Search results for: residential waste collection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6086

Search results for: residential waste collection

5516 Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae

Authors: Cristina Rodriguez, Abed Alaswad, Zaki El-Hassan, Abdul G. Olabi

Abstract:

This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion.

Keywords: anaerobic co-digestion, biogas, macroalgae, waste paper

Procedia PDF Downloads 357
5515 Experiences and Perceptions of the Barriers and Facilitators of Continence Care Provision in Residential and Nursing Homes for Older Adults: A Systematic Evidence Synthesis and Qualitative Exploration

Authors: Jennifer Wheeldon, Nick de Viggiani, Nikki Cotterill

Abstract:

Background: Urinary and fecal incontinence affect a significant proportion of older adults aged 65 and over who permanently reside in residential and nursing home facilities. Incontinence symptoms have been linked to comorbidities, an increased risk of infection and reduced quality of life and mental wellbeing of residents. However, continence care provision can often be poor, further compromising the health and wellbeing of this vulnerable population. Objectives: To identify experiences and perceptions of continence care provision in older adult residential care settings and to identify factors that help or hinder good continence care provision. Settings included both residential care homes and nursing homes for older adults. Methods: A qualitative evidence synthesis using systematic review methodology established the current evidence-base. Data from 20 qualitative and mixed-method studies was appraised and synthesized. Following the review process, 10* qualitative interviews with staff working in older adult residential care settings were conducted across six* sites, which included registered managers, registered nurses and nursing/care assistants/aides. Purposive sampling recruited individuals from across England. Both evidence synthesis and interview data was analyzed thematically, both manually and with NVivo software. Results: The evidence synthesis revealed complex barriers and facilitators for continence care provision at three influencing levels: macro (structural and societal external influences), meso (organizational and institutional influences) and micro (day-to-day actions of individuals impacting service delivery). Macro-level barriers included negative stigmas relating to incontinence, aging and working in the older adult social care sector, restriction of continence care resources such as containment products (i.e. pads), short staffing in care facilities, shortfalls in the professional education and training of care home staff and the complex health and social care needs of older adult residents. Meso-level barriers included task-centered organizational cultures, ageist institutional perspectives regarding old age and incontinence symptoms, inadequate care home management and poor communication and teamwork among care staff. Micro-level barriers included poor knowledge and negative attitudes of care home staff and residents regarding incontinence symptoms and symptom management and treatment. Facilitators at the micro-level included proactive and inclusive leadership skills of individuals in management roles. Conclusions: The findings of the evidence synthesis study help to outline the complexities of continence care provision in older adult care homes facilities. Macro, meso and micro level influences demonstrate problematic and interrelated barriers across international contexts, indicating that improving continence care in this setting is extremely challenging due to the multiple levels at which care provision and services are impacted. Both international and national older adult social care policy-makers, researchers and service providers must recognize this complexity, and any intervention seeking to improve continence care in older adult care home settings must be planned accordingly and appreciatively of the complex and interrelated influences. It is anticipated that the findings of the qualitative interviews will shed further light on the national context of continence care provision specific to England; data collection is ongoing*. * Sample size is envisaged to be between 20-30 participants from multiple sites by Spring 2023.

Keywords: continence care, residential and nursing homes, evidence synthesis, qualitative

Procedia PDF Downloads 76
5514 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil

Authors: Saimatun Nisa

Abstract:

Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.

Keywords: walnut shell, biooil, biochar, microwave pyrolysis

Procedia PDF Downloads 39
5513 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment

Authors: Meshari Al-Harbi

Abstract:

A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.

Keywords: aerosol, pollution, respirable particulates, trace-metals

Procedia PDF Downloads 302
5512 Removal of Trimethoprim and Sulfamethoxazole in Solid Waste Leachate by Two-Stage Membrane Bioreactor under High Mixed Liquor Suspended Solids Concentration

Authors: Nilubon Thongtan, Wilai Chiemchaisri, Chart Chiemchaisri

Abstract:

Purpose of study is to investigate performance of two-stage membrane bioreactor (2S-MBR) to treat trimethoprim and sulfamethoxazole in solid waste leachate. This system consists of 2 tanks, anoxic tank with incline plates and MBR tank. The system was operated at 12 h-HRT each, of which the MBR MLSS concentration was operated at 25,000-35,000 mg/L. The average sCOD concentration of the fed leachate was 6,310±3,595 mg/L. It shows that high organic removals in terms of sCOD and sBOD were achieved as of 97-99% and 99%, respectively. The TKN and NH3-N removals were 76-98% and 91-99%, respectively. Concurrently, trimethoprim and sulfamethoxazole were detected in the leachate with concentrations of 113-0 μg/L and 74-2 μg/L, respectively. High removals of trimethoprim and sulfamethoxazole were also found as of 95-99% and 85-95%, respectively. In sum, this MBR feature and operation gave achievement in treatment of macro-pollutants including trimethoprim and sulfamethoxazole existing in low levels in the solid waste leachate.

