Search results for: moringa leaf
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 721

Search results for: moringa leaf

151 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)

Authors: Farhad Farahvash, Parya Mobaseri

Abstract:

Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.

Keywords: maize, competition, weed, biomass

Procedia PDF Downloads 338
150 Effects of Vitamin C and Spondias mombin Supplementation on Hematology, Growth, Egg Production Traits, and Eggshell Quality in Japanese Quails (Coturnix coturnix japonica) in a Hot-Humid Tropics

Authors: B. O. Oyebanji, I. O. Dudusola, C. T. Ademola, S. A. Olaniyan

Abstract:

A 56 day study was conducted to evaluate the effect of dietary inclusion of Spondias mombin on hematological, growth, egg parameters and egg shell quality of Japanese quails, Cortunix cortunix japonica. One hundred birds were used for this study, and they were allocated randomly into 5 groups and replicated twice. Group 1 animals served as control without inclusion of extract, groups 2, 3, and 4 had 200 mg/kg, 400 mg/kg and 800 mg/kg inclusion of SM, group 5 had 600 mg/kg of vitamin C respectively. The birds were weighed weekly to determine weight change, the blood parameters analyzed at the completion of the experiment were PCV, Hb, RBC WBC, differential WBC count, MCH, MCH, and MCV were afterwards calculated from these parameters. 5 eggs were collected from each group and egg weight, eggshell weight, eggshell diameter, yolk weight, albumen weight, yolk diameter, yolk height, albumen percentage, yolk percentage and shell percentage were determined. There was no significant difference among the group for the hematological parameters measured and calculated. The egg weight and albumen weight of quails on 800 mg/kg was highest of all the groups, all other egg parameters measured showed no significant difference. The birds supplemented with Vitamin C had the highest weight gain (40.8±2.5 g) and the lowest feed conversion ratio (2.25). There was no mortality recorded in all the groups except in the SM800 group with 10% mortality. It can be concluded from this experiment that Vitamin C supplementation has positive effect on quail production in humid tropics and the inclusion of Spondias mombin leaf extract has a dose-dependent toxicity in quails.

Keywords: hematology, quails, Spondias mombin, vitamin C

Procedia PDF Downloads 331
149 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic

Procedia PDF Downloads 394
148 Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics

Authors: Mardiati Zain, W. S. N. Rusmana, Erpomen, Malik Makmur, Ezi Masdia Putri

Abstract:

Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production.

Keywords: digestibility, Leucaena leucocephala, complete feed, rice straw ammoniated

Procedia PDF Downloads 129
147 The Methanotrophic Activity in a Landfill Bio-Cover through a Subzero Winter

Authors: Parvin Berenjkar, Qiuyan Yuan, Richard Sparling, Stan Lozecznik

Abstract:

Landfills highly contribute to anthropological global warming through CH₄ emissions. Landfills are usually capped by a conventional soil cover to control the migration of gases. Methane is consumed by CH₄-oxidizing microorganisms known as methanotrophs that naturally exist in the landfill soil cover. The growth of methanotrophs can be optimized in a bio-cover that typically consists of a gas distribution layer (GDL) to homogenize landfill gas fluxes and an overlying oxidation layer composed of suitable materials that support methanotrophic populations. Materials such as mature yard waste composts can provide an inexpensive and favourable porous support for the growth and activity of methanotrophs. In areas with seasonal cold climates, it is valuable to know if methanotrophs in a bio-cover can survive in winter until the next spring, and how deep they are active in the bio-cover to mitigate CH₄. In this study, a pilot bio-cover was constructed in a closed landfill cell in Winnipeg that has a very cold climate in Canada. The bio-cover has a surface area of 2.5 m x 3.5 m and 1.5 m of depth, filled with 50 cm of gravel as a GDL and 70 cm of biosolids compost amended with yard and leaf waste compost. The observed in situ potential of methanotrophs for CH₄ oxidation was investigated at a specific period of time from December 2016 to April 2017 as well as November 2017 to April 2018, when the transition to surface frost and thawing happens in the bio-cover. Compost samples taken from different depths of the bio-cover were incubated in the laboratory under standardized conditions; an optimal air: methane atmosphere, at 22ºC, but at in situ moisture content. Results showed that the methanotrophs were alive oxidizing methane without a lag, indicating that there was the potential for methanotrophic activity at some depths of the bio-cover.

Keywords: bio-cover, global warming, landfill, methanotrophic activity

Procedia PDF Downloads 103
146 Innovation of a New Plant Tissue Culture Medium for Large Scale Plantlet Production in Potato (Solanum tuberosum L.)

