Search results for: nation building
4242 Building Information Modelling: A Solution to the Limitations of Prefabricated Construction
Authors: Lucas Peries, Rolla Monib
Abstract:
The construction industry plays a vital role in the global economy, contributing billions of dollars annually. However, the industry has been struggling with persistently low productivity levels for years, unlike other sectors that have shown significant improvements. Modular and prefabricated construction methods have been identified as potential solutions to boost productivity in the construction industry. These methods offer time advantages over traditional construction methods. Despite their potential benefits, modular and prefabricated construction face hindrances and limitations that are not present in traditional building systems. Building information modelling (BIM) has the potential to address some of these hindrances, but barriers are preventing its widespread adoption in the construction industry. This research aims to enhance understanding of the shortcomings of modular and prefabricated building systems and develop BIM-based solutions to alleviate or eliminate these hindrances. The research objectives include identifying and analysing key issues hindering the use of modular and prefabricated building systems, investigating the current state of BIM adoption in the construction industry and factors affecting its successful implementation, proposing BIM-based solutions to address the issues associated with modular and prefabricated building systems, and assessing the effectiveness of the developed solutions in removing barriers to their use. The research methodology involves conducting a critical literature review to identify the key issues and challenges in modular and prefabricated construction and BIM adoption. Additionally, an online questionnaire will be used to collect primary data from construction industry professionals, allowing for feedback and evaluation of the proposed BIM-based solutions. The data collected will be analysed to evaluate the effectiveness of the solutions and their potential impact on the adoption of modular and prefabricated building systems. The main findings of the research indicate that the identified issues from the literature review align with the opinions of industry professionals, and the proposed BIM-based solutions are considered effective in addressing the challenges associated with modular and prefabricated construction. However, the research has limitations, such as a small sample size and the need to assess the feasibility of implementing the proposed solutions. In conclusion, this research contributes to enhancing the understanding of modular and prefabricated building systems' limitations and proposes BIM-based solutions to overcome these limitations. The findings are valuable to construction industry professionals and BIM software developers, providing insights into the challenges and potential solutions for implementing modular and prefabricated construction systems in future projects. Further research should focus on addressing the limitations and assessing the feasibility of implementing the proposed solutions from technical and legal perspectives.Keywords: building information modelling, modularisation, prefabrication, technology
Procedia PDF Downloads 1014241 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere
Authors: Yulia A. Kononova, Znang X. Ning
Abstract:
Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house
Procedia PDF Downloads 2654240 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling
Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian
Abstract:
Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior
Procedia PDF Downloads 4144239 Comparison of Steel and Composite Analysis of a Multi-Storey Building
Authors: Çiğdem Avcı Karataş
Abstract:
Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.Keywords: composite analysis, earthquake, steel, multi-storey building
Procedia PDF Downloads 5724238 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation
Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone
Abstract:
This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit
Procedia PDF Downloads 2424237 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia
Authors: Ahmad Zamzam
Abstract:
With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy
Procedia PDF Downloads 1314236 Through-Bolt Moment Connection in HSS Column
Authors: Bardia Khafaf, Mehrdad Ghaffari, Amir Hussein Samakar
Abstract:
It is currently desirable to use Hollow Square Sections (HSS) in moment resistant structures in construction of building because they offer fewer restrictions for designing and more useful space while adhering to build design codes. This paper present a through bolt connection in HSS column. This connection meets building code standards that require the moment resistant connections to deflect and absorb energy resulting from gravity and seismic loads. Connection through bolts is installed and pretension to provide the connection strength needed to make a beam–column moment rigid zone. A rigid joint is typically used to resist lateral forces by holding columns and beams fixed in relation to one another. With bolted moment frames using HSS columns, a through–bolt connection could be used to secure the beam and end plate to the column. However, when multiple columns and beams are used to span a length of building, the use of through-bolts would necessities aligning multiple beams simultaneously to the columns. In the case of a linear span, the assembly process requires the holes of a first beam end plate to be aligned with through bolt holes in a column and aligning the holes of a second, opposing beam plate with the column through bolt, then inserting the through bolts in each hole for tightening with nuts and washers. In moment resistant building, a problem arises when assembling beams to columns where multiple beams and columns are required. Through bolt, moment connections are among the economical, practical and not difficult rigid steel connection for HSS column building. In this paper, the results of numerous analytical studies performed for moment structures with HSS columns with through bolt based on AISC standard codes are shown.Keywords: through bolt, moment resistant connection, HSS columns section, construction engineering
