Search results for: petroleum operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3278

Search results for: petroleum operation

2708 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains

Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib

Abstract:

Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.

Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension

Procedia PDF Downloads 271
2707 Public Opinion Polls as an Instrument of Propaganda of the Invasion of Ukraine

Authors: Daria Lozovskaia

Abstract:

This paper is focused on the news coverage of public opinion polls about Russian full-scale invasion of Ukraine in Russian state-controlled media. After the announcement of the start of the so-called “Special Military Operation” on February 24, 2022, the number of publications of the results of public opinion polls increased many times over, and the poll numbers began to be discussed on social media and in the Kremlin’s official informational agenda. Headlines like "72 Percent of Russian Citizens Support the Operation " or "Russians Believe in Victory in the Special Military Operation" have become prominent parts of Russian state propaganda news stories and newspapers. At the same time, public opinion in Russia, as a concept and model, differs from the generally accepted democratic concept and has its own specifics. As a result, public opinion polls and their results, especially after February 24, have a number of features in the form of the dominance of the discourse of political elites in the media, which leads to a decrease in public awareness, the prevalence of the effect of joining the majority and a high number of non-responses due to fear of reprisals. The aim of this study was to determine the role of public opinion polls in the system of Russian war propaganda in Ukraine. For this purpose, were selected publications of the Russian media, the agenda of which corresponds to the official information policy of the Russian authorities. First, using frame analysis for the categories "Explicit trust", "Implicit trust", "Implicit distrust" and "Explicit distrust", provided by Irina Dusakova, the broadcast level of trust in the data of public opinion polls was determined. The results of this phase of the study showed that the Russian media broadcast an absolute level of confidence in public opinion polls regarding support for the war in Ukraine. The second stage of the study was the content analysis of publications. The categories of this analysis were derived from Anna Morelli's 10 Principles of Military Propaganda and Haavard Koppang's Definition of Propaganda to determine the purposes of the use of public opinion polls by Russian propaganda. The results of the study not only confirmed the widespread hypothesis that public opinion polls in Russia are used as a tool of state propaganda, but also showed that their purpose is to demonstrate the consolidation of society in support of the war and President Vladimir Putin.

Keywords: propaganda, public opinion, public opinion polls, Russian studies

Procedia PDF Downloads 76
2706 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications

Authors: Dejenie Birile Gemeda, Wilhelm Stork

Abstract:

The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.

Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines

Procedia PDF Downloads 143
2705 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 226
2704 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 84
2703 Analysis of Electric Mobility in the European Union: Forecasting 2035

Authors: Domenico Carmelo Mongelli

Abstract:

The context is that of great uncertainty in the 27 countries belonging to the European Union which has adopted an epochal measure: the elimination of internal combustion engines for the traction of road vehicles starting from 2035 with complete replacement with electric vehicles. If on the one hand there is great concern at various levels for the unpreparedness for this change, on the other the Scientific Community is not preparing accurate studies on the problem, as the scientific literature deals with single aspects of the issue, moreover addressing the issue at the level of individual countries, losing sight of the global implications of the issue for the entire EU. The aim of the research is to fill these gaps: the technological, plant engineering, environmental, economic and employment aspects of the energy transition in question are addressed and connected to each other, comparing the current situation with the different scenarios that could exist in 2035 and in the following years until total disposal of the internal combustion engine vehicle fleet for the entire EU. The methodologies adopted by the research consist in the analysis of the entire life cycle of electric vehicles and batteries, through the use of specific databases, and in the dynamic simulation, using specific calculation codes, of the application of the results of this analysis to the entire EU electric vehicle fleet from 2035 onwards. Energy balance sheets will be drawn up (to evaluate the net energy saved), plant balance sheets (to determine the surplus demand for power and electrical energy required and the sizing of new plants from renewable sources to cover electricity needs), economic balance sheets (to determine the investment costs for this transition, the savings during the operation phase and the payback times of the initial investments), the environmental balances (with the different energy mix scenarios in anticipation of 2035, the reductions in CO2eq and the environmental effects are determined resulting from the increase in the production of lithium for batteries), the employment balances (it is estimated how many jobs will be lost and recovered in the reconversion of the automotive industry, related industries and in the refining, distribution and sale of petroleum products and how many will be products for technological innovation, the increase in demand for electricity, the construction and management of street electric columns). New algorithms for forecast optimization are developed, tested and validated. Compared to other published material, the research adds an overall picture of the energy transition, capturing the advantages and disadvantages of the different aspects, evaluating the entities and improvement solutions in an organic overall picture of the topic. The results achieved allow us to identify the strengths and weaknesses of the energy transition, to determine the possible solutions to mitigate these weaknesses and to simulate and then evaluate their effects, establishing the most suitable solutions to make this transition feasible.