Authors: Ekramul Hoque, Zinat Ara Eakut Zarin, Ershad Ali

Abstract:

The growth and development of explants is governed by the effect of nutrient medium. Ammonium nitrate (NH4NO3) as a major salt of stock solution-1 for the preparation of tissue culture medium. But, it has several demerits on human civilization. It is use for the preparation of bomb and other destructive activities. Hence, it is totally ban in our country. A new chemical was identified as a substitute of ammonium nitrate. The concentrations of the other ingredients of major and minor salt were modified from the MS medium. The formulation of new medium is totally different from the MS nutrient composition. The most widely use MS medium composition was used as first check treatment and MS powder (Duchefa Biocheme, The Netherland) was used as second check treatment. The experiments were carried out at the Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. Two potato varieties viz. Diamant and Asterix were used as experimental materials. The regeneration potentiality of potato onto new medium was best as compare with the two check treatments. The traits -node number, leaf number, shoot length, root lengths were highest in new medium. The plantlets were healthy, robust and strong as compare to plantlets regenerated from check treatments. Three subsequent sub-cultures were made in the new medium to observe the growth pattern of plantlet. It was also showed the best performance in all the parameter under studied. The regenerated plantlet produced good quality minituber under field condition. Hence, it is concluded that, a new plant tissue culture medium as discovered from the Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh under the leadership of Professor Dr. Md. Ekramul Hoque.

Keywords: new medium, potato, regeneration, ammonium nitrate

Procedia PDF Downloads 59
145 Quantitative Trait Loci Analysis in Multiple Sorghum Mapping Populations Facilitates the Dissection of Genetic Control of Drought Tolerance Related Traits in Sorghum [Sorghum bicolor (Moench)]

Authors: Techale B., Hongxu Dong, Mihrete Getinet, Aregash Gabizew, Andrew H. Paterson, Kassahun Bantte

Abstract:

The genetic architecture of drought tolerance is expected to involve multiple loci that are unlikely to all segregate for alternative alleles in a single bi-parental population. Therefore, the identification of quantitative trait loci (QTL) that are expressed in diverse genetic backgrounds of multiple bi-parental populations provides evidence about both background-specific and common genetic variants. The purpose of this study was to map QTL related to drought tolerance using three connected mapping populations of different genetic backgrounds to gain insight into the genomic landscape of this important trait in elite Ethiopian germplasm. The three bi-parental populations, each with 207 F₂:₃ lines, were evaluated using an alpha lattice design with two replications under two moisture stress environments. Drought tolerance related traits were analyzed separately for each population using composite interval mapping, finding a total of 105 QTLs. All the QTLs identified from individual populations were projected on a combined consensus map, comprising a total of 25 meta QTLs for seven traits. The consensus map allowed us to deduce locations of a larger number of markers than possible in any individual map, providing a reference for genetic studies in different genetic backgrounds. The mQTL identified in this study could be used for marker-assisted breeding programs in sorghum after validation. Only one trait, reduced leaf senescence, showed a striking bias of allele distribution, indicating substantial standing variation among present varieties that might be employed in improving drought tolerance of Ethiopian and other sorghums.

Keywords: Drought tolerance , Mapping populations, Meta QTL, QTL mapping, Sorghum

Procedia PDF Downloads 149
144 Anti-Inflammatory and Analgesic Effects of Methanol Extract of Rhizophora racemosa Leaf in Albino Rats

Authors: Angalabiri-Owei E. Bekekeme, Brambaifa Nelson

Abstract:

In view of the peculiar environment of the Niger Delta, access to modern health care is limited, hence the inhabitants especially those in the swampy areas resorts to sourcing for alternatives cure for their ailments using plants commonly found in this area without scientific evaluation. Rhizophora racemosa, G. F. Meyer (Rhizophoraceae) is the most abundant mangrove plant in the Niger Delta Area of Nigeria. The plant has been observed to be used for relief of a toothache and dysmenorrhoea among some Ijaw communities in the region. This work has revealed the likely potential of the plant in drug discovery and development. The crude methanol extract at doses of 300 mg/kg and 600 mg/kg (intraperitoneal) were tested for analgesic effect using fresh egg albumin induced inflammatory pain and Randall–Sellito method to assess the pain threshold. The anti-inflammatory effect was also evaluated with the extract at doses of 300 mg/kg and 600 mg/kg (intraperitoneal) using acute inflammatory model; fresh egg albumin induced paw oedema and assessed using Plethysmometer in rats. The methanol extracts 300 mg/kg and 600 mg/kg exhibited a significant (P < 0.001) and dose-dependent analgesic activity compared with the negative control and a standard drug diclofenac using ANOVA with Least Significant Difference post hoc test as evidenced by increased pain threshold. Also, the extract significantly (P < 0.001) reduced the rat paw oedema induced by the sub plantar injection of fresh egg albumin when compared with the negative control and a standard diclofenac using above statistical methods. This study revealed that the plant possesses analgesic and anti-inflammatory activities hence provide scientific bases for use as medicine.

