Search results for: pre-b cell acute lymphoblastic leukemia
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4540

Search results for: pre-b cell acute lymphoblastic leukemia

3970 Cellular Uptake and Endocytosis of Doxorubicin Loaded Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid) [DOX/mPEG-b-PLG] Nanoparticles against Human Breast Cancer Cell Lines

Authors: Zaheer Ahmad, Afzal Shah

Abstract:

pH responsive block copolymers consist of mPEG and glutamic acid units were syntheiszed in different formulations. The synthesized polymers were structurally investigated. Doxorubicin Hydrocholide (DOX-HCl) as a chemotherapy medication for the treatment of cancer was selected. DOX-HCl was loaded and their drug loading content and drug loading efficiency were determined. The nanocarriers were obtained in small size, well shaped and slightly negative surface charge. The release study was carried out both at pH 7.4 and 5.5 and it was revealed that the release was sustained and in controlled manner and there was no initial burst release. The in vitro release study was further carried out for different formulations with different glutamic acid moieties. Time dependent cell proliferation inhibition of the free drug and drug loaded nanoparticles against human breast cancer cell lines MCF-7 and Zr-75-30 was observed. Cellular uptakes and endocytosis were investigated by confocal laser scanning microscopy (CLSM) and flow cytometery. The biocompatibility, optimum size, shape and surface charge of the developed nanoparticles make the nanoparticles an efficient drug delivery carrier.

Keywords: doxorubicin, glutamic acid, cell proliferation inhibition, breast cancer cell

Procedia PDF Downloads 133
3969 The Effects of Terrein: A Secondary Metabolite from Aspergillus terreus as Anticancer and Antimetastatic Agent on Lung Cancer Cells

Authors: Paiwan Buachan, Maneekarn Namsa-Aid, Suchada Jongrungruangchok, Foengchat Jarintanan, Wanlaya Uthaisang-Tanechpongtamb

Abstract:

Lung cancer or pulmonary carcinoma is the uncontrolled growth of abnormal cells in one or both of the lungs. These abnormal cells can spread to other organs of the body through lymphatic system or bloodstream which is called metastatic stage that leading cause of cancer death. Terrein (C₈H₁₀O₃; MW= 154.06 kDa) is a secondary bioactive fungal metabolite, which was isolated from the Aspergillus terreus. In this study, we investigated the effects of terrein on the inhibition of human lung cancer cell proliferation and metastasis. The A549 human non-small cell lung cancer cell line was used as a model. Terrein significantly inhibited lung cancer cell proliferation measuring by a colorimetric MTT assay (IC₅₀ 0.32 mM) and significantly inhibited metastatic processes including migration, invasion, and adhesion that determined by wound healing assay, transwell assay, and adhesion assay, respectively. These findings indicate that terrein could be a potential therapeutic agent for lung cancer.

Keywords: terrein, lung cancer, anticancer, antimetastatic

Procedia PDF Downloads 154
3968 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 171
3967 Natural Honey and Effect on the Activity of the Cells

Authors: Abujnah Dukali

Abstract:

Natural honey was assessed in cell culture system for its anticancer activity. Human leukemic cell line HL 60 was treated with honey and cultured for 5 days and cytotoxicity was calculated by MTT assay. Honey showed cytotoxicity with CC50 value of 174.20 µg/ml. Radical modulation activities was assessed by lipid peroxidation assay using egg lecithin. Honey showed antioxidant activity with EC50 value of 159.73 µg/ml. In addition, treatment with HL60 cells also resulted in nuclear DNA fragmentation, as seen in agarose gel electrophoresis. This is a hallmark of cells undergoing apoptosis. Confirmation of apoptosis was performed by staining the cells with Annexin V and FACS analysis. Apoptosis is an active, genetically regulated disassembly of the cell form within. Disassembly creates changes in the phospholipid content of the cytoplasmic membrane outer leaflet. Phosphatidylserine (PS) is translocated from the inner to the outer surface of the cell for phagocytic cell recognition. The human anticoagulant, annexin V, is a Ca2+-dependent phospholipid protein with a high affinity for PS. Annexin V labeled with fluorescein can identify apoptotic cells in the population It is a confirmatory test for apoptosis. Annexin V-positive cells were defined as apoptotic cells. Since honey shows both antioxidant activity and cytotoxicity at almost the same concentration, it can prevent the free radical induced cancer as prophylactic agent and kill the cancer cells by apoptotic process as a chemotherapeutic agent. Everyday intake of honey can prevent the cancer induction.