Keywords: engines, Europe, mobility, transition

Procedia PDF Downloads 61
2702 Surface Modified Electrospun Expanded Polystyrene Fibre with Superhydrophobic/Superoleophillic Properties as Potential Oil Membrane

Authors: S. Oluwagbemiga Alayande, E. Olugbenga Dare, Titus A. M. Msagati, A. Kehinde Akinlabi , P. O. Aiyedun

Abstract:

This paper presents a cheap route procedure for the preparation of a potential oil membrane with superhydrophobic /superoleophillic properties for selective removal of crude oil from water. In these study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophic and superoleophillic wetting properties with water and crude oil. The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.

Keywords: expanded polystyrene, superhydrophobic, superoleophillic, oil-membrane

Procedia PDF Downloads 472
2701 The Effect of H2S on Crystal Structure

Authors: C. Venkataraman B. E., J. Nagarajan B. E., V. Srinivasan M. Tech

Abstract:

For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries.

Keywords: crystal structure deformation, failure assessment, alloy-environment combination, H2S

Procedia PDF Downloads 401
2700 Safety Considerations of Furanics for Sustainable Applications in Advanced Biorefineries

Authors: Anitha Muralidhara, Victor Engelen, Christophe Len, Pascal Pandard, Guy Marlair

Abstract:

Production of bio-based chemicals and materials from lignocellulosic biomass is gaining tremendous importance in advanced bio-refineries while aiming towards progressive replacement of petroleum based chemicals in transportation fuels and commodity polymers. One such attempt has resulted in the production of key furan derivatives (FD) such as furfural, HMF, MMF etc., via acid catalyzed dehydration (ACD) of C6 and C5 sugars, which are further converted into key chemicals or intermediates (such as Furandicarboxylic acid, Furfuryl alcohol etc.,). In subsequent processes, many high potential FD are produced, that can be converted into high added value polymers or high energy density biofuels. During ACD, an unavoidable polyfuranic byproduct is generated which is called humins. The family of FD is very large with varying chemical structures and diverse physicochemical properties. Accordingly, the associated risk profiles may largely vary. Hazardous Material (Haz-mat) classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging, safe storage, and transportation. Considering the growing application routes of FD, it becomes important to notice the limited access to safety related information (safety data sheets available only for famous compounds such as HMF, furfural etc.,) in these internationally recognized haz-mat classification systems. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. Factors such as thermal stability, speed of combustion, chemical incompatibilities, etc., can equally influence the safety profile of a compound, that are clearly out of the scope of any haz-mat classification system. Irrespective of the bio-based origin, FD has so far received inconsistent remarks concerning their toxicity profiles. With such inconsistencies, there is a fear that, a large family of FD may also follow extreme judgmental scenarios like ionic liquids, by ranking some compounds as extremely thermally stable, non-flammable, etc., Unless clarified, these messages could lead to misleading judgements while ranking the chemical based on its hazard rating. Safety is a key aspect in any sustainable biorefinery operation/facility, which is often underscored or neglected. To fill up these existing data gaps and to address ambiguities and discrepancies, the current study focuses on giving preliminary insights on safety assessment of FD and their potential targeted by-products. With the available information in the literature and obtained experimental results, physicochemical safety, environmental safety as well as (a scenario based) fire safety profiles of key FD, as well as side streams such as humins and levulinic acid, will be considered. With this, the study focuses on defining patterns and trends that gives coherent safety related information for existing and newly synthesized FD in the market for better functionality and sustainable applications.

Keywords: furanics, humins, safety, thermal and fire hazard, toxicity

Procedia PDF Downloads 166
2699 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity

Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido

Abstract:

Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.

Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens

Procedia PDF Downloads 288
2698 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Authors: Murat Sarıkaya, Abdulkadir Güllü

Abstract:

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Keywords: cryogenic machining, difficult-to-cut alloy, tool wear, turning

Procedia PDF Downloads 591
2697 Assessing the Impact of Human Behaviour on Water Resource Systems Performance: A Conceptual Framework

Authors: N. J. Shanono, J. G. Ndiritu

Abstract:

The poor performance of water resource systems (WRS) has been reportedly linked to not only climate variability and the water demand dynamics but also human behaviour-driven unlawful activities. Some of these unlawful activities that have been adversely affecting water sector include unauthorized water abstractions, water wastage behaviour, refusal of water re‐use measures, excessive operational losses, discharging untreated or improperly treated wastewater, over‐application of chemicals by agricultural users and fraudulent WRS operation. Despite advances in WRS planning, operation, and analysis incorporating such undesirable human activities to quantitatively assess their impact on WRS performance remain elusive. This study was then inspired by the need to develop a methodological framework for WRS performance assessment that integrates the impact of human behaviour with WRS performance assessment analysis. We, therefore, proposed a conceptual framework for assessing the impact of human behaviour on WRS performance using the concept of socio-hydrology. The framework identifies and couples four major sources of WRS-related values (water values, water systems, water managers, and water users) using three missing links between human and water in the management of WRS (interactions, outcomes, and feedbacks). The framework is to serve as a database for choosing relevant social and hydrological variables and to understand the intrinsic relations between the selected variables to study a specific human-water problem in the context of WRS management.

Keywords: conceptual framework, human behaviour; socio-hydrology; water resource systems

Procedia PDF Downloads 135
2696 Effect of Non-Newtonian Behavior of Oil Phase on Oil-Water Stratified Flow in a Horizontal Channel

Authors: Satish Kumar Dewangan, Santosh Kumar Senapati

Abstract:

The present work focuses on the investigation of the effect of non-Newtonian behavior on the oil-water stratified flow in a horizontal channel using ANSYS Fluent. Coupled level set and volume of fluid (CLSVOF) has been used to capture the evolving interface assuming unsteady, coaxial flow with constant fluid properties. The diametric variation of oil volume fraction, mixture velocity, total pressure and pressure gradient has been studied. Non-Newtonian behavior of oil has been represented by the power law model in order to investigate the effect of flow behavior index. Stratified flow pattern tends to assume dispersed flow pattern with the change in the behavior of oil to non-Newtonian. The pressure gradient is found to be very much sensitive to the flow behavior index. The findings could be useful in designing the transportation pipe line in petroleum industries.

Keywords: oil-water stratified flow, horizontal channel, CLSVOF, non–Newtonian behaviour.

Procedia PDF Downloads 489
2695 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 123
2694 Financial Benefits after the Implementation of Antimicrobial Copper in Intensive Care Units (ICUs)

Authors: P. Efstathiou, E. Kouskouni, S. Papanikolaou, K. Karageorgou, Z. Manolidou, Tseroni Maria, A. Efstathiou, V. Karyoti, I. Agrafa

Abstract:

Aim: Aim of this study was to evaluate the reduction on Intensive Care Unit (ICU) microbial flora after the antimicrobial copper alloy (Cu+) implementation as well as the effect on financial-epidemiological operation parameters. Methods: Medical, epidemiological and financial data in two time periods, before and after the implementation of copper (Cu 63% - Zn 37%, low lead) were recorded and analyzed in a general ICU. The evaluated parameters were: the importance of patients' admission (Acute Physiology and Chronic Health Evaluation - APACHE II and Simplified Acute Physiology Score - SAPS), microbial flora's record in the ICU before and after the implementation of Cu+ as well as the impact on epidemiological and ICU's operation financial parameters. Results: During December 2010 and March 2011 and respectively during December 2011 and March 2012 comparative results showed statistically significant reduction on the microbial flora (CFU/ml) by 95% and the use of antimicrobial medicine (per day per patient) by 30% (p = 0,014) as well as patients hospitalization time and cost. Conclusions: The innovative implementation of antimicrobial copper in ICUs contributed to their microbial flora significant reduction and antimicrobial drugs use reduction with the apparent positive effect (decrease) in both patient’s hospitalization time and cost. Under the present circumstances of economic crisis, survey results are of highest importance and value.

Keywords: antimicrobial copper, financial benefits, ICU, cost reduction

Procedia PDF Downloads 470
2693 Biodiesel Production from Canola Oil Using Trans-Esterification Process with Koh as a Catalyst

Authors: M. Nafis Alfarizi, Dinda A. Utami, Arif Hidayat

Abstract:

Biodiesel is one solution to overcome the use of petroleum fuels. Many alternative feedstocks that can be used among which canola oil. The purpose of this study was to determine the ability of canola oil and KOH for the trans-esterification reaction in biodiesel production. Canola oil has a very high purity that can be used as an alternative feedstock for biodiesel production and expected it will be produced biodiesel with excellent quality. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with KOH as a catalyst, and it will produce biodiesel and glycerol as byproduct and we choose trans-esterification process because canola oil has a 0,445% FFA content. The variables studied in this research include the comparison of canola oil and methanol, temperature, time, and the percent of catalyst used. In this study the method of analysis we use GCMS and FTIR to know what the characteristic in canola oil. Development of canola oil seems to be the perfect solution to produce high-quality biodiesel. The reaction conditions resulted in 97.87% -w methyl ester (biodiesel) product by using a 0.5% wt KOH catalyst with canola and methanol ratio 1:8 at 60°C.