Keywords: analgesic, anti-inflammatory, plethysmometer, Rhizophora racemosa

Procedia PDF Downloads 324
143 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 125
142 Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori

Authors: Muhammad Dildar Gogi, Muhammad Arshad, Muhammad Ahsan Khan, M. Sufian, Ahmad Nawaz, Mubashir Iqbal, Muhammad Junaid Nisar, Waleed Afzal Naveed

Abstract:

Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality.

Keywords: heavy-metals, larval-instars, lethal-concentration, mortality, silkworm

Procedia PDF Downloads 189
141 Endophytic Fungi Recovered from Lycium arabicum as an Eco-Friendly Alternative for Fusarium Crown and Root Rot Disease Control and Tomato Growth Enhancement

Authors: Ahlem Nefzi, Rania Aydi Ben Abdallah, Hayfa Jabnoun-Khiareddine, Ammar Nawaim, Rabiaa Haouala, Mejda Daami-Remadi

Abstract:

Seven endophytic fungi were isolated from the wild Solanaceous species Lycium arabicum growing in the Tunisian Centre-East and were assessed for their ability to suppress Fusarium Crown and Root Rot disease caused by Fusarium oxysporum f. sp. radicis lycopersici (FORL) and to enhance plant growth. Fungal isolates were shown able to colonize tomato cv. Rio Grande roots, crowns, and stems. A significant promotion in all studied growth parameters (root length, shoot height, and roots and shoots fresh weight) was recorded in tomato plants treated with fungal conidial suspensions or their cell-free culture filtrates compared to FORL-inoculated or pathogen-free controls. I15 and I18 isolates were shown to be the most effective leading to 85.7-87.5 and 93.6-98.4% decrease in leaf and root damage index and the vascular discoloration extent, respectively, over FORL-inoculated and untreated control. These two bioactive and growth-promoting isolates (I15 and I18) were morphologically characterized and identified using rDNA sequencing gene as being Alternaria alternata (MF693801) and Fusarium fujikuroi (MF693802). These fungi significantly suppressed FORL mycelial growth and showed chitinolytic, proteolytic and amylase activities whereas only F. fujikuroi displayed a lipolytic activity. This study clearly demonstrated the potential use of fungi naturally associated with L. arabicum as biocontrol and bio-fertilizing agents.

Keywords: biocontrol, endophytic fungi, Fusarium oxysporum f. sp. radicis-lycopersici, tomato promotion, Lycium arabicum

Procedia PDF Downloads 144
140 Characterization of Novel Bi-Directional Promoter from Begomovirus: A Breakthrough in Plant Genomics

Authors: Zainul A. Khan, Malik Z. Abdin, Jawaid A. Khan

Abstract:

Begomoviruses belonging to the family Geminiviridae, have single-stranded circular DNA genomes that are monopartite or bipartite. The large intergenic region (LIR) of the monopartite and common region (CR) of bipartite begomoviruses possess promoter activity in their genomes. In this study, we have characterized novel bidirectional promoters from Cotton leaf curl Burewala virus (CLCuBuV) genome using high-throughput software and analyzed with PlantCARE, PLACE, Cister and PlantPAN databases. The promoters (Rep and CP promoters) were assayed both in stable and transient expression systems in tobacco as well as cotton plants. Rep and CP-based promoters from the LIR sequence of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were tagged with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes to check the efficacy of the promoters. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed higher GUS expression driven by CLCuBuV Rep (complimentary sense) promoter as compared to conventional CaMV 35S promoter and CLCuBuV CP (virion sense) promoter, respectively. GUS activity in individual plant cells driven by CLCuBuV Rep, CLCuBuV CP, and CaMV 35S promoter were quantified through fluorometric GUS assay and reverse transcription quantitative real-time PCR (RT-qPCR). The expression level of GUS tagged with CLCuBuV Rep promoter in the transformed tobacco plants was obtained 2 to 4 fold higher than CaMV 35S promoter. When CLCuBuV CP promoter was used, lower expression level was monitored than that by CaMV 35S promoter. The expression of GFP-tagged with CLCuBuV promoters was also investigated through agroinfiltration. The CLCuBuV Rep promoters showed stronger consistent transient expression in the leaves of N. benthamiana, N. tabacum and Gossypium hirsutum plants when compared with CaMV 35S and CLCuBuV CP promoter.