Keywords: anticancer, cells, DNA, honey

Procedia PDF Downloads 194
3966 Using Linear Logistic Regression to Evaluation the Patient and System Delay and Effective Factors in Mortality of Patients with Acute Myocardial Infarction

Authors: Firouz Amani, Adalat Hoseinian, Sajjad Hakimian

Abstract:

Background: The mortality due to Myocardial Infarction (MI) is often occur during the first hours after onset of symptom. So, for taking the necessary treatment and decreasing the mortality rate, timely visited of the hospital could be effective in this regard. The aim of this study was to investigate the impact of effective factors in mortality of MI patients by using Linear Logistic Regression. Materials and Methods: In this case-control study, all patients with Acute MI who referred to the Ardabil city hospital were studied. All of died patients were considered as the case group (n=27) and we select 27 matched patients without Acute MI as a control group. Data collected for all patients in two groups by a same checklist and then analyzed by SPSS version 24 software using statistical methods. We used the linear logistic regression model to determine the effective factors on mortality of MI patients. Results: The mean age of patients in case group was significantly higher than control group (75.1±11.7 vs. 63.1±11.6, p=0.001).The history of non-cardinal diseases in case group with 44.4% significantly higher than control group with 7.4% (p=0.002).The number of performed PCIs in case group with 40.7% significantly lower than control group with 74.1% (P=0.013). The time distance between hospital admission and performed PCI in case group with 110.9 min was significantly upper than control group with 56 min (P=0.001). The mean of delay time from Onset of symptom to hospital admission (patient delay) and the mean of delay time from hospital admissions to receive treatment (system delay) was similar between two groups. By using logistic regression model we revealed that history of non-cardinal diseases (OR=283) and the number of performed PCIs (OR=24.5) had significant impact on mortality of MI patients in compare to other factors. Conclusion: Results of this study showed that of all studied factors, the number of performed PCIs, history of non-cardinal illness and the interval between onset of symptoms and performed PCI have significant relation with morality of MI patients and other factors were not meaningful. So, doing more studies with a large sample and investigated other involved factors such as smoking, weather and etc. is recommended in future.

Keywords: acute MI, mortality, heart failure, arrhythmia

Procedia PDF Downloads 114
3965 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 150
3964 Highly Concentrated Photo Voltaic using Multi-Junction Concentrator Cell

Authors: Oriahi Love Ndidi

Abstract:

High concentration photovoltaic promises a more efficient, higher power output than traditional photovoltaic modules. One of the driving forces of this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. Multi-junction solar cells built from III-V semiconductors are being evaluated globally in concentrated photovoltaic systems designed to supplement electricity generation for utility companies. The high efficiency of this III-V multi-junction concentrator cells, with demonstrated efficiency over 40 percent since 2006, strongly reduces the cost of concentrated photovoltaic systems, and makes III-V multi-junction cells the technology of choice for most concentrator systems today.

Keywords: cost of multi-junction solar cell, efficiency, photovoltaic systems, reliability

Procedia PDF Downloads 712
3963 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 284
3962 Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair

Authors: H. Pegram, R. Stevens, L. De Girolamo

Abstract:

Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions.

Keywords: electrospinning, layering, lesion, modeling, nanofibre

Procedia PDF Downloads 125
3961 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell

Authors: Ahmed Khalaf Reyad Raslan

Abstract:

Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.

Keywords: hydrogel, alginate, reduced graphene oxide, collagen

Procedia PDF Downloads 133
3960 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 112
3959 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell

Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja

Abstract:

A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.

Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite

Procedia PDF Downloads 263
3958 The Influence of Alginate Microspheres Modified with DAT on the Proliferation and Adipogenic Differentiation of ASCs

Authors: Shin-Yi Mao, Jiashing Yu

Abstract:

Decellularized adipose tissue (DAT) has received lots of attention as biological scaffolds recently. DAT that extracted from the extracellular matrix (ECM) of adipose tissues holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. In our study, 2-D DATsol film was fabricated to enhance cell adhesion, proliferation, and differentiation of ASCs in vitro. DAT was also used to modify alginate for improvement of cell adhesion. Alginate microspheres modified with DAT were prepared by Nisco. These microspheres could provide a highly supportive 3-D environment for ASCs. In our works, ASCs were immobilized in alginate microspheres modified with DAT to promoted cell adhesion and adipogenic differentiation. Accordingly, we hypothesize that tissue regeneration in vivo could be promoted with the aid of modified microspheres in future.