Procedia PDF Downloads 4764235 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper
Authors: A. Ouargui, N. Belouaggadia, M. Ezzine
Abstract:
In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.Keywords: building, composite material, insulation, thermal conductivity, paper residue
Procedia PDF Downloads 1314234 State of Conservation of the British Colonial Architectural Heritage of Karachi: Case Study of Damage Mapping of Empress Market Building
Authors: Tania Ali Soomro
Abstract:
In 1839, the British, after the annexation of the port city of Karachi, established a new urban centre consisting of various quarters and introduced new settlements there. These quarters were out of the boundaries of fortified native old area and now contain much of the oldest parts of the city and signify the colonial history of Karachi, in particular the Saddar Bazaar and the neighboring areas of Kharadar and Mithadar. These quarters bestow a mix of functional typology built in a hybrid form of construction - an adaptation of the western architectural attributes to regional requirements and characteristics. This approach is referred to as the Anglo Vernacular, Colonial or the Domestic Gothic architectural form. This research paper investigates the historical and architectural value of one such property: the Empress Market designed by then Municipal Architect, Ar. James Strachan in 1889 as a commemorative monument for the jubilee of Her Majesty the Queen Victoria; Empress of British India, at that time. This paper presents information on the present conservation status of the market building and highlights its role as a catalyst to the community interconnection. This building has survived to present day and functioned well, despite undergoing numerous transformations. A detailed analysis of the bio-degradation (Natural-Chemical dissolution of material) and the bio-deterioration (Manmade-Negative state change of the material) of the building, based on the examination of the prevailing causes of these bio-alterations is carried out, and is presented in form of a damage atlas containing both the categories of bio-alteration/ changes occurred to the building over the time. The research methodology followed in this paper starts with the available archival analysis, physical observation, photographic documentation, the statistics review and the interviews with the direct and indirect stakeholders. The results and findings of this research portray that these bio-alterations and changes are the essential part of the life cycle of Empress Market building which illustrate the historic development of the premise and therefore ought to be given due importance (depending upon their condition) while developing the conservation plan for the building.Keywords: British colonial architecture, bio-alteration, bio-degradation, bio-deterioration, domestic gothic architectural form
Procedia PDF Downloads 1514233 A Case Study of Alkali-Silica Reaction Induced Consistent Damage and Strength Degradation Evaluation in a Textile Mill Building Due to Slow-Reactive Aggregates
Authors: Ahsan R. Khokhar, Fizza Hassan
Abstract:
Alkali-Silica Reaction (ASR) has been recognized as a potential cause of concrete degradation in the world since the 1940s. In Pakistan, mega hydropower structures like dams, weirs constructed from aggregates extracted from a local riverbed exhibited different levels of alkali-silica reactivity over an extended service period. The concrete expansion potential due to such aggregates has been categorized as slow-reactive. Apart from hydropower structures, ASR existence has been identified in the concrete structural elements of a Textile Mill building which used aggregates extracted from the nearby riverbed. The original structure of the Textile Mill was erected in the 80s with the addition of a textile ‘sizing and wrapping’ hall constructed in the 90s. In the years to follow, intensive spalling was observed in the structural members of the subject hall; enough to threat to the overall stability of the building. Limitations such as incomplete building data posed hurdles during the detailed structural investigation. The paper lists observations made while assessing the extent of damage and its effect on the building hall structure. Core testing and Petrographic tests were carried out as per the ASTM standards for strength degradation analysis followed by the identifying its root cause. Results confirmed significant structural strength reduction because of ASR which necessitated the formulation of an immediate re-strengthening solution. The paper also discusses the possible tracks of rehabilitative measures which are being adapted to stabilize the structure and seize further concrete expansion.Keywords: Alkali-Silica Reaction (ASR), concrete strength degradation, damage assessment, damage evaluation
Procedia PDF Downloads 1324232 Smart Cities’ Sustainable Modular Houses Architecture
Authors: Khaled Elbehiery, Hussam Elbehiery
Abstract:
Smart cities are a framework of technologies along with sustainable infrastructure to provide their citizens an improved quality of life, safer environment, affordability, and more, which in turn helps with the society's economic growth. The proposed research will focus on the primary building block of the smart city; the infrastructure of the house itself. The traditional method of building houses has been, for a long time, nothing but a costly manufacturing process, and consequently, buying a house becomes not an option for everyone anymore. The smart cities' Modular Houses are not using traditional building construction materials; the design reduces the common lengthy construction times and associated high costs. The Modular Houses are technological homes, low-cost and customizable based on a family's requirements. In addition, the Modular Houses are environmentally friendly and healthy enough to assist with the pandemic situation.Keywords: smart cities, modular houses, single-unit property, multi-unit property, mobility features, chain-supply, livable environment, carbon footprint
Procedia PDF Downloads 1314231 Design and Thermal Analysis of a Concrete House in Libya Using BEopt
Authors: Gamal Alamri, Tariq Iqbal
Abstract:
This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.Keywords: concrete house design, thermal analysis, hot climate, BEopt software
Procedia PDF Downloads 4154230 Theatre, Tea-Time and Harpsichords: Women’s Entertainment and Sensibility in Eighteenth-Century England
Authors: Ayako Otomo
Abstract:
This paper will examines the rise of a feminine orientation regarding arts and culture associated with the notion of Sensibility during the early part of the English long eighteenth century. As is widely known, the prosperous modernisation that occurred in this period was a significant factor in the nation taking a leading role in the emergent Enlightenment via the social, political and scientific advancement of Britain. As a result, this prompted the relaxing of the strictures of class and gender hierarchies in line with the new consumerism and cosmopolitanism of the nation. Accordingly, there was a significant increase of female involvement in artistic and cultural consumption. This can be understood in terms of the notion of Sensibility, associating it further with the fields of physiology, psychology and aesthetics, indebted in their turn to British Empiricism. This paper first traces the background of how women were recognisably involved in artistic and cultural circulation within an historical perspective that is articulated by the notion of Sensibility. Then, the discussion turns to the confluence of the issues of female association, creativity and the feminisation of the aesthetic of the arts and culture employing an interdisciplinary perspective. Arts and culture can also classified by public and private social spheres and gender according to Jürgen Habermas. The relationship between women and the theatre became a public issue. Music-making such as playing the harpsichord, reading, and conversation within the ritualistic teatime space dominated many of the artistic and cultural activities within the domestic private sphere.Keywords: theatre, arts, sensibility, 18th century England
Procedia PDF Downloads 3664229 Analyzing the Shearing-Layer Concept Applied to Urban Green System
Authors: S. Pushkar, O. Verbitsky
Abstract:
Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture
Procedia PDF Downloads 5824228 A Review of Protocols and Guidelines Addressing the Exposure of Occupants to Electromagnetic Field (EMF) Radiation in Buildings
Authors: Shabnam Monadizadeh, Charles Kibert, Jiaxuan Li, Janghoon Woo, Ashish Asutosh, Samira Roostaei, Maryam Kouhirostami
Abstract:
A significant share of the technology that has emerged over the past several decades produces electromagnetic field (EMF) radiation. Communications devices, household appliances, industrial equipment, and medical devices all produce EMF radiation with a variety of frequencies, strengths, and ranges. Some EMF radiation, such as Extremely Low Frequency (ELF), Radio Frequency (RF), and the ionizing range have been shown to have harmful effects on human health. Depending on the frequency and strength of the radiation, EMF radiation can have health effects at the cellular level as well as at brain, nervous, and cardiovascular levels. Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMF radiation. By introducing a more comprehensive field of EMF radiation study and practice, architects and designers can design for a safer electromagnetic (EM) indoor environment, and, as building and construction specialists, will be able to monitor and reduce EM radiation. This paper identifies the nature of EMF radiation in the built environment, the various EMF radiation sources, and its human health effects. It addresses European and US regulations for EMF radiation in buildings and provides a preliminary action plan. The challenges of developing measurement protocols for the various EMF radiation frequency ranges and determining the effects of EMF radiation on building occupants are discussed. This paper argues that a mature method for measuring EMF radiation in building environments and linking these measurements to human health impacts occupant health should be developed to provide adequate safeguards for human occupants of buildings for future research.Keywords: biological affection, electromagnetic field, building regulation, human health, healthy building, clean construction
Procedia PDF Downloads 1884227 Effect of Blast Loads on the Seismically Designed Reinforced Concrete Buildings
Authors: Jhuma Debnath, Hrishikesh Sharma
Abstract:
The work done here in this paper is dedicated to studying the effect of high blast explosives over the seismically designed buildings. Buildings are seismically designed in SAP 2000 software to simulate seismic designs of buildings using response spectrum method. Later these buildings have been studied applying blast loads with the same amount of the blast explosives. This involved varying the standoff distances of the buildings from the blast explosion. The study found out that, for a seismically designed building, the minimum standoff distance is to be at least 120m from the place of explosion for an average blast explosive weight of 20kg TNT. This has shown that the building does not fail due to this huge explosive weight of TNT but resists immediate collapse of the building. The results also show that the adverse effect of the column failure due to blasting is reduced to 73.75% from 22.5% due to the increase of the standoff distance from the blast loads. The maximum affected locations due to the blast loads are also detected in this study.Keywords: blast loads, seismically designed buildings, standoff distance, reinforced concrete buildings
Procedia PDF Downloads 2394226 Optimum Design of Dual-Purpose Outriggers in Tall Buildings
Authors: Jiwon Park, Jihae Hur, Kukjae Kim, Hansoo Kim
Abstract:
In this study, outriggers, which are horizontal structures connecting a building core to distant columns to increase the lateral stiffness of a tall building, are used to reduce differential axial shortening in a tall building. Therefore, the outriggers in tall buildings are used to serve the dual purposes of reducing the lateral displacement and reducing the differential axial shortening. Since the location of the outrigger greatly affects the effectiveness of the outrigger in terms of the lateral displacement at the top of the tall building and the maximum differential axial shortening, the optimum locations of the dual-purpose outriggers can be determined by an optimization method. Because the floors where the outriggers are installed are given as integer numbers, the conventional gradient-based optimization methods cannot be directly used. In this study, a piecewise quadratic interpolation method is used to resolve the integrality requirement posed by the optimum locations of the dual-purpose outriggers. The optimal solutions for the dual-purpose outriggers are searched by linear scalarization which is a popular method for multi-objective optimization problems. It was found that increasing the number of outriggers reduced the maximum lateral displacement and the maximum differential axial shortening. It was also noted that the optimum locations for reducing the lateral displacement and reducing the differential axial shortening were different. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4010043) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.Keywords: concrete structure, optimization, outrigger, tall building
Procedia PDF Downloads 1804225 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake
Authors: Luthfi Assholam Solamat
Abstract:
Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.Keywords: soil failure pattern, earthquake, under structure, sand soil testing method
Procedia PDF Downloads 3654224 Discursive Construction of Strike in the Media Coverage of Academic Staff Union of Universities vs Federal Government of Nigeria Industrial Conflict of 2013
Authors: Samuel Alaba Akinwotu
Abstract:
Over the years, Nigeria’s educational system has greatly suffered from the menace of industrial conflict. The smooth running of the nation’s public educational institutions has been hampered by incessant strikes embarked upon by workers of these institutions. Even though industrial conflicts in Nigeria have enjoyed wide reportage in the media, there has been a dearth of critical examination of the language use that index the conflict’s discourse in the media. This study which is driven by a combination of Critical Discourse Analysis (CDA) and Conceptual Metaphor (CM) examines the discursive and ideological features of language indexing the industrial conflict between the Academic Staff Union of Universities (ASUU) and the Federal Government of Nigeria (FGN) in 2013. It aims to identify and assess the conceptual and cognitive motivations of the stances expressed by the parties and the public and the role of the media in the management and resolution of the conflict. For data, media reports and readers’ comments were purposively sampled from six print and online news sources (The Punch, This Day, Vanguard, The Nation, Osun Defender and AITonline) published between July and December 2013. The study provides further insight into industrial conflict and proves to be useful for the management and resolution of industrial conflicts especially in our public educational institutions.Keywords: industrial conflict, critical discourse analysis, conceptual metaphor, federal government of Nigeria, academic staff union of universities
Procedia PDF Downloads 1444223 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)
Authors: Lokesh Harshe
Abstract:
The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED
Procedia PDF Downloads 584222 Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard
Authors: Byl Farney Cunha Junior
Abstract:
In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response.Keywords: finite element method, synthetic wind, tall buildings, shear building
Procedia PDF Downloads 2754221 The Environmental Damages Related to Urban Sites
Authors: Kherbache Radhwane
Abstract:
We currently live in the world pressed by technological developments necessary for the construction, where the concept of sustainable development is truly rooted in recent years. Construction or demolitions of buildings necessarily generate environmental pollution, both inside and outside the site. Depending on the size and nature of work and the context surrounding these problems can be more or less important as is the case here in Algeria. They may affect the smooth running of the site. Moreover, there are regulations exist or are under development and should be taken into account by the various players in the act of building. This is, for example, the case of new obligations in terms of sorting and recycling of construction waste. Given this situation, it appears increasingly necessary to integrate the building sites in an effort to better respect the environment and its regulation. Several operations were performed according to this principle. The success of a project is that respects its environment through the involvement of each actor of the operation of the site with a low nuisance. As such, the client assisted by his driver and its operating contractor and the company plays a central role as an initiator of the process. It must ensure the establishment of appropriate means of organizational plans and contract.Keywords: evolution, sustainable development, construction, demolition, building, nuisance, environmental, tailings, construction, regulations
Procedia PDF Downloads 2674220 Damages Inflicted on Steel Structures and Metal Buildings due to Insufficient Supervision and Monitoring and Non-Observance of the Rules of the Regulations
Authors: Ehsan Sadie
Abstract:
Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provides appropriate and possible solutions to improve the construction.Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building
Procedia PDF Downloads 1364219 Hindi Cinema in a Post-Colonial India: A Study on Guru Dutt's Self-Expression in 'Pyasa'
Authors: Mrunmayee Das
Abstract:
This study aims to explore the film 'Pyasa' directed by actor-director Guru Dutt, filmed during the 1950’s golden age of Hindi cinema. 'Pyasa' was filmed after a decade of India being a new nation and narrates the world-view of a poet dressed in western ideals, tasting modernity, uprooted from his familial and social moorings causing friction of being between survival and self- expression. The research is based on literature review to study the attitudes, particularly the post-colonial, informing the film. In terms of the structure, the relational study of the film and the historical background of that time came first. Further explorations deal with the use of image making, dialogue, and poetry in the form of songs facilitating the central theme of the human plight of poverty, not of material but of thought. The literature review establishes Dutt’s style of expressing melodic melodrama through a dance between light and shadow majorly in the form of song sequences signifying the greys of the society. It was found in this research that melodrama is created by the changing contrasts and use of close-ups. The song sequences convey the tensions of being a contemporary liberal educated youth and having to deal with the societal-ills of this world, which highlights the theme of compulsion towards self-destruction. It is concluded that Dutt’s 'Pyasa' is a autobiographical commentary on the state of a nation doing away with a borrowed identity and refashioning its own.Keywords: cinema, Guru Dutt, post-colonial India, self-expression
Procedia PDF Downloads 1204218 A Simple Approach to Establish Urban Energy Consumption Map Using the Combination of LiDAR and Thermal Image
Authors: Yu-Cheng Chen, Tzu-Ping Lin, Feng-Yi Lin, Chih-Yu Chen
Abstract:
Due to the urban heat island effect caused by highly development of city, the heat stress increased in recent year rapidly. Resulting in a sharp raise of the energy used in urban area. The heat stress during summer time exacerbated the usage of air conditioning and electric equipment, which caused more energy consumption and anthropogenic heat. Therefore, an accurate and simple method to measure energy used in urban area can be helpful for the architectures and urban planners to develop better energy efficiency goals. This research applies the combination of airborne LiDAR data and thermal imager to provide an innovate method to estimate energy consumption. Owing to the high resolution of remote sensing data, the accurate current volume and total floor area and the surface temperature of building derived from LiDAR and thermal imager can be herein obtained to predict energy used. In the estimate process, the LiDAR data will be divided into four type of land cover which including building, road, vegetation, and other obstacles. In this study, the points belong to building were selected to overlay with the land use information; therefore, the energy consumption can be estimated precisely with the real value of total floor area and energy use index for different use of building. After validating with the real energy used data from the government, the result shows the higher building in high development area like commercial district will present in higher energy consumption, caused by the large quantity of total floor area and more anthropogenic heat. Furthermore, because of the surface temperature can be warm up by electric equipment used, this study also applies the thermal image of building to find the hot spots of energy used and make the estimation method more complete.Keywords: urban heat island, urban planning, LiDAR, thermal imager, energy consumption
Procedia PDF Downloads 2414217 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland
Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben
Abstract:
Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning
Procedia PDF Downloads 1764216 Methods Used to Achieve Airtightness of 0.07 Ach@50Pa for an Industrial Building
Authors: G. Wimmers
Abstract:
The University of Northern British Columbia needed a new laboratory building for the Master of Engineering in Integrated Wood Design Program and its new Civil Engineering Program. Since the University is committed to reducing its environmental footprint and because the Master of Engineering Program is actively involved in research of energy efficient buildings, the decision was made to request the energy efficiency of the Passive House Standard in the Request for Proposals. The building is located in Prince George in Northern British Columbia, a city located at the northern edge of climate zone 6 with an average low between -8 and -10.5 in the winter months. The footprint of the building is 30m x 30m with a height of about 10m. The building consists of a large open space for the shop and laboratory with a small portion of the floorplan being two floors, allowing for a mezzanine level with a few offices as well as mechanical and storage rooms. The total net floor area is 1042m² and the building’s gross volume 9686m³. One key requirement of the Passive House Standard is the airtight envelope with an airtightness of < 0.6 ach@50Pa. In the past, we have seen that this requirement can be challenging to reach for industrial buildings. When testing for air tightness, it is important to test in both directions, pressurization, and depressurization, since the airflow through all leakages of the building will, in reality, happen simultaneously in both directions. A specific detail or situation such as overlapping but not sealed membranes might be airtight in one direction, due to the valve effect, but are opening up when tested in the opposite direction. In this specific project, the advantage was the overall very compact envelope and the good volume to envelope area ratio. The building had to be very airtight and the details for the windows and doors installation as well as all transitions from walls to roof and floor, the connections of the prefabricated wall panels and all penetrations had to be carefully developed to allow for maximum airtightness. The biggest challenges were the specific components of this industrial building, the large bay door for semi-trucks and the dust extraction system for the wood processing machinery. The testing was carried out in accordance with EN 132829 (method A) as specified in the International Passive House Standard and the volume calculation was also following the Passive House guideline resulting in a net volume of 7383m3, excluding all walls, floors and suspended ceiling volumes. This paper will explore the details and strategies used to achieve an airtightness of 0.07 ach@50Pa, to the best of our knowledge the lowest value achieved in North America so far following the test protocol of the International Passive House Standard and discuss the crucial steps throughout the project phases and the most challenging details.Keywords: air changes, airtightness, envelope design, industrial building, passive house
Procedia PDF Downloads 1494215 Revitalization of the Chinese Residential at Lasem, Indonesia
Authors: Nurtati Soewarno, Dian Duhita
Abstract:
The existence of civilization from the past is recognized by the left objects such as monuments, buildings or even a town. The relics were designed and made well, using the good quality material so it could persist a long period of time. At this moment, those relics are cultural heritage that must be preserved and the authenticity maintained. Indonesia, a country consist of various tribes with many cultural heritages, one of them is the city of Lasem. Lasem city lies in the northern part of Central Java since the Majapahit kingdom era (13th century) poses as a busy harbor city and a trading center. Lasem is one of the residences of Chinese immigrants in Java, seen by the domination of Chinese architectural building styles. The residential was built since the 15th century and the building has the courtyard which is different from other China’s building in another part of Java. This city loses ground since the trade activity experience difficulties during the Japanese colonial era and continues after the Indonesian independence time. Many Chinese people left Lasem city and let the buildings empty not maintained. This paper will present the result of observation to Chinese architectural style buildings in Lasem city which still hold out until this moment. Using typo morphology method, the case study is chosen based on the transformation type. The occurring transformation is parallel with adaptive reuse concept as an effort to revitalize the existence of the buildings. With this concept, it is expected that the buildings could be re functioned and the glory of the foretime Lasem city could be experienced again. Intervention from the local government is expected, issuing regulations, hoping the new building functions won’t ruin the cultural heritage but instead beautifies it.Keywords: adaptive re-use, brown field area, building transformation, Lasem city
Procedia PDF Downloads 3674214 Eco-Efficient Self-Compacting Concrete for Sustainable Building
Authors: Valeria Corinaldesi
Abstract:
In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building
Procedia PDF Downloads 914213 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape
Authors: Adedayo Adeleke, Dineo Pule
Abstract:
The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.Keywords: roof potential, rainwater harvesting, urban plan, roof extraction
Procedia PDF Downloads 122