Search results for: normalized water productivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10038

Search results for: normalized water productivity

9468 Impact of Microbial Pathogen on Aquatic Environment

Authors: Muhammad Younis Laghari

Abstract:

Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination.

Keywords: microbial pathogens, contamination, water resources, river water body

Procedia PDF Downloads 51
9467 Investigating Willingness to Pay for Water Services in a Newly Established Municipality in Malamulele, Vhembe District Municipality, South Africa

Authors: D. T. Chabalala

Abstract:

Currently South Africa is facing a triple challenge of poverty, unemployment and inequality. As such, communities have limited access to basic municipal services such as water, sanitation and electricity. Citizens such as those residing at Malamulele Township will be responsible to pay for the cost of water services that they consume instead of having the costs subsidised by the newly formed Municipality. The question on whether Malamulele residents would be willing to pay for water services provided for them need to be investigated. This study was conducted in Malamulele Township and surrounding villages. The article is based on a survey of 500 randomly selected households from township and villages surrounding Malamulele. The study uses the contingent valuation method to determine households’ willingness to pay for water services as well as the consequences they possibly will encounter in case their response is negative. The obtained results can be used by the Municipality and other Government Departments in order to better identify the affordable rates and the quantity of water service to be provided. Thus, it will make Municipality water supply services stable and sustainable. It will also be used as a tool to provide inform decisions about a range of infrastructure to enhance water supply systems.

Keywords: willingness to pay, contingent valuation method, water supply systems, Malamulele

Procedia PDF Downloads 213
9466 Assessing Socio-economic Impacts of Arsenic and Iron Contamination in Groundwater: Feasibility of Rainwater Harvesting in Amdanga Block, North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

The present study focuses on conducting a socio-economic assessment of groundwater contamination by arsenic and iron and explores the feasibility of rainwater harvesting (RWH) as an alternative water source in the Amdanga Block of North 24 Parganas, West Bengal, India. The region is plagued by severe groundwater contamination, primarily due to excessive concentrations of arsenic and iron, which pose significant health risks to the local population. The study utilizes a mixed-methods approach, combining quantitative analysis of water samples collected from different locations within the Amdanga Block and socio-economic surveys conducted among the affected communities. The results reveal alarmingly high levels of arsenic and iron contamination in the groundwater, surpassing the World Health Organization (WHO) and Indian government's permissible limits. This contamination significantly impacts the health and well-being of the local population, leading to a range of health issues such as skin The water samples are analyzed for arsenic and iron levels, while the surveys gather data on water usage patterns, health conditions, and socio-economic factors. lesions, respiratory disorders, and gastrointestinal problems. Furthermore, the socio-economic assessment highlights the vulnerability of the affected communities due to limited access to safe drinking water. The findings reveal the adverse socio-economic implications, including increased medical expenditures, reduced productivity, and compromised educational opportunities. To address these challenges, the study explores the feasibility of rainwater harvesting as an alternative source of clean water. RWH systems have the potential to mitigate groundwater contamination by providing a sustainable and independent water supply. The assessment includes evaluating the rainwater availability, analyzing the infrastructure requirements, and estimating the potential benefits and challenges associated with RWH implementation in the study area. The findings of this study contribute to a comprehensive understanding of the socio-economic impact of groundwater contamination by arsenic and iron, emphasizing the urgency to address this critical issue in the Amdanga Block. The feasibility assessment of rainwater harvesting serves as a practical solution to ensure a safe and sustainable water supply, reducing the dependency on contaminated groundwater sources. The study's results can inform policymakers, researchers, and local stakeholders in implementing effective mitigation measures and promoting the adoption of rainwater harvesting as a viable alternative in similar arsenic and iron-contaminated regions.