Keywords: Begmovirus, bidirectional promoter, CaMV 35S promoter, GFP, GUS, qPCR

Procedia PDF Downloads 311
139 Effect Of Shading In Evaporatively Cooled Greenhouses In The Mediterranean Region

Authors: Nikolaos Katsoulas, Sofia Faliagka, Athanasios Sapounas

Abstract:

Greenhouse ventilation is an effective way to remove the extra heat from the greenhouse through air exchange between inside and outside when outside air temperature is lower. However, in the Mediterranean areas during summer, most of the day, the outside air temperature reaches values above 25 C; and natural ventilation can not remove the excess heat outside the greenhouse. Shade screens and whitewash are major existing measures used to reduce the greenhouse air temperature during summer by reducing the solar radiation entering the greenhouse. However, the greenhouse air temperature is reduced with a cost in radiation reduction. In addition, due to high air temperature values outside the greenhouse, generally, these systems are not sufficient for extracting the excess energy during sunny summer days and therefore, other cooling methods, such as forced ventilation combined with evaporative cooling, are needed. Evaporative cooling by means of pad and fan or fog systems is a common technique to reduce sensible heat load by increasing the latent heat fraction of dissipated energy. In most of the cases, the greenhouse growers, when all the above systems are available, apply both shading and evaporative cooling. If a movable screen is available, then the screen is usually activated when a certain radiation level is reached. It is not clear whether the shading screens should be used over the growth cycle or only during the most sensitive stages when the crops had a low leaf area and the canopy transpiration rate cannot significantly contribute to the greenhouse cooling. Furthermore, it is not clear which is the optimum radiation level that screen must be activated. This work aims to present the microclimate and cucumber crop physiological response and yield observed in two greenhouse compartments equipped with a pad and fan evaporative cooling system and a thermal/shading screen that is activated at different radiation levels: when the outside solar radiation reaches 700 or 900 W/m2. The greenhouse is located in Velestino, in Central Greece and the measurements are performed during the spring -summer period with the outside air temperature during summer reaching values up to 42C.

Keywords: microclimate, shading, screen, pad and fan, cooling

Procedia PDF Downloads 46
138 Evaluation of Chromium Fortified - Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties

Authors: Wisnu Adi Yulianto, Agus Slamet, Sri Luwihana, Septian Albar Dwi Suprayogi

Abstract:

Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g.

Keywords: bay leaves, chromium, cinnamon, pandan leaves, parboiled rice

Procedia PDF Downloads 425
137 The Gastroprotective Potential of Clematis Flammula Leaf Extracts

Authors: Dina Atmani-Kilani, Farah Yous, Djebbar Atmani

Abstract:

The etiology of peptic ulcer is closely related to stress, excessive consumption of nonsteroidal anti-inflammatory drugs, or ethanol. Clematis flammula (Ranunculaceae) is a medicinal plant widely used by rural populations to treat inflammatory disorders. This study was designed to assess the gastroprotective potential of C. flammula extracts. Gastric ulcer was induced by stress, indomethacin, HCl / ethanol, and absolute ethanol on NMRI-type mice. The antioxidant potency of the ethanolic extract of Clematis flammula (EECF) was evaluated on catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities. Glutathione (GSH) and malonaldehyde (MDA) levels were also quantified. The anti-inflammatory potential was evaluated through the effect of EECF on myeloperoxidase activity (MPO) and vascular permeability. Complementary tests concerning the quantification of mucus levels, gastric motility, inhibition of ATPase H+/K+activity, as well as a histopathological study were also undertaken to explore the mechanism of action of the EECF. The EECF exhibited a significant (p <0.001) and optimal (100 mg/kg) gastroprotective effect by elevating SOD, CAT, and GSH levels, thereby minimizing the production of MDA and lowering the activity of MPO and vascular permeability. EECF also increased the rate of mucus production, decreased gastric motility, and completely suppressed the H+/K+ ATPase activity. Histopathological study confirmed the effectiveness of the extract in the prevention of peptic ulcer. The results obtained in this study demonstrated the gastro-protective effect of EECF via acidic antioxidant, anti-inflammatory, cytoprotective and anti-secretory mechanisms, which may justify its use as a substitute in peptic ulcer treatment.

