% women were in young age group- 15–29. On the poverty index, 6% of the population sample living at national poverty line 1.25$ and 52% at 2.50$. During the project years 79% women opted for facility based delivery; private facilities are the priority choice. 61.7% women initiated the contraceptive use in last two years (after the project).Use of family planning was increased irrespective of education level and poverty index- about 55.5% women with no formal education are using any form of contraception and trend of current modern contraceptives across poverty scores strata equally distributed amongst all groups. Age specific modern contraceptive prevalence rate (mCPR)(between 25-34) was found to be 43.8%. About 23% of this contraceptive ascertained from door to door services- short acting, (pills and condoms) are common, 29.5% from public facilities and 47.6% are from public facilities in which long acting and permanent method most received methods. Conclusion: Strategy of expanding access and choice in the form of providing family planning information and supplies at door step and availability of quality family planning services in the peripheries of underserved may improve the behavior of women regarding FP/RH.Keywords: access, family planning, underserved population, socio-demographic facts
Procedia PDF Downloads 2023944 Reduplication In Urdu-Hindi Nonsensical Words: An OT Analysis
Authors: Riaz Ahmed Mangrio
Abstract:
Reduplication in Urdu-Hindi affects all major word categories, particles, and even nonsensical words. It conveys a variety of meanings, including distribution, emphasis, iteration, adjectival and adverbial. This study will primarily discuss reduplicative structures of nonsensical words in Urdu-Hindi and then briefly look at some examples from other Indo-Aryan languages to introduce the debate regarding the same structures in them. The goal of this study is to present counter-evidence against Keane (2005: 241), who claims “the base in the cases of lexical and phrasal echo reduplication is always independently meaningful”. However, Urdu-Hindi reduplication derives meaningful compounds from nonsensical words e.g. gũ mgũ (A) ‘silent and confused’ and d̪əb d̪əb-a (N) ‘one’s fear over others’. This needs a comprehensive examination to see whether and how the various structures form patterns of a base-reduplicant relationship or, rather, they are merely sub lexical items joining together to form a word pattern of any grammatical category in content words. Another interesting theoretical question arises within the Optimality framework: in an OT analysis, is it necessary to identify one of the two constituents as the base and the other as reduplicant? Or is it best to consider this a pattern, but then how does this fit in with an OT analysis? This may be an even more interesting theoretical question. Looking for the solution to such questions can serve to make an important contribution. In the case at hand, each of the two constituents is an independent nonsensical word, but their echo reduplication is nonetheless meaningful. This casts significant doubt upon Keane’s (2005: 241) observation of some examples from Hindi and Tamil reduplication that “the base in cases of lexical and phrasal echo reduplication is always independently meaningful”. The debate on the point becomes further interesting when the triplication of nonsensical words in Urdu-Hindi e.g. aẽ baẽ ʃaẽ (N) ‘useless talk’ is also seen, which is equally important to discuss. The example is challenging to Harrison’s (1973) claim that only the monosyllabic verbs in their progressive forms reduplicate twice to result in triplication, which is not the case with the example presented. The study will consist of a thorough descriptive analysis of the data for the purpose of documentation, and then there will be OT analysis.Keywords: reduplication, urdu-hindi, nonsensical, optimality theory
Procedia PDF Downloads 743943 The Affordances and Challenges of Online Learning and Teaching for Secondary School Students
Authors: Hahido Samaras
Abstract:
In many cases, especially with the pandemic playing a major role in fast-tracking the growth of the digital industry, online learning has become a necessity or even a standard educational model nowadays, reliably overcoming barriers such as location, time and cost and frequently combined with a face-to-face format (e.g., in blended learning). This being the case, it is evident that students in many parts of the world, as well as their parents, will increasingly need to become aware of the pros and cons of online versus traditional courses. This fast-growing mode of learning, accelerated during the years of the pandemic, presents an abundance of exciting options especially matched for a large number of secondary school students in remote places of the world where access to stimulating educational settings and opportunities for a variety of learning alternatives are scarce, adding advantages such as flexibility, affordability, engagement, flow and personalization of the learning experience. However, online learning can also present several challenges, such as a lack of student motivation and social interactions in natural settings, digital literacy, and technical issues, to name a few. Therefore, educational researchers will need to conduct further studies focusing on the benefits and weaknesses of online learning vs. traditional learning, while instructional designers propose ways of enhancing student motivation and engagement in virtual environments. Similarly, teachers will be required to become more and more technology-capable, at the same time developing their knowledge about their students’ particular characteristics and needs so as to match them with the affordances the technology offers. And, of course, schools, education programs, and policymakers will have to invest in powerful tools and advanced courses for online instruction. By developing digital courses that incorporate intentional opportunities for community-building and interaction in the learning environment, as well as taking care to include built-in design principles and strategies that align learning outcomes with learning assignments, activities, and assessment practices, rewarding academic experiences can derive for all students. This paper raises various issues regarding the effectiveness of online learning on students by reviewing a large number of research studies related to the usefulness and impact of online learning following the COVID-19-induced digital education shift. It also discusses what students, teachers, decision-makers, and parents have reported about this mode of learning to date. Best practices are proposed for parties involved in the development of online learning materials, particularly for secondary school students, as there is a need for educators and developers to be increasingly concerned about the impact of virtual learning environments on student learning and wellbeing.Keywords: blended learning, online learning, secondary schools, virtual environments