Keywords: contamination, rainwater harvesting, groundwater, sustainable water supply

Procedia PDF Downloads 79
9465 The Impact of Electronic Commerce on Organisational Efectiveness: A Study of Zenith Bank Plc

Authors: Olusola Abiodun Arinde

Abstract:

This research work was prompted by the very important role e-commerce plays in every organization, be it private or public. The underlying objective of this study is to have a critical appraisal of the extent to which e-commerce impacts on organizational effectiveness. This research was carried out using Zenith Bank Plc as a case study. Relevant data were collected through structured questionnaire, oral interview, journals, newspapers, and textbooks. The data collected were analyzed and hypotheses were tested. Based on the result of the hypotheses, it was observed that e-commerce is significant to every organization. Through e-commerce, fast services delivery would be guaranteed to customers, this would lead to higher productivity and profit for organizations. E-commerce should be managed in such a way that it does not alienate customers; it should also prevent enormous risks that are associated with e-commerce.

Keywords: e-commerce, fast service, productivity, profit

Procedia PDF Downloads 220
9464 Voluntary Water Intake of Flavored Water in Euhydrated Horses

Authors: Brianna M. Soule, Jesslyn A. Bryk-Lucy, Linda M. Ritchie

Abstract:

Colic, defined as abdominal pain in the horse, has several known predisposing factors. Decreased water intake has been shown to predispose equines to impaction colic. The objective of this study was to determine if offering flavored water (sweet feed or banana extract) would increase voluntary water intake in horses to serve as an assessable, noninvasive method for farm managers, veterinarians, or owners to decrease the risk of impaction colic. An a priori power analysis, which was conducted using G*Power version 3.1.9.7, indicated that the minimum sample size required to achieve 80% power for detecting a large effect at a significance level of α = .05 was 19 horses for a one-way repeated measures ANOVA with three treatment levels and assuming a non-sphericity correction of ε=0.5. After a three-day control period, 21 horses were randomly divided into two sequences and offered either banana or sweet feed flavored water. Horses always had a bucket of unflavored water available. A repeated measure study design was used to measure water consumption of each horse over a 62-hour period. A one-way repeated measures ANOVA was conducted to determine whether there were statistically significant differences among the means for the three-day average water intake (ml/kg). Although not statistically significant (F(2, 38) = 1.28, p = .290, partial η2 = .063), the three-day average water intake was largest for banana flavored water (M = 53.51, SD = 9.25 ml/kg), followed by sweet feed (M = 52.93, SD = 11.99 ml/kg), and, finally, unflavored water (M = 50.40, SD = 10.82 ml/kg). Paired-samples t-tests were used to determine whether there was a statistically significant difference between the three-day average water intake (ml/kg) for flavored versus unflavored water. The average unflavored water intake (M = 29.3 ml/kg, SD = 8.9) over the measurement period was greater than the banana flavored water (M = 27.7 ml/kg, SD = 9.8), but the average consumption of the sweet feed flavored water (M = 30.4 ml/kg, SD = 14.6) was greater than unflavored water (M = 24.3 ml/kg, SD = 11.4). None of these differences in average intake were statistically significant (p > .244). Future research is warranted to determine if other flavors significantly increase voluntary water intake in horses.

Keywords: colic, equine, equine science, water intake, flavored water, horses, equine management, equine health, horse health, horse health care management, colic prevention

Procedia PDF Downloads 121
9463 Impact of Climate Change on Water Resources in Morocco

Authors: Abdelghani Qadem, Zouhair Qadem

Abstract:

Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change.

Keywords: morocco, climate change, water resources, impact, water scarcity

Procedia PDF Downloads 65
9462 Assessment of Drinking Water Quality in Relation to Arsenic Contamination in Drinking Water in Liberia: Achieving the Sustainable Development Goal of Ensuring Clean Water and Sanitation

Authors: Victor Emery David Jr., Jiang Wenchao, Daniel Mmereki, Yasinta John

Abstract:

The fundamentals of public health are access to safe and clean drinking water. The presence of arsenic and other contaminants in drinking water leads to the potential risk to public health and the environment particularly in most developing countries where there’s inadequate access to safe and clean water and adequate sanitation. Liberia has taken steps to improve its drinking water status so as to achieve the Sustainable Development Goals (SDGs) target of ensuring clean water and effective sanitation but there is still a lot to be done. The Sustainable Development Goals are a United Nation initiative also known as transforming our world: The 2030 agenda for sustainable development. It contains seventeen goals with 169 targets to be met by respective countries. Liberia is situated within in the gold belt region where there exist the presence of arsenic and other contaminants in the underground water due to mining and other related activities. While there are limited or no epidemiological studies conducted in Liberia to confirm illness or death as a result of arsenic contamination in Liberia, it remains a public health concern. This paper assesses the drinking water quality, the presence of arsenic in groundwater/drinking water in Liberia, and proposes strategies for mitigating contaminants in drinking water and suggests options for improvement with regards to achieving the Sustainable Development Goals of ensuring clean water and effective sanitation in Liberia by 2030.

Keywords: arsenic, action plan, contaminants, environment, groundwater, sustainable development goals (SDGs), Monrovia, Liberia, public health, drinking water

Procedia PDF Downloads 235
9461 Some Aspects of Water Resources Management in Arid and Semi-Arid Regions, Case Study of Western Iran

Authors: Amir Hamzeh Haghiabi

Abstract:

Water resource management is of global significance as it plays a key role in the socioeconomic development of all nations. On account of the fact that Iran is situated in a highly pressurized belt in the world, precipitation is limited, so that the average annual precipitation in the country is about 250 mm, only about one third to one quarter of the world average for rainfall. Karkheh basin is located in the semiarid and arid regions of Western Iran, an area with severe water scarcity. 70 % of rainfall is directly evaporated. The potential annual evaporation of the southern and northern regions is 3,600 mm 1,800 mm, respectively. In this paper, Some aspects of water resources management for this region, the specifications of the Karkheh reservoir dam & hydroelectric power plant as the biggest dam in history of Iran with total volume of reservoir 7.3 Bm3 are illustrated. Also the situation of water availability in the basin, surface and groundwater potential are considered.

Keywords: Iran, water availability, water resources, Zagros

Procedia PDF Downloads 627
9460 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems

Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque

Abstract:

The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.

Keywords: re-use, residue, sustainable, water treatment plants, sludge

Procedia PDF Downloads 467
9459 Comparison of Growth Medium Efficiency into Stevia (Stevia rebaudiana Bertoni) Shoot Biomass and Stevioside Content in Thin-Layer System, TIS RITA® Bioreactor, and Bubble Column Bioreactor

Authors: Nurhayati Br Tarigan, Rizkita Rachmi Esyanti

Abstract:

Stevia (Stevia rebaudiana Bertoni) has a great potential to be used as a natural sweetener because it contains steviol glycoside, which is approximately 100 - 300 times sweeter than sucrose, yet low calories. Vegetative and generative propagation of S. rebaudiana is inefficient to produce stevia biomass and stevioside. One of alternative for stevia propagation is in vitro shoot culture. This research was conducted to optimize the best medium for shoot growth and to compare the bioconversion efficiency and stevioside production of S. rebaudiana shoot culture cultivated in thin layer culture (TLC), recipient for automated temporary immersion system (TIS RITA®) bioreactor, and bubble column bioreactor. The result showed that 1 ppm of Kinetin produced a healthy shoot and the highest number of leaves compared to BAP. Shoots were then cultivated in TLC, TIS RITA® bioreactor, and bubble column bioreactor. Growth medium efficiency was determined by yield and productivity. TLC produced the highest growth medium efficiency of S. rebaudiana, the yield was 0.471 ± 0.117 gbiomass.gsubstrate-1, and the productivity was 0.599 ± 0.122 gbiomass.Lmedium-1.day-1. While TIS RITA® bioreactor produced the lowest yield and productivity, 0.182 ± 0.024 gbiomass.gsubstrate-1 and 0.041 ± 0.0002 gbiomass.Lmedium-1.day-1 respectively. The yield of bubble column bioreactor was 0.354 ± 0.204 gbiomass.gsubstrate-1 and the productivity was 0,099 ± 0,009 gbiomass.Lmedium-1.day-1. The stevioside content from the highest to the lowest was obtained from stevia shoot which was cultivated on TLC, TIS RITA® bioreactor, and bubble column bioreactor; the content was 93,44 μg/g, 42,57 μg/g, and 23,03 μg/g respectively. All three systems could be used to produce stevia shoot biomass, but optimization on the number of nutrition and oxygen intake was required in each system.