Keywords: adipose stem cells, decellularize adipose tissue, Alginate, microcarries

Procedia PDF Downloads 432
3957 Expression of Hypoxia-Inducible Transmembrane Carbonic Anhydrases IX, Ca XII and Glut 1 in Ovarian Cancer

Authors: M. Sunitha, B. Nithyavani, Mathew Yohannan, S. Thiruvieni Balajji, M. A. Rathi, C. Arul Raj, P. Ragavendran, V. K. Gopalkrishnan

Abstract:

Establishment of an early and reliable biomarker for ovarian carcinogenesis whose expression can be monitored through noninvasive techniques will enable early diagnosis of cancer. Carbonic anhydrases (CA) isozymes IX and XII have been suggested to play a role in oncogenic processes. In von Hippel-Lindau (VHL)-defective tumors, the cell surface transmembrane carbonic anhydrase (CA) CA XI and CA XII genes are overexpressed because of the absence of pVHL. These enzymes are involved in causing a hypoxia condition, thereby providing an environment for metastasis. Aberrant expression of the facilitative glucose transporter GLUT I is found in a wide spectrum of epithelial malignancies. Studying the mRNA expression of CA IX, CA XII and Glut I isozymes in ovarian cancer cell lines (OAW-42 and PA-1) revealed the expression of these hypoxia genes. Immunohistochemical staining of carbonic anhydrases was also performed in 40 ovarian cancer tissues. CA IX and CA XII were expressed at 540 bp and 520 bp in OAW42, PA1 in ovarian cancer cell lines. GLUT-1 was expressed at 325bp in OAW 42, PA1 genes in ovarian cancer cell lines. Immunohistochemistry revealed high to moderate levels of expression of these enzymes. The immuostaining was seen predominantly on the cell surface membrane. The study concluded that these genes CA IX, CA XII and Glut I are expressed under hypoxic condition in tumor cells. From the present results expression of CA IX, XII and Glut I may represent potential targets in ovarian cancer therapy.

Keywords: ovarian cancer, carbonic anhydrase IX, XII, Glut I, tumor markers

Procedia PDF Downloads 358
3956 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method

Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati

Abstract:

An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.

Keywords: cell-centered finite volume method, coupled solver, exponential differencing scheme (EDS), physical influence scheme (PIS), pressure weighted interpolation method (PWIM), skew upwind differencing scheme (SUDS)

Procedia PDF Downloads 271
3955 Liposomal Encapsulation of Silver Nanoparticle for Improved Delivery and Enhanced Anticancer Properties

Authors: Azeez Yusuf, Alan Casey

Abstract:

Silver nanoparticles (AgNP) are one of the most widely investigated metallic nanoparticles due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure, and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural bio-surfactant, dipalmitoylphosphatyidyl choline (DPPC), in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that as a result of the encapsulation, liposomal-AgNP (Lipo-AgNP) at 0.625 μg/ml induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase of the cell cycle. It was shown that the predominate form of cell death upon exposure to both uncoated and Lipo-AgNP was apoptosis, however, a ROS-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhances AgNP cytotoxicity and mediates an ROS-independent induction of apoptosis.

Keywords: silver nanoparticles, AgNP, cytotoxicity, encapsulation, liposome

Procedia PDF Downloads 141
3954 Trans-Activator of Transcription-Tagged Active AKT1 Variants for Delivery to Mammalian Cells

Authors: Tarana Siddika, Ilka U. Heinemann, Patrick O’Donoghue

Abstract:

Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Threonine308, Serine473), yet cell stimulation also activates many other kinases and fails to differentiate the effect of the two main activating sites of AKT1 on downstream substrate phosphorylation and cell growth. While both AKT1 activating sites are associated with disease and used as clinical markers, in some cancers, high levels of Threonine308 phosphorylation are associated with poor prognosis while in others poor survival correlates with high Serine473 levels. To produce cells with specific AKT1 activity, a system was developed to deliver active AKT1 to human cells. AKT1 phospho-variants were produced from Escherichia coli with programmed phosphorylation by genetic code expansion. Tagging of AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) helped to enter AKT1 proteins in mammalian cells. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308, TAT-pAKT1S473 and TAT-pAKT1T308S473 proteins induced selective phosphorylation of the known AKT1 substrate GSK-3αβ, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Serine240/244 in transfected cells. Increase in cell growth and proliferation was observed due to the transfection of different phosphorylated AKT1 protein variants compared to cells with TAT-AKT1 protein. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on specific AKT1 activity and phosphorylation.

