Search results for: linear pressure-viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3345

Search results for: linear pressure-viscosity

2775 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 148
2774 Classifying Time Independent Plane Symmetric Spacetime through Noether`s Approach

Authors: Nazish Iftikhar, Adil Jhangeer, Tayyaba Naz

Abstract:

The universe is expanding at an accelerated rate. Symmetries are useful in understanding universe’s behavior. Emmy Noether reported the relation between symmetries and conservation laws. These symmetries are known as Noether symmetries which correspond to a conserved quantity. In differential equations, conservation laws play an important role. Noether symmetries are helpful in modified theories of gravity. Time independent plane symmetric spacetime was classified by Noether`s theorem. By using Noether`s theorem, set of linear partial differential equations was obtained having A(r), B(r) and F(r) as unknown radial functions. The Lagrangian corresponding to considered spacetime in the Noether equation was used to get Noether operators. Different possibilities of radial functions were considered. Firstly, all functions were same. All the functions were considered as non-zero constant, linear, reciprocal and exponential respectively. Secondly, two functions were proportional to each other keeping third function different. Second case has four subcases in which four different relationships between A(r), B(r) and F(r) were discussed. In all cases, we obtained nontrivial Noether operators including gauge term. Conserved quantities for each Noether operators were also presented.

Keywords: Noether gauge symmetries, radial function, Noether operator, conserved quantities

Procedia PDF Downloads 228
2773 Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables.

Keywords: nonparametric path analysis, farmer loyalty, jackknife resampling, truncated spline

Procedia PDF Downloads 45
2772 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method

Procedia PDF Downloads 98
2771 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications

Authors: Shahadut Hossain

Abstract:

Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.

Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment

Procedia PDF Downloads 406
2770 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 347
2769 A Soft Error Rates (SER) Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers

Authors: Man Li, Wanting Zhou, Lei Li

Abstract:

Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of the combinational logic circuit. The existing research on soft error rates (SER) of the combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rate evaluation method based on LET. In this paper, the authors analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on the LET. Based on this model, the error rate of test circuit ISCAS'85 is calculated. The effectiveness of the model is proved by comparing it with previous experiments.

Keywords: communication satellite, pulse width, soft error rates, LET

Procedia PDF Downloads 169
2768 Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties

Authors: Tomas Menard

Abstract:

The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations.

Keywords: dynamical systems, output feedback control law, sampling, uncertain systems

Procedia PDF Downloads 283
2767 Student Loan Debt among Students with Disabilities

Authors: Kaycee Bills

Abstract:

This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.

Keywords: disability, student loan debt, higher education, social work

Procedia PDF Downloads 168
2766 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil

Procedia PDF Downloads 279
2765 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 338
2764 Influence of the Financial Crisis on the Month and the Trading Month Effects: Evidence from the Athens Stock Exchange

Authors: Aristeidis Samitas, Evangelos Vasileiou

Abstract:

The aim of this study is to examine the month and the trading month effect under changing financial trends. We choose the Greek stock market to implement our assumption because there are clear and long term periods of financial growth and recession. Daily financial data from Athens Exchange General Index for the period 2002-2012 are considered. The paper employs several linear and non-linear models, although the TGARCH asymmetry model best fits in this sample and for this reason we mainly present the TGARCH results. Empirical results show that changing economic and financial conditions influences the calendar effects. Especially, the trading month effect totally changes in each fortnight according to the financial trend. On the other hand, in Greece the January effect exists during the growth periods, although it does not exist when the financial trend changes. The findings are helpful to anybody who invest and deals with the Greek stock market. Moreover, they may pave the way for an alternative calendar anomalies research approach, so it may be useful to investors who take into account these anomalies when they draw their investment strategy.