Keywords: bubble column, growth medium efficiency, Stevia rebaudiana, stevioside, TIS RITA®, TLC

Procedia PDF Downloads 252
9458 Water Access and Food Security: A Cross-Sectional Study of SSA Countries in 2017

Authors: Davod Ahmadi, Narges Ebadi, Ethan Wang, Hugo Melgar-Quiñonez

Abstract:

Compared to the other Least Developed Countries (LDCs), major countries in sub-Saharan Africa (SSA) have limited access to the clean water. People in this region, and more specifically females, suffer from acute water scarcity problems. They are compelled to spend too much of their time bringing water for domestic use like drinking and washing. Apart from domestic use, water through affecting agriculture and livestock contributes to the food security status of people in vulnerable regions like SSA. Livestock needs water to grow, and agriculture requires enormous quantities of water for irrigation. The main objective of this study is to explore the association between access to water and individuals’ food security status. Data from 2017 Gallup World Poll (GWP) for SSA were analyzed (n=35,000). The target population in GWP is the entire civilian, non-institutionalized, aged 15 and older population. All samples selection is probability based and nationally representative. The Gallup surveys an average of 1,000 samples of individuals per country. Three questions related to water (i.e., water quality, availability of water for crops and availability of water for livestock) were used as the exposure variables. Food Insecurity Experience Scale (FIES) was used as the outcome variable. FIES measures individuals’ food security status, and it is composed of eight questions with simple dichotomous responses (1=Yes and 0=No). Different statistical analyses such as descriptive, crosstabs and binary logistic regression, form the basis of this study. Results from descriptive analyses showed that more than 50% of the respondents had no access to enough water for crops and livestock. More than 85% of respondents were categorized as “food insecure”. Findings from cross-tabulation analyses showed that food security status was significantly associated with water quality (0.135; P=0.000), water for crops (0.106; P=0.000) and water for livestock (0.112; P=0.000). In regression analyses, the probability of being food insecure increased among people who expressed no satisfaction with water quality (OR=1.884 (OR=1.768-2.008)), not enough water for crops (OR=1.721 (1.616-1.834)) and not enough water for livestock (OR=1.706 (1.819)). In conclusion, it should note that water access affects food security status in SSA.

Keywords: water access, agriculture, livestock, FIES

Procedia PDF Downloads 128
9457 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: fractional flow, oil displacement, relative permeability, simultaneously flow

Procedia PDF Downloads 362
9456 Investigation of Surface Water Quality Intera-Annual Variations, Gorganroud Basin, Iran

Authors: K. Ebrahimi, S. Shahid, H. Dehban

Abstract:

Climate variability can affect surface water quality. The objective of present study is to assess the impacts of climate variability on water quality of Gorganroud River, Iran, over the time period 1971 to 2011. To achieve this aim, climate variability and water quality variations were studied involving a newly developed drought index (MRDI) and hysteresis curves, respectively. The results show that climate variability significantly affected surface water quality over the time. The existence of yearly internal variation and hysteresis phenomenon for pH and EC parameters was observed. It was found that though drought affected pH considerably, it could not affect EC significantly.

Keywords: climate variability, hysteresis curves, multi drought index, water quality

Procedia PDF Downloads 349
9455 Direct Palladium-Catalyzed Selective N-Allylation of 2,3-Disubstituted Indoles with Allylic Alcohols in Water

Authors: Bai-Jing Peng, Shyh-Chyun Yang

Abstract:

Organic reactions in water have recently attracted much attention, not only because unique reactivity is often observed in water but also because water is a safe and economical substitute for conventional organic solvents. Thus, development of environmental safe, atom-economical reactions in water is one of the most important goals of synthetic chemistry. The recent paper has documented renewed interest in the use of allylic substrates in the synthesis of new C−C, C−N, and C−O bonds. We have reported our attempts and some successful applications of a process involving the C-O bond cleavage catalyzed by palladium or platinum complexes in water. Because of the importance of heterocycle indole derivatives, much effort has been directed toward the development of methods for functionalization of the indole nucleus at N1 site. In our research, the palladium-catalyzed 2,3-disubstitued indoles with allylic alcohols was investigated under different conditions. Herein, we will establish a simple, convenient, and efficient method, which affords high yields of allylated indoles.