Keywords: membrane bioreactor, solid waste leachate, sulfamethoxazole, trimethoprim

Procedia PDF Downloads 140
5511 Risks and Values in Adult Safeguarding: An Examination of How Social Workers Screen Safeguarding Referrals from Residential Homes

Authors: Jeremy Dixon

Abstract:

Safeguarding adults forms a core part of social work practice. The Government in England and Wales has made efforts to standardise practices through The Care Act 2014. The Act states that local authorities have duties to make inquiries in cases where an adult with care or support needs is experiencing or at risk of abuse and is unable to protect themselves from abuse or neglect. Despite the importance given to safeguarding adults within law there remains little research about how social workers conduct such decisions on the ground. This presentation reports on findings from a pilot research study conducted within two social work teams in a Local Authority in England. The objective of the project was to find out how social workers interpreted safeguarding duties as laid out by The Care Act 2014 with a particular focus on how workers assessed and managed risk. Ethnographic research methods were used throughout the project. This paper focusses specifically on decisions made by workers in the assessment team. The paper reports on qualitative observation and interviews with five workers within this team. Drawing on governmentality theory, this paper analyses the techniques used by workers to manage risk from a distance. A high proportion of safeguarding referrals came from care workers or managers in residential care homes. Social workers conducting safeguarding assessments were aware that they had a duty to work in partnership with these agencies. However, their duty to safeguard adults also meant that they needed to view them as potential abusers. In making judgments about when it was proportionate to refer for a safeguarding assessment workers drew on a number of common beliefs about residential care workers which were then tested in conversations with them. Social workers held the belief that residential homes acted defensively, leading them to report any accident or danger. Social workers therefore encouraged residential workers to consider whether statutory criteria had been met and to use their own procedures to manage risk. In addition social workers carried out an assessment of the workers’ motives; specifically whether they were using safeguarding procedures as a shortcut for avoiding other assessments or as a means of accessing extra resources. Where potential abuse was identified social workers encouraged residential homes to use disciplinary policies as a means of isolating and managing risk. The study has implications for understanding risk within social work practice. It shows that whilst social workers use law to govern individuals, these laws are interpreted against cultural values. Additionally they also draw on assumptions about the culture of others.

Keywords: adult safeguarding, governmentality, risk, risk assessment

Procedia PDF Downloads 275
5510 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants

Authors: Ying-Chu Chen

Abstract:

Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.

Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE

Procedia PDF Downloads 555
5509 Eco-Agriculture for Effective Solid Waste Management in Minna, Nigeria

Authors: A. Abdulkadir, Y. M. Bello, A. A. Okhimamhe, H. Ibrahim, M. B. Matazu, L. S. Barau

Abstract:

The increasing volume of solid waste generated, collected and disposed daily complicate adequate management of solid waste by the relevant agency like Niger State Environmental Protection Agency (NISEPA). In addition, the impacts of solid waste on the natural environment and human livelihood require identification of cost-effective ways for sustainable municipal waste management in Nigeria. These signal the need for identifying environment-friendly initiative and local solution to address municipal solid waste. A research field was secured at Pago, Minna, Niger State which is located in the guinea savanna belt of Nigeria, within longitude 60 3614311- 4511 and latitude 90 291 37.6111- .6211 N. Poultry droppings, decomposed household waste manure and NPK treatment were used. The experimental field was divided into three replications and four (4) treatments on each replication making a total of twelve (12) plots. The treatments were allotted using Randomized Complete Block Design (RCBD) and Data collected was analyzed using SPSS software and RCBD. The result depicts variation in plant height and number of leaves at 50% flowering; Poultry dropping records the highest height as a number of leaves for waste manure competes fairly well with NPK treatment. Similarly, the varying treatments significantly increase vegetable yield, as the control (Nontreatment) records the least yield for the three vegetable samples. Adoption of this organic manure for cultivation does not only enhance environment quality and attainment of food security but will contribute to local economic development, poverty alleviation, and social inclusion.