Keywords: month effect, trading month effect, economic cycles, crisis

Procedia PDF Downloads 415
2763 Dietary Patterns and Hearing Loss in Older People

Authors: N. E. Gallagher, C. E. Neville, N. Lyner, J. Yarnell, C. C. Patterson, J. E. Gallacher, Y. Ben-Shlomo, A. Fehily, J. V. Woodside

Abstract:

Hearing loss is highly prevalent in older people and can reduce quality of life substantially. Emerging research suggests that potentially modifiable risk factors, including risk factors previously related to cardiovascular disease risk, may be associated with a decreased or increased incidence of hearing loss. This has prompted investigation into the possibility that certain nutrients, foods or dietary patterns may also be associated with incidence of hearing loss. The aim of this study was to determine any associations between dietary patterns and hearing loss in men enrolled in the Caerphilly study. The Caerphilly prospective cohort study began in 1979-1983 with recruitment of 2512 men aged 45-59 years. Dietary data was collected using a self-administered, semi-quantitative, 56-item food frequency questionnaire (FFQ) at baseline (1979-1983), and 7-day weighed food intake (WI) in a 30% sub-sample, while pure-tone unaided audiometric threshold was assessed at 0.5, 1, 2 and 4 kHz, between 1984 and 1988. Principal components analysis (PCA) was carried out to determine a posteriori dietary patterns and multivariate linear and logistic regression models were used to examine associations with hearing level (pure tone average (PTA) of frequencies 0.5, 1, 2 and 4 kHz in decibels (dB)) for linear regression and with hearing loss (PTA>25dB) for logistic regression. Three dietary patterns were determined using PCA on the FFQ data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, both linear and logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P<0.001) and linear regression analysis showed a significant association between the High sugar/Alcohol avoider pattern and hearing loss (P=0.04). Three similar dietary patterns were determined using PCA on the WI data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P=0.02) and a significant association between the Traditional pattern and hearing loss (P=0.04). A Healthy dietary pattern was found to be significantly inversely associated with hearing loss in middle-aged men in the Caerphilly study. Furthermore, a High sugar/Alcohol avoider pattern (FFQ) and a Traditional pattern (WI) were associated with poorer hearing levels. Consequently, the role of dietary factors in hearing loss remains to be fully established and warrants further investigation.

Keywords: ageing, diet, dietary patterns, hearing loss

Procedia PDF Downloads 229
2762 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 177
2761 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 355
2760 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling

Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari

Abstract:

A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.

Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis

Procedia PDF Downloads 146
2759 Non-parametric Linear Technique for Measuring the Efficiency of Winter Road Maintenance in the Arctic Area

Authors: Mahshid Hatamzad, Geanette Polanco

Abstract:

Improving the performance of Winter Road Maintenance (WRM) can increase the traffic safety and reduce the cost as well as environmental impacts. This study evaluates the efficiency of WRM technique, named salting, in the Arctic area by using Data Envelopment Analysis (DEA), which is a non-parametric linear method to measure the efficiencies of decision-making units (DMUs) based on handling multiple inputs and multiple outputs at the same time that their associated weights are not known. Here, roads are considered as DMUs for which the efficiency must be determined. The three input variables considered are traffic flow, road area and WRM cost. In addition, the two output variables included are level of safety in the roads and environment impacts resulted from WRM, which is also considered as an uncontrollable factor in the second scenario. The results show the performance of DMUs from the most efficient WRM to the inefficient/least efficient one and this information provides decision makers with technical support and the required suggested improvements for inefficient WRM, in order to achieve a cost-effective WRM and a safe road transportation during wintertime in the Arctic areas.

Keywords: environmental impacts, DEA, risk and safety, WRM

Procedia PDF Downloads 117
2758 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 201
2757 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy

Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi

Abstract:

Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.

Keywords: maritime transport, economy, GDP, regression, port

Procedia PDF Downloads 151
2756 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 266
2755 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.

Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage

Procedia PDF Downloads 143
2754 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 526
2753 Cost Comparison between R.C.C. Structures and Composite Columns Structures

Authors: Assad Rashid, Umair Ahmed, Zafar Baig

Abstract:

A new trend in construction is widely influenced by the use of Steel-Concrete Composite Columns. The rapid growth in Steel-Concrete Composite construction has widely decreased the conventional R.C.C structures. Steel Concrete composite construction has obtained extensive receiving around the globe. It is considering the fact that R.C.C structures construction is most suitable and economical for low-rise construction, so it is used in farming systems in most of the buildings. However, increased dead load, span restriction, less stiffness and risky formwork make R.C.C construction uneconomical and not suitable when it comes to intermediate to high-rise buildings. A Base + Ground +11 storey commercial building was designed on ETABS 2017 and made a comparison between conventional R.C.C and encased composite column structure. After performing Equivalent Static non-linear analysis, it has been found that construction cost is 13.01% more than R.C.C structure but encased composite column building has 7.7% more floor area. This study will help in understanding the behavior of conventional R.C.C structure and Encased Composite column structure.

Keywords: composite columns structure, equivalent static non-linear analysis, comparison between R.C.C and encased composite column structures, cost-effective structure

Procedia PDF Downloads 197
2752 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.

Keywords: river flow, nonlinear prediction method, phase space, local linear approximation

Procedia PDF Downloads 409
2751 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 198
2750 Non-linear Model of Elasticity of Compressive Strength of Concrete

Authors: Charles Horace Ampong

Abstract:

Non-linear models have been found to be useful in modeling the elasticity (measure of degree of responsiveness) of a dependent variable with respect to a set of independent variables ceteris paribus. This constant elasticity principle was applied to the dependent variable (Compressive Strength of Concrete in MPa) which was found to be non-linearly related to the independent variable (Water-Cement ratio in kg/m3) for given Ages of Concrete in days (3, 7, 28) at different levels of admixtures Superplasticizer (in kg/m3), Blast Furnace Slag (in kg/m3) and Fly Ash (in kg/m3). The levels of the admixtures were categorized as: S1=Some Plasticizer added & S0=No Plasticizer added; B1=some Blast Furnace Slag added & B0=No Blast Furnace Slag added; F1=Some Fly Ash added & F0=No Fly Ash added. The number of observations (samples) used for the research was one-hundred and thirty-two (132) in all. For Superplasticizer, it was found that Compressive Strength of Concrete was more elastic with regards to Water-Cement ratio at S1 level than at S0 level for the given ages of concrete 3, 7and 28 days. For Blast Furnace Slag, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for concrete ages 3, 7 and 28 days. For Fly Ash, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for Ages 3, 7 and 28 days. The research also tested for different combinations of the levels of Superplasticizer, Blast Furnace Slag and Fly Ash. It was found that Compressive Strength elasticity with regards to Water-Cement ratio was lowest (Elasticity=-1.746) with a combination of S0, B0 and F0 for concrete age of 3 days. This was followed by Elasticity of -1.611 with a combination of S0, B0 and F0 for a concrete of age 7 days. Next, the highest was an Elasticity of -1.414 with combination of S0, B0 and F0 for a concrete age of 28 days. Based on preceding outcomes, three (3) non-linear model equations for predicting the output elasticity of Compressive Strength of Concrete (in %) or the value of Compressive Strength of Concrete (in MPa) with regards to Water to Cement was formulated. The model equations were based on the three different ages of concrete namely 3, 7 and 28 days under investigation. The three models showed that higher elasticity translates into higher compressive strength. And the models revealed a trend of increasing concrete strength from 3 to 28 days for a given amount of water to cement ratio. Using the models, an increasing modulus of elasticity from 3 to 28 days was deduced.

Keywords: concrete, compressive strength, elasticity, water-cement

Procedia PDF Downloads 291
2749 The Aromaticity of P-Substituted O-(N-Dialkyl)Aminomethylphenols

Authors: Khodzhaberdi Allaberdiev

Abstract:

Aromaticity, one of the most important concepts in organic chemistry, has attracted considerable interest from both experimentalists and theoreticians. The geometry optimization of p-substituted o-(N-dialkyl)aminomethylphenols, o-DEAMPH XC₆ H₅CH ₂Y (X=p-OCH₃, CH₃, H, F, Cl, Br, COCH₃, COOCH₃, CHO, CN and NO₂, Y=o-N (C₂H₅)₂, o-DEAMPHs have been performed in the gas phase using the B3LYP/6-311+G(d,p) level. Aromaticities of the considered molecules were investigated using different indices included geometrical (HOMA and Bird), electronic (FLU, PDI and SA) magnetic (NICS(0), NICS(1) and NICS(1)zz indices. The linear dependencies were obtained between some aromaticity indices. The best correlation is observed between the Bird and PDI indices (R² =0.9240). However, not all types of indices or even different indices within the same type correlate well among each other. Surprisingly, for studied molecules in which geometrical and electronic cannot correctly give the aromaticity of ring, the magnetism based index successfully predicts the aromaticity of systems. 1H NMR spectra of compounds were obtained at B3LYP/6–311+G(d,p) level using the GIAO method. Excellent linear correlation (R²= 0.9996) between values the chemical shift of hydrogen atom obtained experimentally of 1H NMR and calculated using B3LYP/6–311+G(d,p) demonstrates a good assignment of the experimental values chemical shift to the calculated structures of o-DEAMPH. It is found that the best linear correlation with the Hammett substituent constants is observed for the NICS(1)zz index in comparison with the other indices: NICS(1)zz =-21.5552+1,1070 σp- (R²=0.9394). The presence intramolecular hydrogen bond in the studied molecules also revealed changes the aromatic character of substituted o-DEAMPHs. The HOMA index predicted for R=NO2 the reduction in the π-electron delocalization of 3.4% was about double that observed for p-nitrophenol. The influence intramolecular H-bonding on aromaticity of benzene ring in the ground state (S0) are described by equations between NICS(1)zz and H-bond energies: experimental, Eₑₓₚ, predicted IR spectroscopical, Eν and topological, EQTAIM with correlation coefficients R² =0.9666, R² =0.9028 and R² =0.8864, respectively. The NICS(1)zz index also correlates with usual descriptors of the hydrogen bond, while the other indices do not give any meaningful results. The influence of the intramolecular H-bonding formation on the aromaticity of some substituted o-DEAMPHs is criteria to consider the multidimensional character of aromaticity. The linear relationships as well as revealed between NICS(1)zz and both pyramidality nitrogen atom, ΣN(C₂H₅)₂ and dihedral angle, φ CAr – CAr -CCH₂ –N, to characterizing out-of-plane properties.These results demonstrated the nonplanar structure of o-DEAMPHs. Finally, when considering dependencies of NICS(1)zz, were excluded data for R=H, because the NICS(1) and NICS(1)zz values are the most negative for unsubstituted DEAMPH, indicating its highest aromaticity; that was not the case for NICS(0) index.

Keywords: aminomethylphenols, DFT, aromaticity, correlations

Procedia PDF Downloads 180
2748 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 144
2747 Rheological and Morphological Properties of Investment Casting Pattern Material Based on Paraffin Wax Fortified with Linear Low-Density Polyethylene and Filled with Poly Methyl Methacrylate

Authors: Robert Kimutai Tewo, Hilary Limo Rutto, Tumisang Seodigeng

Abstract:

The rheological and morphological properties of paraffin wax, linear low-density polyethylene (LLDPE), and poly (methyl methacrylate) (PMMA) microbeads formulations were prepared via an extrusion process. The blends were characterized by rheometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that LLDPE alters the wax crystal habit at higher concentrations. The rheological experimental data fitted with predicted data using the modified Krieger and Dougherty expression. The SEM micrograph of wax/LLDPE/PMMA revealed a near-perfect spherical nature for the filler particles in the wax/EVA polymer matrix. The FT-IR spectra show the deformation vibrations stretch of a long-chain aliphatic hydrocarbon (C-H) and also the presence of carbonyls absorption group denoted by -C=O- stretch.

Keywords: investment casting pattern, paraffin wax, LLDPE, PMMA, rheological properties, modified Krieger and Dougherty expression

Procedia PDF Downloads 169
2746 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift

Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard

Abstract:

Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.

Keywords: floor lift, human robot interaction, admittance controller, variable admittance

Procedia PDF Downloads 108