Keywords: cell penetrating peptide, cell signaling, protein kinase b (AKT1), phosphorylation

Procedia PDF Downloads 104
3953 The Clinical and Survival Differences between Primary B-Cell and T/NK-Cell Non-Hodgkin Lymphomas in the Nasopharynx, Nasal Cavity, and Nasal Sinus: A Population-Based Study of 3839 Cases in the Seer Database

Authors: Jiajia Peng, Danni Cheng, Jianqing Qiu, Yufang Rao, Minzi Mao, Ke Qiu, Junhong Li, Fei Chen, Feng Liu, Jun Liu, Xiaosong Mu, Wenxin Yu, Wei Zhang, Wei Xu, Yu Zhao, Jianjun Ren

Abstract:

Background: Currently, primary B-cell non-Hodgkin lymphoma (B-NHL) and T/NK-cell non-Hodgkin lymphoma (NKT-NHL) originated from the nasal cavity (NC), nasopharynx (NP) and nasal sinus (NS) distinguished unclearly in the clinic. Objective: We sought to compare the clinical and survival differences of B-NHL and NKT-NHL that occurred in NC, NP, and NS, respectively. Methods: Retrospective data of patients diagnosed with nasal cavity lymphoma (NCL), nasopharyngeal lymphoma (NPL), and nasal sinus lymphoma (NSL) between 1975 and 2017 from the Surveillance, Epidemiology, and End Results (SEER) database were collected. We identified the B/NKT-NHL patients based on the histological type and performed univariate, multivariate, and Kaplan-Meier analyses to investigate the survival rates. Results: Of the identified 3,101 B-NHL and 738 NKT-NHL patients, those with B-NHL in NP were the majority (43%) and had better cancer-specific survival than those in NC and NS from 2010 to 2017 (5-year-CSS, NC vs. NP vs. NS: 81% vs. 83% vs. 82%). In contrast, most of the NKT-NHL originated from NC (68%) and had the highest CSS rate in the recent seven years (2010-2017, 5-year-CSS: 63%). Additionally, the survival outcomes of patients with NKT-NHL-NP (HR: 1.34, 95% CI: 0.62-2.89, P=0.460) who had received surgery were much worse than those of patients with NKT-NHL-NC (HR: 1.07, 95% CI: 0.75-1.52, P=0.710) and NKT-NHL-NS (HR: 1.11, 95% CI: 0.59-2.07, P=0.740). NKT-NHL-NS patients who had radiation performed (HR: 0.38, 95% CI: 0.19-0.73, P=0.004) showed the highest survival rates, while chemotherapy performed (HR: 1.01, 95% CI: 0.43-2.37, P=0.980) presented opposite results. Conclusions: Although B-NHL and NKT-NHL originating from NC, NP and NS had similar anatomical locations, their clinical characteristics, treatment therapies, and prognoses were different in this study. Our findings may suggest that B-NHL and NKT-NHL in NC, NP, and NS should be treated as different diseases in the clinic.

Keywords: nasopharyngeal lymphoma, nasal cavity lymphoma, nasal sinus lymphoma, B-cell non-Hodgkin lymphoma, T/NK-cell non-Hodgkin lymphoma

Procedia PDF Downloads 169
3952 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 117
3951 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 349
3950 Inflammatory Changes in Postmenopausal Women including Th17 and Treg

Authors: Ae Ra Han, Seoung Eun Huh, Ji Yeon Kim, Joanne Kwak-Kim, Sung Ki Lee

Abstract:

Objective: Prevalence of osteoporosis, cardiovascular disorders, and Alzheimer's disease rapidly increase after menopause. Immune activation and inflammation are suggested as an important pathogenesis of these serious diseases. Several pro-inflammatory cytokines are increased in women with surgical or natural menopause. However, the little is known about IL-17 producing T cells and Foxp3+ regulatory T (Treg) cells in post-menopause. Methods: A total of 34 postmenopausal women, who had no active cardiovascular, endocrine and infectious disorders were recruited as study group and healthy premenopausal women participated as controls. Peripheral blood mononuclear cells were isolated. Immuno-morphologic (CD3, CD4, CD8, CD19, CD56/CD16), intracellular cytokine (TNF-alpha, IFN-gamma, IL-10, IL-17), and Treg cell (Foxp3) studies were carried out using flow cytometry. The proportion of peripheral lymphocytes, including IL-17 producing and Foxp3+ Treg cells immune cell in each group were statistically analyzed. Results: The proportion of NK cells was significantly increased in menopausal women as compared to that of controls (P=.005). The ratios of TNF-alpha/IL-10 producing CD3+CD4+ T cells were increased in postmenopausal women. CD3+IL-17+ T cell level was higher in postmenopausal women and CD4+ Foxp3+ Treg cells was lower than that of controls. The ratios of CD3+IL-17+ T cell to CD3+Foxp3+ and to CD4+Foxp3+ Treg cells were significantly increased in postmenopausal women (P=.001). Conclusions: We found enhanced innate immunity and Th1- and Th17-mediated adaptive immunity in postmenopausal women. This may explain increasing prevalence of chronic inflammatory diseases after menopause. Further studies are needed to elucidate what factors contribute to this inflammatory shift in the postmenopause.