Keywords: clematis flammula, superoxide dismutase, myeloperoxidase, ATPase, pump

Procedia PDF Downloads 177
136 Empirical Measures to Enhance Germination Potential and Control Browning of Tissue Cultures of Andrographis paniculata

Authors: Nidhi Jindal, Ashok Chaudhury, Manisha Mangal

Abstract:

Andrographis paniculata, (Burm f.) Wallich ex. Nees (Family Acanthaceae) popularly known as King of Bitters, is an important medicinal herb. It has an astonishingly wide range of medicinal properties such as anti-inflammatory,antidiarrhoeal, antiviral, antimalarial, hepatoprotective, cardiovascular, anticancer, and immunostimulatory activities. It is widely cultivated in southern Asia. Though propagation of this herb generally occurs through seeds, it has many germination problems which intrigued scientists to work out on the alternative techniques for its mass production. The potential of tissue culture techniques as an alternative tool for AP multiplication was found to be promising. However, the high mortality rate of explants caused by phenolic browning of explants is one of the difficulties reported. Low multiplication rates were reported in the proliferation phase, as well as cultures decline characterized by leaf fall and loss of overall vigor. In view of above problems, a study was undertaken to overcome seed dormancy to improve germination potential and to investigate further on the possible means for successful proliferation of cultures via preventive approaches to overcome failures caused by phenolic browning. Experiments were conducted to improve germination potential and among all the chemical and mechanical trials, scarification of seeds with sand paper proved to be the best method to enhance the germination potential (82.44%) within 7 days. Similarly, several pretreatments and media combinations were tried to overcome browning of explants leading to the conclusion that addition of 0.1% citric acid and 0.2% of ascorbic acid in the media followed by rapid sub culturing of explants controlled browning and decline of explants by 67.45%.

Keywords: plant tissue culture, empirical measure, germination, tissue culture

Procedia PDF Downloads 394
135 Stress-Controlled Senescence and Development in Arabidopsis thaliana by Root Associated Factor (RAF), a NAC Transcription Regulator

Authors: Iman Kamranfar, Gang-Ping Xue, Salma Balazadeh, Bernd Mueller-Roeber

Abstract:

Adverse environmental conditions such as salinity stress, high temperature and drought limit plant growth and typically lead to precocious tissue degeneration and leaf senescence, a process by which nutrients from photosynthetic organs are recycled for the formation of flowers and seeds to secure reaching the next generation under such harmful conditions. In addition, abiotic stress affects developmental patterns that help the plant to withstand unfavourable environmental conditions. We discovered an NAC (for NAM, ATAF1, 2, and CUC2) transcription factor (TF), called RAF in the following, which plays a central role in abiotic drought stress-triggered senescence and the control of developmental adaptations to stressful environments. RAF is an ABA-responsive TF; RAF overexpressors are hypersensitive to abscisic acid (ABA) and exhibit precocious senescence while knock-out mutants show delayed senescence. To explore the RAF gene regulatory network (GRN), we determined its preferred DNA binding sites by binding site selection assay (BSSA) and performed microarray-based expression profiling using inducible RAF overexpression lines and chromatin immunoprecipitation (ChIP)-PCR. Our studies identified several direct target genes, including those encoding for catabolic enzymes acting during stress-induced senescence. Furthermore, we identified various genes controlling drought stress-related developmental changes. Based on our results, we conclude that RAF functions as a central transcriptional regulator that coordinates developmental programs with stress-related inputs from the environment. To explore the potential agricultural applications of our findings, we are currently extending our studies towards crop species.

Keywords: abiotic stress, Arabidopsis, development, transcription factor

Procedia PDF Downloads 164
134 MNH-886(Bt.): A Cotton Cultivar (G. Hirsutum L.) for Cultivation in Virus Infested Regions of Pakistan, Having High Seed Cotton Yield and Desirable Fibre Characteristics

Authors: Wajad Nazeer, Saghir Ahmad, Khalid Mahmood, Altaf Hussain, Abid Mahmood, Baoliang Zhou

Abstract:

MNH-886(Bt.) is a upland cotton cultivar (Gossypium hirsutum L.) developed through hybridization of three parents [(FH-207×MNH-770)×Bollgard-1] at Cotton Research Station Multan, Pakistan. It is resistant to CLCuVD with 16.25 % disease incidence (60 DAS, March sowing) whereas moderately susceptible to CLCuVD when planted in June with disease incidence 34 % (60 DAS). This disease reaction was lowest among 25 cotton advanced lines/varieties tested at hot spots of CLCuVD. Its performance was tested during 2009 to 2012 in various indigenous, provincial, and national varietal trials in comparison with the commercial variety IR-3701 and AA-802 & CIM-496. In PCCT trial during 2009-10; 2011-12, MNH-886 surpassed all the existing Bt. strains along with commercial varieties across the Punjab province with seed cotton yield production 2658 kg ha-1 and 2848 kg ha-1 which was 81.31 and 13% higher than checks, respectively. In National Coordinated Bt. Trial, MNH-886(Bt.) produced 3347 kg ha-1 seed cotton at CCRI, Multan; the hot spot of CLCuVD, in comparison to IR-3701 which gave 2556 kg ha-1. It possesses higher lint percentage (41.01%), along with the most desirable fibre traits (staple length 28.210mm, micronaire value 4.95 µg inch-1 and fibre strength 99.5 tppsi, and uniformity ratio 82.0%). The quantification of toxicity level of crystal protein was found positive for Cry1Ab/Ac protein with toxicity level 2.76µg g-1 and Mon 531 event was confirmed. Having tremendous yield potential, good fibre traits, and great tolerance to CLCuVD we can recommended this variety for cultivation in CLCuVD hotspots of Pakistan.