Keywords: environmental issues, food security, NISEPA, solid waste

Procedia PDF Downloads 333
5508 Inhibitions in Implementing Green Supply Chain Management at Hospitals

Authors: M. Aruna, Uma Gunasilan

Abstract:

Hospitals play an ample role in securing the health of a country. Nevertheless, they also have an unhealthy side. Ecological issues strengthen ill-health throughout the domain which subsequently puts pressure on hospital supply chains. Medical waste indeed is hazardous for environment and subsequently for human. The hospital waste management is of immense prominence due to its infectious and hazardous nature that can source many effects on human health and the environment. Government regulations and public cognizance regarding hospital waste issues have imposed hospital units to admit these strategies. The innovative technologies and instruments have been developed to handle hospital wastes. Green supply chain management practices are common in the United States. In India, Green Supply Chain management (GSCM) has just started to be recognized and practiced. GSCM are green, integrated and ecologically optimized. In Green supply chain management environmental sustainability is found to be an important driver. Eleven barriers are identified in this work. Interpretive Structural Modeling (ISM) technique is used for ranking the obstructions.

Keywords: green supply chain management (GSCM), hospital waste management (HWM), interpretive structural modeling (ISM), medical waste (MW)

Procedia PDF Downloads 308
5507 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment

Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano

Abstract:

Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.

Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power

Procedia PDF Downloads 90
5506 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 353
5505 Impact of Egypt’s Energy Demand on Oil and Gas Power Systems Environment

Authors: Moustafa Osman Mohamed

Abstract:

This paper will explore the influence of energy sector in Arab Republic of Egypt which has shared its responsibilities of many environmental challenges as the second largest economy in the Middle East (after Iran). Air and water pollution, desertification, inadequate disposal of solid waste and damage to coral reefs are serious problems that influence environmental management in Egypt. The intensive reliance of high population density and strong industrial growth are wearing Egypt's resources, and the rapidly-growing population has forced Egypt to breakdown agricultural land to residential and relevant use of commercial ingestion. The depletion effects of natural resources impose the government to apply innovation techniques in emission control and focus on sustainability. The cogeneration will be presented to control thermal losses and increase efficiency of energy power system.

Keywords: cogeneration, environmental management, power electricity, energy indicators

Procedia PDF Downloads 262
5504 Estimating Heavy Metal Leakage and Environmental Damage from Cigarette Butt Disposal in Urban Areas through CBPI Evaluation

Authors: Muhammad Faisal, Zai-Jin You, Muhammad Naeem

Abstract:

Concerns about the environment, public health, and the economy are raised by the fact that the world produces around 6 trillion cigarettes annually. Arguably the most pervasive forms of environmental litter, this dangerous trash must be eliminated. The researchers wanted to get an idea of how much pollution is seeping out of cigarette butts in metropolitan areas by studying their distribution and concentration. In order to accomplish this goal, the cigarette butt pollution indicator was applied in 29 different areas. The locations were monitored monthly for a full calendar year. The conditions for conducting the investigation of the venues were the same on both weekends and during the weekdays. By averaging the metal leakage ratio in various climates and the average weight of cigarette butts, we were able to estimate the total amount of heavy metal leakage. The findings revealed that the annual average value of the index for the areas that were investigated ranged from 1.38 to 10.4. According to these numbers, just 27.5% of the areas had a low pollution rating, while 43.5% had a major pollution status or worse. Weekends witnessed the largest fall (31% on average) in all locations' indices, while spring and summer saw the largest increase (26% on average) compared to autumn and winter. It was calculated that the average amount of heavy metals such as Cr, Cu, Cd, Zn, and Pb that seep into the environment from discarded cigarette butts in commercial, residential, and park areas, respectively, is 0.25 µg/m2, 0.078 µg/m2, and 0.18 µg/m2. Butt from cigarettes is one of the most prevalent forms of litter in the area that was examined. This litter is the origin of a wide variety of contaminants, including heavy metals. This toxic garbage poses a significant risk to the city.

Keywords: heavy metal, hazardous waste, waste management, litter

Procedia PDF Downloads 70
5503 Knowledge and Practices on Waste Disposal Management Among Medical Technology Students at National University – Manila

Authors: John Peter Dacanay, Edison Ramos, Cristopher James Dicang

Abstract:

Waste management is a global concern due to increasing waste production from changing consumption patterns and population growth. Proper waste disposal management is a critical aspect of public health and environmental protection. In the healthcare industry, medical waste is generated in large quantities, and if not disposed of properly, it poses a significant threat to human health and the environment. Efficient waste management conserves natural resources and prevents harm to human health, and implementing an effective waste management system can save human lives. The study aimed to assess the level of awareness and practices on waste disposal management, highlighting the understanding of proper disposal, potential hazards, and environmental implications among Medical Technology students. This would help to provide more recommendations for improving waste management practices in healthcare settings as well as for better waste management practices in educational institutions. From the collected data, a female of 21 years of age stands out among the respondents. With the frequency and percentage of medical technology students' knowledge of laboratory waste management being high, it indicates that all respondents demonstrated a solid understanding of proper disposal methods, regulations, risks, and handling procedures related to laboratory waste. That said, the findings emphasize the significance of education and awareness programs in equipping individuals involved in laboratory practices with the necessary knowledge to handle and dispose of hazardous and infectious waste properly. Most respondents demonstrate positive practices or are highly mannered in laboratory waste management, including proper segregation and disposal in designated containers. However, there are concerns about the occasional mixing of waste types, emphasizing the reiteration of proper waste segregation. Students show a strong commitment to using personal protective equipment and promptly cleaning up spills. Some students admit to improper disposal due to rushing, highlighting the importance of time management and safety prioritization. Overall, students follow protocols for hazardous waste disposal, indicating a responsible approach. The school's waste management system is perceived as adequate, but continuous assessment and improvement are necessary. Encouraging reporting of issues and concerns is crucial for ongoing improvement and risk mitigation. The analysis reveals a moderate positive relationship between the respondents' knowledge and practices regarding laboratory waste management. The statistically significant correlation with a p-value of 0.26 (p-value 0.05) suggests that individuals with higher levels of knowledge tend to exhibit better practices. These findings align with previous research emphasizing the pivotal role of knowledge in influencing individuals' behaviors and practices concerning laboratory waste management. When individuals possess a comprehensive understanding of proper procedures, regulations, and potential risks associated with laboratory waste, they are more inclined to adopt appropriate practices. Therefore, fostering knowledge through education and training is essential in promoting responsible and effective waste management in laboratory settings.

Keywords: waste disposal management, knowledge, attitude, practices

Procedia PDF Downloads 78
5502 Hazardous Waste Management at Chemistry Section in Dubai Police Forensic Lab

Authors: Adnan Lanjawi

Abstract:

This paper is carried out to investigate the management of hazardous waste in the chemistry section which belongs to Dubai Police forensic laboratory. The chemicals are the main contributor toward the accumulation of hazardous waste in the section. This is due to the requirement to use it in analysis, such as of explosives, drugs, inorganic and fire debris cases. This leads to negative effects on the environment and to the employees’ health and safety. The research investigates the quantity of chemicals there, the labels, the storage room and equipment used. The target is to reduce the need for disposal by looking at alternative options, such as elimination, substitution and recycling. The data was collected by interviewing the top managers there who have been working in the lab more than 20 years. Also, data was collected by observing employees and how they carry out experiments. Therefore, a survey was made to assess their knowledge about the hazardous waste. The management of hazardous chemicals in the chemistry section needs to be improved. The main findings illustrate that about 110 bottles of reference substances were going to be disposed of in 2014. These bottles were bought for about 100,000 UAE Dirhams (£17,600). This means that the management of substances purchase is not organised. There is no categorisation programme in place, which makes the waste control very difficult. In addition, the findings show that chemical are segregated according to alphabetical order, whereas the efficient way is to separate them according to their nature and property. In addition, the research suggested technology and experiments to follow to reduce the need for using solvents and chemicals in the sample preparation.

Keywords: control, hazard, laboratories, waste,

Procedia PDF Downloads 400
5501 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions

Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs

Abstract:

Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.

Keywords: biological waste, sorption, metal ions, ferrofluid

Procedia PDF Downloads 132
5500 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements

Procedia PDF Downloads 406
5499 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 461
5498 A Study on the Pressure Void Ratio Relationship for Waste Material

Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan

Abstract:

Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forcing the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick (BD) was mixed with rock powder (RP) in 0, 5, 10, 20, 30, 40, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with brick dust added.

Keywords: waste material, oedometer test, environmental geotechnics, sustainability

Procedia PDF Downloads 59
5497 Towards a Proof Acceptance by Overcoming Challenges in Collecting Digital Evidence

Authors: Lilian Noronha Nassif

Abstract:

Cybercrime investigation demands an appropriated evidence collection mechanism. If the investigator does not acquire digital proofs in a forensic sound, some important information can be lost, and judges can discard case evidence because the acquisition was inadequate. The correct digital forensic seizing involves preparation of professionals from fields of law, police, and computer science. This paper presents important challenges faced during evidence collection in different perspectives of places. The crime scene can be virtual or real, and technical obstacles and privacy concerns must be considered. All pointed challenges here highlight the precautions to be taken in the digital evidence collection and the suggested procedures contribute to the best practices in the digital forensics field.