Keywords: palladium-catalyzed, allylic alcohols, indoles, water, allylation

Procedia PDF Downloads 215
9454 Project Production Control (PPC) Implementation for an Offshore Facilities Construction Project

Authors: Muhammad Hakim Bin Mat Tasir, Erwan Shahfizad Hasidan, Hamidah Makmor Bakry, M. Hafiz B. Izhar

Abstract:

Every key performance indicator used to monitor a project’s construction progress emphasizes trade productivity or specific commodity run-down curves. Examples include the productivity of welding by the number of joints completed per day, quantity of NDT (Non-Destructive Tests) inspection per day, etc. This perspective is based on progress and productivity; however, it does not enable a system perspective of how we produce. This paper uses a project production system perspective by which projects are a collection of production systems comprising the interconnected network of processes and operations that represent all the work activities to execute a project from start to finish. Furthermore, it also uses the 5 Levels of production system optimization as a frame. The goal of the paper is to describe the application of Project Production Control (PPC) to control and improve the performance of several production processes associated with the fabrication and assembly of a Central Processing Platform (CPP) Jacket, part of an offshore mega project. More specifically, the fabrication and assembly of buoyancy tanks as they were identified as part of the critical path and required the highest demand for capacity. In total, seven buoyancy tanks were built, with a total estimated weight of 2,200 metric tons. These huge buoyancy tanks were designed to be reversed launching and self-upending of the jacket, easily retractable, and reusable for the next project, ensuring sustainability. Results showed that an effective application of PPC not only positively impacted construction progress and productivity but also exposed sources of detrimental variability as the focus of continuous improvement practices. This approach augmented conventional project management practices, and the results had a high impact on construction scheduling, planning, and control.

Keywords: offshore, construction, project management, sustainability

Procedia PDF Downloads 38
9453 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 451
9452 Process Integration: Mathematical Model for Contaminant Removal in Refinery Process Stream

Authors: Wasif Mughees, Malik Al-Ahmad

Abstract:

This research presents the graphical design analysis and mathematical programming technique to dig out the possible water allocation distribution to minimize water usage in process units. The study involves the mass and property integration in its core methodology. Tehran Oil Refinery is studied to implement the focused water pinch technology for regeneration, reuse and recycling of water streams. Process data is manipulated in terms of sources and sinks, which are given in terms of properties. Sources are the streams to be allocated. Sinks are the units which can accept the sources. Suspended Solids (SS) is taken as a single contaminant. The model minimizes the mount of freshwater from 340 to 275m3/h (19.1%). Redesigning and allocation of water streams was built. The graphical technique and mathematical programming shows the consistency of results which confirms mass transfer dependency of water streams.

Keywords: minimization, water pinch, process integration, pollution prevention

Procedia PDF Downloads 303
9451 The Role of Transport Investment and Enhanced Railway Accessibility in Regional Efficiency Improvement in Saudi Arabia: Data Envelopment Analysis

Authors: Saleh Alotaibi, Mohammed Quddus, Craig Morton, Jobair Bin Alam

Abstract:

This paper explores the role of large-scale investment in transport sectors and the impact of increased railway accessibility on the efficiency of the regional economic productivity in the Kingdom of Saudi Arabia (KSA). There are considerable differences among the KSA regions in terms of their levels of investment and productivity due to their geographical scale and location, which in turn greatly affect their relative efficiency. The study used a non-parametric linear programming technique - Data Envelopment Analysis (DEA) - to measure the regional efficiency change over time and determine the drivers of inefficiency and their scope of improvement. In addition, Window DEA analysis is carried out to compare the efficiency performance change for various time periods. Malmquist index (MI) is also analyzed to identify the sources of productivity change between two subsequent years. The analysis involves spatial and temporal panel data collected from 1999 to 2018 for the 13 regions of the country. Outcomes reveal that transport investment and improved railway accessibility, in general, have significantly contributed to regional economic development. Moreover, the endowment of the new railway stations has spill-over effects. The DEA Window analysis confirmed the dynamic improvement in the average regional efficiency over the study periods. MI showed that the technical efficiency change was the main source of regional productivity improvement. However, there is evidence of investment allocation discrepancy among regions which could limit the achievement of development goals in the long term. These relevant findings will assist the Saudi government in developing better strategic decisions for future transport investments and their allocation at the regional level.

Keywords: data envelopment analysis, transport investment, railway accessibility, efficiency

Procedia PDF Downloads 133
9450 Freezing Characteristics and Texture Variation of Apple Fruits after Dehydrofreezing Assisted by Instant Controlled Pressure Drop Treatment

Authors: Leila Ben Haj Said, Sihem Bellagha, Karim Allaf

Abstract:

The present study deals with the dehydrofreezing assisted by instant controlled pressure drop (DIC) treatment of apple fruits. Samples previously dehydrated until different water contents (200, 100, and 30% dry basis (db)) and DIC treated were frozen at two different freezing velocities (V+ and V-), depending on the thermal resistance established between the freezing airflow and the sample surface. The effects of sample water content (W) and freezing velocity (V) on freezing curves and characteristics, exudate water (EW) and texture variation were examined. Lower sample water content implied higher freezing rates, lower initial freezing points (IFP), lower practical freezing time (PFT), and lower specific freezing time (SFT). EW (expressed in g exudate water/100 g water in the product) of 200% and 100% db apple samples was approximately 3%, at low freezing velocity (V-). Whereas, it was lower than 0.5% for apple samples with 30% db water content. Moreover, the impact of freezing velocity on EW was significant and very important only for high water content samples. For samples whose water content was lower than 100% db, firmness (maximum puncture force) was as higher as the water content was lower, without any insignificant impact of freezing velocity.

Keywords: dehydrofreezing, instant controlled pressure drop DIC, freezing time, texture

Procedia PDF Downloads 363
9449 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy

Authors: Yas Barzegar, Atrin Barzegar

Abstract:

Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.

Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function

Procedia PDF Downloads 54
9448 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 92
9447 Relation between Properties of Internally Cured Concrete and Water Cement Ratio

Authors: T. Manzur, S. Iffat, M. A. Noor

Abstract:

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Keywords: compressive strength, concrete, curing, lightweight, aggregate, superabsorbent polymer, internal curing

Procedia PDF Downloads 446
9446 Water Security and Transboundary Issues for Food Security of Ethiopia. The Case of Nile River

Authors: Kebron Asnake

Abstract:

Water security and transboundary issues are critical concerns for countries, particularly in regions where shared water resources are significant. This Research focuses on exploring the challenges and opportunities related to water security and transboundary issues in Ethiopia, using the case of the Nile River. Ethiopia, as a riparian country of the Nile River, faces complex water security issues due to its dependence on this transboundary water resource. This abstract aims to analyze the various factors that affect water security in Ethiopia, including population growth, climate change, and competing water demands. The Study examines the challenges linked to transboundary water management of the Nile River. It delves into the complexities of negotiating water allocations and addressing potential conflicts among the downstream riparian countries. The paper also discusses the role of international agreements and cooperation in promoting sustainable water resource management. Additionally, the paper highlights the opportunities for collaboration and sustainable development that arise from transboundary water management. It explores the potential for joint investments in water infrastructure, hydropower generation, and irrigation systems that can contribute to regional economic growth and water security. Furthermore, the study emphasizes the need for integrated water management approaches in Ethiopia to ensure the equitable and sustainable use of the Nile River's waters. It highlights the importance of involving stakeholders from diverse sectors, including agriculture, energy, and environmental conservation, in decision-making processes. By presenting the case of the Nile River in Ethiopia, this Abstract contributes to the understanding of water security and transboundary issues. It underscores the significance of regional cooperation and informed policy-making to address the challenges and opportunities presented by transboundary water resources. The paper serves as a foundation for further research and policy in water management in Ethiopia and other regions facing similar challenges.