Keywords: inflammation, immune cell, menopause, Th17, regulatory T cell

Procedia PDF Downloads 313
3949 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library

Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni

Abstract:

A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.

Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.

Procedia PDF Downloads 81
3948 Predictive Value of Primary Tumor Depth for Cervical Lymphadenopathy in Squamous Cell Carcinoma of Buccal Mucosa

Authors: Zohra Salim

Abstract:

Objective: To access the relationship of primary tumor thickness with cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa. Methodology: A cross-sectional observational study was carried out on 80 Patients with biopsy-proven oral squamous cell carcinoma of buccal mucosa at Dow University of Health Sciences. All the study participants were treated with wide local excision of the primary tumor with elective neck dissection. Patients with prior head and neck malignancy or those with prior radiotherapy or chemotherapy were excluded from the study. Data was entered and analyzed on SPSS 21. Chi-squared test with 95% C.I and 80% power of the test was used to evaluate the relationship of tumor depth with cervical lymph nodes. Results: 50 participants were male, and 30 patients were female. 30 patients were in the age range of 20-40 years, 36 patients in the range of 40-60 years, while 14 patients were beyond age 60 years. Tumor size ranged from 0.3cm to 5cm with a mean of 2.03cm. Tumor depth ranged from 0.2cm to 5cm. 20% of the participants reported with tumor depth greater than 2.5cm, while 80% of patients reported with tumor depth less than 2.5cm. Out of 80 patients, 27 reported with negative lymph nodes, while 53 patients reported with positive lymph nodes. Conclusion: Our study concludes that relationship exists between the depth of primary tumor and cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa.

Keywords: squamous cell carcinoma, tumor depth, cervical lymphadenopathy, buccal mucosa

Procedia PDF Downloads 229
3947 Optimization of Hydrogel Conductive Nanocomposite as Solar Cell

Authors: Shimaa M. Elsaeed, Reem K. Farag, Ibrahim M. Nassar

Abstract:

Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell.

Keywords: hydrogel, solar cell, conductive polymer, nanocomposite

Procedia PDF Downloads 389
3946 Prediction of B-Cell Epitope for 24 Mite Allergens: An in Silico Approach towards Epitope-Based Immune Therapeutics

Authors: Narjes Ebrahimi, Soheila Alyasin, Navid Nezafat, Hossein Esmailzadeh, Younes Ghasemi, Seyed Hesamodin Nabavizadeh

Abstract:

Immunotherapy with allergy vaccines is of great importance in allergen-specific immunotherapy. In recent years, B-cell epitope-based vaccines have attracted considerable attention and the prediction of epitopes is crucial to design these types of allergy vaccines. B-cell epitopes might be linear or conformational. The prerequisite for the identification of conformational epitopes is the information about allergens' tertiary structures. Bioinformatics approaches have paved the way towards the design of epitope-based allergy vaccines through the prediction of tertiary structures and epitopes. Mite allergens are one of the major allergy contributors. Several mite allergens can elicit allergic reactions; however, their structures and epitopes are not well established. So, B-cell epitopes of various groups of mite allergens (24 allergens in 6 allergen groups) were predicted in the present work. Tertiary structures of 17 allergens with unknown structure were predicted and refined with RaptorX and GalaxyRefine servers, respectively. The predicted structures were further evaluated by Rampage, ProSA-web, ERRAT and Verify 3D servers. Linear and conformational B-cell epitopes were identified with Ellipro, Bcepred, and DiscoTope 2 servers. To improve the accuracy level, consensus epitopes were selected. Fifty-four conformational and 133 linear consensus epitopes were predicted. Furthermore, overlapping epitopes in each allergen group were defined, following the sequence alignment of the allergens in each group. The predicted epitopes were also compared with the experimentally identified epitopes. The presented results provide valuable information for further studies about allergy vaccine design.