Keywords: biodiesel, canola oil, KOH, trans-esterification

Procedia PDF Downloads 263
2692 Production of Polyurethane Foams from Bark Wastes

Authors: Luísa P. Cruz-Lopes, Liliana Rodrigues, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves

Abstract:

Currently, the polyurethanes industry is dependent on fossil resources to obtain their basic raw materials (polyols and isocyanate), as these are obtained from petroleum products. The aim of this work was to use biopolyols from liquefied Pseudotsuga (Pseudotsuga menziesii) and Turkey oak (Quercus cerris) barks for the production of polyurethane foams and optimize the process. Liquefaction was done with glycerol catalyzed by KOH. Foams were produced following different formulations and using biopolyols from both barks. Subsequently, the foams were characterized according to their mechanical properties and the reaction of the foam formation was monitored by FTIR-ATR. The results show that it is possible to produce polyurethane foams using bio-based polyols and the liquefaction conditions are very important because they influence the characteristics of biopolyols and, consequently the characteristics of the foams. However, the process has to be further optimized so that it can obtain better quality foams.

Keywords: Bio-based polyol, mechanical tests, polyurethane foam, Pseudotsuga bark, renewable resources, Turkey oak bark

Procedia PDF Downloads 345
2691 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive

Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani

Abstract:

Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.

Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid

Procedia PDF Downloads 568
2690 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
2689 Crude Distillation Process Simulation Using Unisim Design Simulator

Authors: C. Patrascioiu, M. Jamali

Abstract:

The paper deals with the simulation of the crude distillation process using the Unisim Design simulator. The necessity of simulating this process is argued both by considerations related to the design of the crude distillation column, but also by considerations related to the design of advanced control systems. In order to use the Unisim Design simulator to simulate the crude distillation process, the identification of the simulators used in Romania and an analysis of the PRO/II, HYSYS, and Aspen HYSYS simulators were carried out. Analysis of the simulators for the crude distillation process has allowed the authors to elaborate the conclusions of the success of the crude modelling. A first aspect developed by the authors is the implementation of specific problems of petroleum liquid-vapors equilibrium using Unisim Design simulator. The second major element of the article is the development of the methodology and the elaboration of the simulation program for the crude distillation process, using Unisim Design resources. The obtained results validate the proposed methodology and will allow dynamic simulation of the process.  

Keywords: crude oil, distillation, simulation, Unisim Design, simulators

Procedia PDF Downloads 249
2688 Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 376
2687 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 495
2686 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 444
2685 Planning a Supply Chain with Risk and Environmental Objectives

Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali

Abstract:

The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.

Keywords: environmental indicators, optimization, risk, supply chain

Procedia PDF Downloads 351
2684 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 436
2683 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: fractional flow, oil displacement, relative permeability, simultaneously flow

Procedia PDF Downloads 391
2682 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 425
2681 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 364
2680 Using Building Information Modeling in Green Building Design and Performance Optimization

Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad

Abstract:

Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.

Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design

Procedia PDF Downloads 343
2679 Measurement and Research of Green Office Building Operational Performance in China: A Case Study of a Green Office Building in Zhejiang Province

Authors: Xuechen Gui, Jian Ge, Senmiao Li

Abstract:

In recent years, green buildings in China have been developing rapidly and have developed into a wide variety of types, of which office building is a very important part. In many green office buildings, the energy consumption of building operation is high; the indoor environment quality needs to be improved, and the level of occupants’ satisfaction is low. This paper conducted a one-year measurement of operational performance of a green office building in Zhejiang Province. The measurement includes energy consumption of the building's one-year operation, the quality of the indoor environment and occupants’ satisfaction in different seasons. The energy consumption is collected from the power bureau. The quality of the indoor environment have been measured at different measuring points including offices, meeting rooms and reception for the whole year. The satisfaction of occupants are obtained from questionnaires. The results are compared with given standards and goals and the reasons why occupants are dissatisfied with the indoor environment are analyzed. Regarding energy consumption, the energy consumption of the building operational performance is much higher than the standard. Regarding the indoor environment, the temperature and humidity meet the standard for most of the time, but fine particulate matter (PM2.5) concentration is pretty high. Regarding occupants satisfaction, occupants have a higher expectation for indoor air quality even when the indoor air quality is well and occupants prefer a relatively humid environment. However the overall satisfaction is more than 80%, which indicates that occupants have a higher tolerability.

Keywords: green office building, energy consumption, indoor environment quality, occupants satisfaction, operational performance

Procedia PDF Downloads 177