Keywords: cotton, cultivar, cotton leaf curl virus, CLCuVD hit districts

Procedia PDF Downloads 282
133 Susceptibility of Spodoptera littoralis, Field Populations in Egypt to Chlorantraniliprole and the Role of Detoxification Enzymes

Authors: Mohamed H. Khalifa, Fikry I. El-Shahawi, Nabil A. Mansour

Abstract:

The cotton leafworm, Spodoptera littoralis (Boisduval) is a major insect pest of vegetables and cotton crops in Egypt, and exhibits different levels of tolerance to certain insecticides. Chlorantraniliprole has been registered recently in Egypt for control this insect. The susceptibilities of three S. littoralis populations collected from El Behaira governorate, north Egypt to chlorantraniliprole were determined by leaf-dipping technique on 4th instar larvae. Obvious variation of toxicity was observed among the laboratory susceptible, and three field populations with LC50 values ranged between 1.53 µg/ml and 6.22 µg/ml. However, all the three field populations were less susceptible to chlorantraniliprole than a laboratory susceptible population. The most tolerant populations were sampled from El Delengat (ED) Province where S. littoralis had been frequently challenged by insecticides. Certain enzyme activity assays were carried out to be correlated with the mechanism of the observed field population tolerance. All field populations showed significantly enhanced activities of detoxification enzymes compared with the susceptible strain. The regression analysis between chlorantraniliprole toxicities and enzyme activities revealed that the highest correlation is between α-esterase or β-esterase (α-β-EST) activity and collected field strains susceptibility, otherwise this correlation is not significant (P > 0.05). Synergism assays showed the ED and susceptible strains could be synergized by known detoxification inhibitors such as piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl-maleate (DEM) at different levels (1.01-8.76-fold and 1.09-2.94 fold, respectively), TPP showed the maximum synergism in both strains. The results show that there is a correlation between the enzyme activity and tolerance, and carboxylic-esterase (Car-EST) is likely the main detoxification mechanism responsible for tolerance of S. littoralis to chlorantraniliprole.

Keywords: chlorantraniliprole, detoxification enzymes, Egypt, Spodoptera littoralis

Procedia PDF Downloads 249
132 Metabolic Profiling of Populus trichocarpa Family 1 UDP-Glycosyltransferases

Authors: Patricia M. B. Saint-Vincent, Anna Furches, Stephanie Galanie, Erica Teixeira Prates, Piet Jones, Nancy Engle, David Kainer, Wellington Muchero, Daniel Jacobson, Timothy J. Tschaplinski

Abstract:

Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that catalyze sugar transfer to a variety of plant metabolites. UGT substrates, which include plant secondary metabolites involved in lignification, demonstrate new activities and incorporation when glycosylated. Knowledge of UGT function, substrate specificity, and enzyme products is important for plant engineering efforts, especially related to increasing plant biomass through lignification. UGTs in Populus trichocarpa, a biofuel feedstock, and model woody plant, were selected from a pool of gene candidates using rapid prioritization strategies. A functional genomics workflow, consisting of a metabolite genome-wide association study (mGWAS), expression of synthetic codon-optimized genes, and high-throughput biochemical assays with mass spectrometry-based analysis, was developed for determining the substrates and products of previously-uncharacterized enzymes. A total of 40 UGTs from P. trichocarpa were profiled, and the biochemical assay results were compared to predicted mGWAS connections. Assay results confirmed seven of 11 leaf mGWAS associations and demonstrated varying levels of substrate specificity among candidate UGTs. P. trichocarpa UGT substrate processing confirms the role of these newly-characterized enzymes in lignan, flavonoid, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress responses.