Keywords: B-cell epitope, Immunotherapy, In silico prediction, Mite allergens, Tertiary structure

Procedia PDF Downloads 149
3945 Pathogenic Effects of IgG and IgM Apoptotic Cell-Reactive Monoclonal Auto-Antibodies on Innate and Adaptive Immunity in Lupus

Authors: Monika Malik, Pooja Arora, Ruchi Sachdeva, Vishnampettai G. Ramachandran, Rahul Pal

Abstract:

Apoptotic debris is believed to be the antigenic trigger in lupus. Whether such debris and autoantibodies induced in lupus-prone mice which specifically recognize its constituents can mediate differential effects on innate and humoral responses in such mice was assessed. The influence of apoptotic blebs and apoptotic cell-reactive monoclonal antibodies on phenotypic markers expressed on bone marrow-derived dendritic cells (BMDCs) and secreted cytokines were evaluated. Sera from lupus-prone and healthy mice immunized with the antibodies were analyzed for anti-self reactivity. Apoptotic blebs, as well as somatically-mutated IgG and non-mutated IgM apoptotic-cell reactive monoclonal antibodies, induced the preferential maturation of BMDCs derived from lupus-prone mice relative to BMDCs derived from healthy mice; antibody specificity and cell genotype both influenced the secretion of inflammatory cytokines. Immunization of lupus-prone mice with IgM and IgG antibodies led to hypergammaglobulinemia; elicited antibodies were self-reactive, and exhibited enhanced recognition of lupus-associated autoantigens (dsDNA, Ro60, RNP68, and Sm) in comparison with adjuvant-induced sera. While ‘natural’ IgM antibodies are believed to contribute to immune homeostasis, this study reveals that apoptotic cell-reactive IgM antibodies can promote inflammation and drive anti-self responses in lupus. Only in lupus-prone mice did immunization with IgG auto-antibodies enhance the kinetics of humoral anti-self responses, resulting in advanced-onset glomerulosclerosis. This study reveals that preferential innate and humoral recognition of the products of cell death in an autoimmune milieu influences the indices associated with lupus pathology.

Keywords: antigen spreading, apoptotic cell-reactive pathogenic IgG, and IgM autoantibodies, glomerulosclerosis, lupus

Procedia PDF Downloads 155
3944 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 347
3943 Oral Health Status in Sickle Cell Anemia Subjects

Authors: Surekha Rathod

Abstract:

Sickle cell disease is a vascular disorder characterized by chronic, ongoing organ damage that is punctuated by episodes of acutely painful vascular complications.1 It is the most common genetic blood disorder in the United States, with about 2000 infants being identified through routine blood screenings annually, and an estimated 104,000-138,000 affected individuals living in the United States. Approximately 0.3%-1.3% of African American are affected by Sickle Cell Diseases (SCD).3 The aim of this paper is to present oral health status of patients with SCD. A total of 200 subjects of both sexes in the age group 18- 40 years were included in this study. The subjects were examined and the following indices were recorded • Oral hygiene index – Simplified (OHI-S). • Probing depths (PD). • Clinical Attachment Levels (CAL). • Gingival Index - Loe and Sillness. • Turesky Gillmore Glickman Modification of the Quigley Hein Plaque Index. (1970) • DMFT index. • Sickle Cell Disease Severity Index. A total of 1478 patients were screened of which 200 subjects were found to be diagnosed with SCD by electrophoresis. The study thus, included 200 subjects (111 females & 89 males) diagnosed with Sickle Cell Disease in the age group of 18-40 years. The probing pocket depths (PPD) were measured in millimeters. 36% had PPD in the range of 2-4mm, 48% had PPD in the range of 4-6mm while 16% had PPD of more than 6mm. Similar results were obtained for the Clinical Attachment Levels (CAL). 29.5 % subjects had CAL 2-4mm, 44.5% had 4-6mm & 26% had CAL 6mm & above. We can thus conclude that although oral health is not a priority for patients with SCD, it is supported by increased plaque accumulation. Because of the chronic anemic state of the patients with SCD, they should be encouraged to pay strict attention to oral hygiene instructions and practice.

Keywords: chronic, genetic, oral, sickle cell disease, vascular

Procedia PDF Downloads 390
3942 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: sampled-data control, fuel cell, linear matrix inequalities, nonlinear control

Procedia PDF Downloads 558
3941 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor

Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu

Abstract:

Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.

Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress

Procedia PDF Downloads 275