Keywords: digital evidence, digital forensics process and procedures, mobile forensics, cloud forensics

Procedia PDF Downloads 399
5496 Analysis of the Effect of Increased Self-Awareness on the Amount of Food Thrown Away

Authors: Agnieszka Dubiel, Artur Grabowski, Tomasz Przerywacz, Mateusz Roganowicz, Patrycja Zioty

Abstract:

Food waste is one of the most significant challenges humanity is facing nowadays. Every year, reports from global organizations show the scale of the phenomenon, although society's awareness is still insufficient. One-third of the food produced in the world is wasted at various points in the food supply chain. Wastes are present from the delivery through the food preparation and distribution to the end of the sale and consumption. The first step in understanding and resisting the phenomenon is a thorough analysis of the everyday behaviors of humanity. This concept is understood as finding the correlation between the type of food and the reason for throwing it out and wasting it. Those actions were identified as a critical step in the start of work to develop technology to prevent food waste. In this paper, the problem mentioned above was analyzed by focusing on the inhabitants of Central Europe, especially Poland, aged 20-30. This paper provides an insight into collecting data through dedicated software and an organized database. The proposed database contains information on the amount, type, and reasons for wasting food in households. A literature review supported the work to answer research questions, compare the situation in Poland with the problem analyzed in other countries, and find research gaps. The proposed article examines the cause of food waste and its quantity in detail. This review complements previous reviews by emphasizing social and economic innovation in Poland's food waste management. The paper recommends a course of action for future research on food waste management and prevention related to the handling and disposal of food, emphasizing households, i.e., the last link in the supply chain.

Keywords: food waste, food waste reduction, consumer food waste, human-food interaction

Procedia PDF Downloads 108
5495 An Overview of Sludge Utilization into Fired Clay Brick

Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim

Abstract:

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.

Keywords: fired clay brick, sludge waste, compressive strength, shrinkage, water absorption

Procedia PDF Downloads 439
5494 Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials

Authors: Flavio Araujo, Livia Dias, Fabiolla Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR, WTP

Procedia PDF Downloads 481
5493 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass

Authors: Ayman Othman, Tallat Ali

Abstract:

The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.

Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength

Procedia PDF Downloads 303
5492 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva

Abstract:

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation

Procedia PDF Downloads 81
5491 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.

Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution

Procedia PDF Downloads 505
5490 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 51
5489 Dewatering of Brewery Sludge through the Use of Biopolymers

Authors: Audrey Smith, M. Saifur Rahaman

Abstract:

The waste crisis has become a global issue, forcing many industries to reconsider their disposal methods and environmental practices. Sludge is a form of waste created in many fields, which include water and wastewater, pulp and paper, as well as from breweries. The composition of this sludge differs between sources and can, therefore, have varying disposal methods or future applications. When looking at the brewery industry, it produces a significant amount of sludge with a high water content. In order to avoid landfilling, this waste can further be processed into a valuable material. Specifically, the sludge must undergo dewatering, a process which typically involves the addition of coagulants like aluminum sulfate or ferric chloride. These chemicals, however, limit the potential uses of the sludge since it will contain traces of metals. In this case, the desired outcome of the brewery sludge would be to produce animal feed; however, these conventional coagulants would add a toxic component to the sludge. The use of biopolymers like chitosan, which act as a coagulant, can be used to dewater brewery sludge while allowing it to be safe for animal consumption. Chitosan is also a by-product created by the shellfish processing industry and therefore reduces the environmental imprint since it involves using the waste from one industry to treat the waste from another. In order to prove the effectiveness of this biopolymer, experiments using jar-tests will be utilised to determine the optimal dosages and conditions, while variances of contaminants like ammonium will also be observed. The efficiency of chitosan can also be compared to other polysaccharides to determine which is best suited for this waste. Overall a significant separation has been achieved between the solid and liquid content of the waste during the coagulation-flocculation process when applying chitosan. This biopolymer can, therefore, be used to dewater brewery sludge such that it can be repurposed as animal feed. The use of biopolymers can also be applied to treat sludge from other industries, which can reduce the amount of waste produced and allow for more diverse options for reuse.

Keywords: animal feed, biopolymer, brewery sludge, chitosan

Procedia PDF Downloads 145
5488 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling

Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel

Abstract:

Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is, then, important in a first step to optimize household consumption to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipment's starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So, the ceiling would no longer be fixed. The scheduling would be done on two scales, firstly, per dwelling, and secondly, at the level of a residential complex.

Keywords: smart grid, energy box, scheduling, Gang Model, energy consumption, energy management system, wireless sensor network

Procedia PDF Downloads 303
5487 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: polymer, TGA, pollution, landfill, waste, plastic

Procedia PDF Downloads 123