Procedia PDF Downloads 993942 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 233941 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1243940 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations
Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad
Abstract:
The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1
Procedia PDF Downloads 893939 Effects of Self-Management Programs on Blood Pressure Control, Self-Efficacy, Medication Adherence, and Body Mass Index among Older Adult Patients with Hypertension: Meta-Analysis of Randomized Controlled Trials
Authors: Van Truong Pham
Abstract:
Background: Self-management was described as a potential strategy for blood pressure control in patients with hypertension. However, the effects of self-management interventions on blood pressure, self-efficacy, medication adherence, and body mass index (BMI) in older adults with hypertension have not been systematically evaluated. We evaluated the effects of self-management interventions on systolic blood pressure (SBP) and diastolic blood pressure (DBP), self-efficacy, medication adherence, and BMI in hypertensive older adults. Methods: We followed the recommended guidelines of preferred reporting items for systematic reviews and meta-analyses. Searches in electronic databases including CINAHL, Cochrane Library, Embase, Ovid-Medline, PubMed, Scopus, Web of Science, and other sources were performed to include all relevant studies up to April 2019. Studies selection, data extraction, and quality assessment were performed by two reviewers independently. We summarized intervention effects as Hedges' g values and 95% confidence intervals (CI) using a random-effects model. Data were analyzed using Comprehensive Meta-Analysis software 2.0. Results: Twelve randomized controlled trials met our inclusion criteria. The results revealed that self-management interventions significantly improved blood pressure control, self-efficacy, medication adherence, whereas the effect of self-management on BMI was not significant in older adult patients with hypertension. The following Hedges' g (effect size) values were obtained: SBP, -0.34 (95% CI, -0.51 to -0.17, p < 0.001); DBP, -0.18 (95% CI, -0.30 to -0.05, p < 0.001); self-efficacy, 0.93 (95%CI, 0.50 to 1.36, p < 0.001); medication adherence, 1.72 (95%CI, 0.44 to 3.00, p=0.008); and BMI, -0.57 (95%CI, -1.62 to 0.48, p = 0.286). Conclusions: Self-management interventions significantly improved blood pressure control, self-efficacy, and medication adherence. However, the effects of self-management on obesity control were not supported by the evidence. Healthcare providers should implement self-management interventions to strengthen patients' role in managing their health care.Keywords: self-management, meta-analysis, blood pressure control, self-efficacy, medication adherence, body mass index
Procedia PDF Downloads 1263938 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 2643937 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process
Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani
Abstract:
Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process
Procedia PDF Downloads 3373936 Characterising Indigenous Chicken (Gallus gallus domesticus) Ecotypes of Tigray, Ethiopia: A Combined Approach Using Ecological Niche Modelling and Phenotypic Distribution Modelling
Authors: Gebreslassie Gebru, Gurja Belay, Minister Birhanie, Mulalem Zenebe, Tadelle Dessie, Adriana Vallejo-Trujillo, Olivier Hanotte
Abstract:
Livestock must adapt to changing environmental conditions, which can result in either phenotypic plasticity or irreversible phenotypic change. In this study, we combine Ecological Niche Modelling (ENM) and Phenotypic Distribution Modelling (PDM) to provide a comprehensive framework for understanding the ecological and phenotypic characteristics of indigenous chicken (Gallus gallus domesticus) ecotypes. This approach helped us to classify these ecotypes, differentiate their phenotypic traits, and identify associations between environmental variables and adaptive traits. We measured 297 adult indigenous chickens from various agro-ecologies, including 208 females and 89 males. A subset of the 22 measured traits was selected using stepwise selection, resulting in seven traits for each sex. Using ENM, we identified four agro-ecologies potentially harbouring distinct phenotypes of indigenous Tigray chickens. However, PDM classified these chickens into three phenotypical ecotypes. Chickens grouped in ecotype-1 and ecotype-3 exhibited superior adaptive traits compared to those in ecotype-2, with significant variance observed. This high variance suggests a broader range of trait expression within these ecotypes, indicating greater adaptation capacity and potentially more diverse genetic characteristics. Several environmental variables, such as soil clay content, forest cover, and mean temperature of the wettest quarter, were strongly associated with most phenotypic traits. This suggests that these environmental factors play a role in shaping the observed phenotypic variations. By integrating ENM and PDM, this study enhances our understanding of indigenous chickens' ecological and phenotypic diversity. It also provides valuable insights into their conservation and management in response to environmental changes.Keywords: adaptive traits, agro-ecology, appendage, climate, environment, imagej, morphology, phenotypic variation
Procedia PDF Downloads 313935 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: building stock energy modelling, energy-savings, archetype
Procedia PDF Downloads 1533934 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia
Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay
Abstract:
Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.Keywords: job satisfaction, extension health professionals, Addis Ababa
Procedia PDF Downloads 763933 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 71