Keywords: Populus, metabolite-gene associations, GWAS, bio feedstocks, glycosyltransferase

Procedia PDF Downloads 91
131 Physiological and Biochemical Based Analysis to Assess the Efficacy of Mulch under Partial Root Zone Drying in Wheat

Authors: Salman Ahmad, Muhammad Aown Sammar Raza, Muhammad Farrukh Saleem, Rashid Iqbal, Muhammad Saqlain Zaheer, Muhammad Usman Aslam, Imran Haider, Muhammad Adnan Nazar, Muhammad Ali

Abstract:

Among the various abiotic stresses, drought stress is one of the most challenging for field crops. Wheat is one of the major staple food of the world, which is highly affected by water deficit stress in the current scenario of climate change. In order to ensure food security by depleting water resources, there is an urgent need to adopt technologies which result in sufficient crop yield with less water consumption. Mulching and partial rootzone drying (PRD) are two important management techniques used for water conservation and to mitigate the negative impacts of drought. The experiment was conducted to screen out the best-suited mulch for wheat under PRD system. Two water application techniques (I1= full irrigation I2= PRD irrigation) and four mulch treatments (M0= un-mulched, M1= black plastic mulch, M2= wheat straw mulch and M4= cotton sticks mulch) were conducted in completely randomized design with four replications. The treatment, black plastic mulch was performed the best than other mulch treatments. For irrigation levels, higher values of growth, physiological and water-related parameters were recorded in control treatment while, quality traits and enzymatic activities were higher under partial root zone drying. The current study concluded that adverse effects of drought on wheat can be significantly mitigated by using mulches but black plastic mulch was best suited for partial rootzone drying irrigation system in wheat.

Keywords: antioxidants, leaf water relations, Mulches, osmolytes, partial root zone drying, photosynthesis

Procedia PDF Downloads 232
130 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize

Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah

Abstract:

Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.

Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens

Procedia PDF Downloads 100
129 Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka

Authors: S. M. Dissanayake, I. R. Palihakkara , K. G. Premathilaka

Abstract:

Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka.

Keywords: inter-cropping, oil palm, policies, mono-crop, land productivity

Procedia PDF Downloads 130
128 In-silico Target Identification and Molecular Docking of Withaferin A and Withanolide D to Understand their Anticancer Therapeutic Potential

Authors: Devinder Kaur Sugga, Ekamdeep Kaur, Jaspreet Kaur, C. Rajesh, Preeti Rajesh, Harsimran Kaur

Abstract:

Withanolides are steroidal lactones and are highly oxygenated phytoconstituents that can be developed as potential anti-carcinogenic agents. The two main withanolides, namely Withaferin A and Withanolides D, have been extensively studied for their pharmacological activities. Both these withanolides are present in the Withania somnifera (WS) leaves belonging to the family Solanaceae, also known as “Indian ginseng .”In this study effects of WS leaf extract on the MCF7 breast cancer cell line were investigated by performing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effects and in vitro wound-healing assay to study the effect on cancer cell migration. Our data suggest WS extracts have cytotoxic effects and are effective anti-migrating agents and thus can be a source of potential candidates for the development of potential agents against metastasis. Thus, it can be a source of potential candidates for the development of potential agents against metastasis. Insight into these results, the in-silico approach to identify the possible protein targets interacting with withanolides was taken. Protein kinase C alpha (PKCα) was among the selected 5 top-ranked target proteins identified by the Swiss Target Prediction tool. PKCα is known to promote the growth and invasion of cancer cells and is being evaluated as a prognostic biomarker and therapeutic target in clinically aggressive tumors. Molecular docking of Withaferin A and Withanolides D was performed using AutoDock Vina. Both the bioactive compounds interacted with PKCα. The targets predicted using this approach will serve as leads for the possible therapeutic potential of withanolides, the bioactive ingredients of WS extracts, as anti-cancer drugs.

Keywords: withania somnifera, withaferin A, withanolides D, PKCα

Procedia PDF Downloads 109
127 Effect of Different Temperatures and Cold Storage on Pupaes Apanteles gelechiidivoris Marsh (Hymenoptera: Braconidae) Parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)

Authors: Jessica Morales Perdomo, Daniel Rodriguez Caicedo, Fernando Cantor Rincon

Abstract:

Tuta absoluta known as the tomato leaf miner, is one of the main pests in tomato crops in South America and the main pest in many European countries. Apanteles gelechiidivoris is a parasitoid of third instar Tuta absoluta larvae. Our studies have demonstrated that this parasitoid can cause up to 80% mortality of T. absoluta larvae in the field. We investigated cold storage of A. gelechiidivoris pupae as a method of mass production of this parasitoid. This storage method does not interfere with biological characteristics of the parasitoid. In this study, we evaluated the effect of different temperatures (4, 8 and 12°C) and different time duration (7, 14, 21 or 28 days) of cold storage on biological parameters of A. gelechiidivoris pupae and adults. The biological parameters of the parasitoid evaluated were: adult emergence time, lifespan, parasitism percentage and sex ratio. We found that the adult emergence time was delayed when the parasitoid pupae were stored at 4°C and 8°C. The shortest adult emergence was recorded when pupae were stored for seven days. The lowest adult emergence was found for pupae stored at 4°C and decreased significantly as the days of storage increased. We found high percentages of adult emergence when pupae were stored at 8°C and 12°C for seven days. Adult lifespan decreased with increasing days of cold storage. Adults emerging from pupae stored at 8°C during seven and 14 days showed the longest lifespan (nine days). The lowest parasitism rate was recorded at 4°C at every time point. The highest percentage of parasitism (80%) was found at 8°C during seven days of storage. The treatments had no effect on adults the sex ratio. The results suggest that A. gelechiidivoris pupae can be stored for up to 14 days at 8°C without affecting the efficacy of the parasitoid in the field.