Keywords: water, health, agriculture, medicine

Procedia PDF Downloads 58
9445 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh

Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter

Abstract:

Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.

Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island

Procedia PDF Downloads 261
9444 Assessment of Drinking Water Contamination from the Water Source to the Consumer in Palapye Region, Botswana

Authors: Tshegofatso Galekgathege

Abstract:

Poor water quality is of great concern to human health as it can cause disease outbreaks. A standard practice today, in developed countries, is that people should be provided with safe-reliable drinking water, as safe drinking water is recognized as a basic human right and a cost effective measure of reducing diseases. Over 1.1 billion people worldwide lack access to a safe water supply and as a result, the majority are forced to use polluted surface or groundwater. It is widely accepted that our water supply systems are susceptible to the intentional or accidental contamination .Water quality degradation may occur anywhere in the path that water takes from the water source to the consumer. Chlorine is believed to be an effective tool in disinfecting water, but its concentration may decrease with time due to consumption by chemical reactions. This shows that we are at the risk of being infected by waterborne diseases if chlorine in water falls below the required level of 0.2-1mg/liter which should be maintained in water and some contaminants enter into the water distribution system. It is believed that the lack of adequate sanitation also contributes to the contamination of water globally. This study therefore, assesses drinking water contamination from the source to the consumer by identifying the point vulnerable to contamination from the source to the consumer in the study area .To identify the point vulnerable to contamination, water was sampled monthly from boreholes, water treatment plant, water distribution system (WDS), service reservoirs and consumer taps from all the twenty (20) villages of Palapye region. Sampled water was then taken to the laboratory for testing and analysis of microbiological and chemical parameters. Water quality analysis were then compared with Botswana drinking water quality standards (BOS32:2009) to see if they comply. Major sources of water contamination identified during site visits were the livestock which were found drinking stagnant water from leaking pipes in 90 percent of the villages. Soils structure around the area was negatively affected because of livestock movement even vegetation in the area. In conclusion microbiological parameters of water in the study area do not comply with drinking water standards, some microbiological parameters in water indicated that livestock do not only affect land degradation but also the quality of water. Chlorine has been applied to water over some years but it is not effective enough thus preventative measures have to be developed, to prevent contaminants from reaching water. Remember: Prevention is better than cure.

Keywords: land degradation, leaking systems, livestock, water contamination

Procedia PDF Downloads 338
9443 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 378
9442 Synthesis of Iron Oxide Doped Zeolite: An Antimicrobial Nanomaterial for Drinking Water Purification Applications

Authors: Muhammad Zeeshan, Rabia Nazir, Lubna Tahir

Abstract:

Low cost filter based on iron doped zeolite (Fe-Z) and pottery clay was developed for an effective and efficient treatment of the drinking water contaminated with microbes. Fe-Z was characterized using powder XRD, SEM and EDX and shown to have average particle size of 49 nm with spongy appearance. The simulated samples of water self-contaminated with six microbes (S. typhi, B. subtilus, E. coli, S. aures, K. pneumoniae, and P. aeruginosa) after treatment with Fe-Z indicated effective removal of all the microbes in less than 30 min. Equally good results were obtained when actual drinking water samples, totally unfit for human consumption, were treated with Fe-Z.

Keywords: iron doped zeolite, biological and chemical treatment, drinking water

Procedia PDF Downloads 424
9441 Ancient Iran Water Technologies

Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand

Abstract:

The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.

Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran

Procedia PDF Downloads 91
9440 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks

Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal

Abstract:

Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.

Keywords: GIS, smart water, sustainability, urban water management

Procedia PDF Downloads 188
9439 Potato Production under Brakish Water and Compost Use

Authors: Samih Abubaker, Amjad Abuserhan, Ghandi Anfoka

Abstract:

Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation.

Keywords: brackish water, compost, potato, salt accumulation

Procedia PDF Downloads 294