Keywords: biological control, cold storage, massive rearing, quality control

Procedia PDF Downloads 342
126 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 94
125 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 58
124 Study of Virus/es Threatening Large Cardamom Cultivation in Sikkim and Darjeeling Hills of Northeast India

Authors: Dharmendra Pratap

Abstract:

Large Cardamom (Amomum subulatum), family Zingiberaceae is an aromatic spice crop and has rich medicinal value. Large Cardamom is as synonymous to Sikkim as Tea is to Darjeeling. Since Sikkim alone contributes up to 88% of India's large cardamom production which is the world leader by producing over 50% of the global yield. However, the production of large cardamom has declined almost to half since last two decade. The economic losses have been attributed to two viral diseases namely, chirke and Foorkey. Chirke disease is characterized by light and dark green streaks on leaves. The affected leaves exhibit streak mosaic, which gradually coalesce, turn brown and eventually dry up. Excessive sprouting and formation of bushy dwarf clumps at the base of mother plants that gradually die characterize the foorkey disease. In our surveys in Sikkim–Darjeeling hill area during 2012-14, 40-45% of plants were found to be affected with foorkey disease and 10-15% with chirke. Mechanical and aphid transmission study showed banana as an alternate host for both the disease. For molecular identification, total genomic DNA and RNA was isolated from the infected leaf tissues and subjected to Rolling circle amplification (RCA) and RT-PCR respectively. The DNA concatamers produced in the RCA reaction were monomerized by different restriction enzymes and the bands corresponding to ~1 kb genomes were purified and cloned in the respective sites. The nucleotide sequencing results revealed the association of Nanovirus with the foorkey disease of large cardamom. DNA1 showed 74% identity with Replicase gene of FBNYV, DNA2 showed 77% identity with the NSP gene of BBTV and DNA3 showed 74% identity with CP gene of BBTV. The finding suggests the presence of a new species of nanovirus associated with foorkey disease of large cardamom in Sikkim and Darjeeling hills. The details of their epidemiology and other factors would be discussed.

Keywords: RCA, nanovirus, large cardamom, molecular virology and microbiology

Procedia PDF Downloads 475
123 Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress

Authors: Maher J. Tadros

Abstract:

This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions.

Keywords: plant water relations, growth performance, salinity stress, protein content, forage quality, multipurpose trees

Procedia PDF Downloads 359
122 Plant Mediated RNAi Approach to Knock Down Ecdysone Receptor Gene of Colorado Potato Beetle

Authors: Tahira Hussain, Ilhom Rahamkulov, Muhammad Aasim, Ugur Pirlak, Emre Aksoy, Mehmet Emin Caliskan, Allah Bakhsh

Abstract:

RNA interference (RNAi) has proved its usefulness in functional genomic research on insects recently and is considered potential strategy in crop improvement for the control of insect pests. The different insect pests incur significant losses to potato yield worldwide, Colorado Potato Beetle (CPB) being most notorious one. The present study focuses to knock down highly specific 20-hydroxyecdysone hormone-receptor complex interaction by using RNAi approach to silence Ecdysone receptor (EcR) gene of CPB in transgenic potato plants expressing dsRNA of EcR gene. The partial cDNA of Ecdysone receptor gene of CPB was amplified using specific primers in sense and anti-sense orientation and cloned in pRNAi-GG vector flanked by an intronic sequence (pdk). Leaf and internodal explants of Lady Olympia, Agria and Granola cultivars of potato were infected with Agrobacterium strain LBA4404 harboring plasmid pRNAi-CPB, pRNAi-GFP (used as control). Neomycin phosphotransferase (nptII) gene was used as a plant selectable marker at a concentration of 100 mg L⁻¹. The primary transformants obtained have shown proper integration of T-DNA in plant genome by standard molecular analysis like polymerase chain reaction (PCR), real-time PCR, Sothern blot. The transgenic plants developed out of these cultivars are being evaluated for their efficacy against larvae as well adults of CPB. The transgenic lines are expected to inhibit expression of EcR protein gene, hindering their molting process, hence leading to increased potato yield.

Keywords: plant mediated RNAi, molecular strategy, ecdysone receptor, insect metamorphosis

Procedia PDF Downloads 144