Search results for: inductively coupled plasma - optical emission spectrometry (ICP-OES)
4912 Hexavalent Chromium-Induced Changes in Biochemical Parameters of Wistar Albino Rats
Authors: Ounassa Adjroud
Abstract:
Potassium dichromate (K2Cr2O7) is one of the most toxic elements to which man can be exposed at work or in the environment. The purpose of the current work is to compare the effect of K2Cr2O7 using variations in the dose, route of administration and duration of exposure in male and female Wistar albino rats with a special focus on biochemical parameters. K2Cr2O7 was subcutaneously administered alone (10, 50 and 100 mg/kg body weight) to female Wistar albino rats. Male rats received in their drinking water K2Cr2O7 30 mg/L/day) for 20 consecutive days. The Biochemical parameters were evaluated on days 3, 6 and 21 after subcutaneous (sc.) treatment in female rats and on days 10 and 20 after oral administration in male rats. The subcutaneous (s.c.) administration of 25 mg/kg of K2Cr2O7 to Wistar albino rats induced a slight change in plasma glucose levels during the experiment period. On the contrary, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment compared to controls females rats. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase (122%) in this parameter was obtained during the first three days after treatment. In addition, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase in this parameter (122%) was obtained during the first three days after treatment. In addition, administration of 100 mg/kg of K2Cr2O7 by s.c markedly augmented the levels of plasma urea on days 3 (62%) and 6 (121%). Administration of 30 mg/L/day of K2Cr2O7 in the drinking water induced a significant augmentation in both of plasma glucose (27%) and urea (126%) during the first ten days of treatment. These results suggested that K2Cr2O7 administered subcutaneously or in the drinking water may induce harmful effects on biochemical parameters.Keywords: glucose, potassium dichromate, Wistar albino rat, urea
Procedia PDF Downloads 2834911 Effects of Incident Angle and Distance on Visible Light Communication
Authors: Taegyoo Woo, Jong Kang Park, Jong Tae Kim
Abstract:
Visible Light Communication (VLC) provides wireless communication features in illumination systems. One of the key applications is to recognize the user location by indoor illuminators such as light emitting diodes. For localization of individual receivers in these systems, we usually assume that receivers and transmitters are placed in parallel. However, it is difficult to satisfy this assumption because the receivers move randomly in real case. It is necessary to analyze the case when transmitter is not placed perfectly parallel to receiver. It is also important to identify changes on optical gain by the tilted angles and distances of them against the illuminators. In this paper, we simulate optical gain for various cases where the tilt of the receiver and the distance change. Then, we identified changing patterns of optical gains according to tilted angles of a receiver and distance. These results can help many VLC applications understand the extent of the location errors with regard to optical gains of the receivers and identify the root cause.Keywords: visible light communication, incident angle, optical gain, light emitting diode
Procedia PDF Downloads 3354910 Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine
Authors: Bahamin Bazooyar, Xinyan Wang, Hua Zhao
Abstract:
As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars.Keywords: engine, hydrogen, diesel, two-stroke, opposed-piston, decarbonisation
Procedia PDF Downloads 74909 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films
Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya
Abstract:
Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.Keywords: thin films, band gap, film thickness, optical study, size effect
Procedia PDF Downloads 184908 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1124907 Characterization of Optical Systems for Intraocular Projection
Authors: Charles Q. Yu, Victoria H. Fan, Ahmed F. Al-Qahtani, Ibraim Viera
Abstract:
Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye.Keywords: focusing, projection, blindness, cornea , achromatic, pinhole
Procedia PDF Downloads 1324906 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo
Authors: Vladimir A. Vinnikov
Abstract:
The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks
Procedia PDF Downloads 2634905 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle
Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita
Abstract:
Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine
Procedia PDF Downloads 2464904 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry
Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya
Abstract:
This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry
Procedia PDF Downloads 854903 Evaluation of the Effectiveness of the Argon Plasma Jet on Healing Process of the Wagner Grade 2 Diabetic Foot Ulcer
Authors: M. Khaledi Pour, P. Akbartehrani, M. Amini, M. Khani, M. Mohajeri Tehrani, R. Radi, B. Shokri
Abstract:
Diabetic Foot Ulcer (DFU) is one of the costly severe complications of diabetes. Neuropathy and Peripheral Arterial Disease (PAD) due to diabetes are significant causes of this complication. In 10 years the patients with DFUs are twice as likely to die as patients without DFUs. Cold Atmospheric Plasma (CAP) is a promising tool for medical purposes. CAP generate reactive species at room temperature and are effective in killing bacteria and fibroblast proliferation. These CAP-based tools produce NO, which has bactericidal and angiogenesis properties. It also showed promising effects in the DFUs surface reduction and the time to wound closure. In this paper, we evaluated the effect of the Argon Plasma Jet (APJ) on the healing process of the Wagner Grade 2 DFUs in a randomized clinical trial. The 20 kHz sinusoidal voltage frequency derives the APJ. Patients (n=20) were randomly double-blinded assigned into two groups. These groups receive the standard care (SC, n=10) and the standard care with APJ treatment (SC+APJ, n=10) for five sessions in four weeks. The results showed that the APJ treatment along standard care could reduce the wound surface by 20 percent more than the standard care. Also, It showed a more influential role in controlling wound infection.Keywords: argon plasma jet, cold atmospheric plasma, diabetes, diabetic foot ulcer
Procedia PDF Downloads 2014902 Hidden Oscillations in the Mathematical Model of the Optical Binary Phase Shift Keying (BPSK) Costas Loop
Authors: N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev
Abstract:
Nonlinear analysis of the phase locked loop (PLL)-based circuits is a challenging task. Thus, the simulation is widely used for their study. In this work, we consider a mathematical model of the optical Costas loop and demonstrate the limitations of simulation approach related to the existence of so-called hidden oscillations in the phase space of the model.Keywords: optical Costas loop, mathematical model, simulation, hidden oscillation
Procedia PDF Downloads 4404901 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors
Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar
Abstract:
In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides
Procedia PDF Downloads 1394900 Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia
Authors: Kwok Tak Kit
Abstract:
Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 20C above the pre-industrial level in this century. A internationally Submit named “ 26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to the finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.50C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study.Keywords: net-zero carbon, climate change, carbon emission, energy consumption
Procedia PDF Downloads 1844899 Development and Validation of High-Performance Liquid Chromatography Method for the Determination and Pharmacokinetic Study of Linagliptin in Rat Plasma
Authors: Hoda Mahgoub, Abeer Hanafy
Abstract:
Linagliptin (LNG) belongs to dipeptidyl-peptidase-4 (DPP-4) inhibitor class. DPP-4 inhibitors represent a new therapeutic approach for the treatment of type 2 diabetes in adults. The aim of this work was to develop and validate an accurate and reproducible HPLC method for the determination of LNG with high sensitivity in rat plasma. The method involved separation of both LNG and pindolol (internal standard) at ambient temperature on a Zorbax Eclipse XDB C18 column and a mobile phase composed of 75% methanol: 25% formic acid 0.1% pH 4.1 at a flow rate of 1.0 mL.min-1. UV detection was performed at 254nm. The method was validated in compliance with ICH guidelines and found to be linear in the range of 5–1000ng.mL-1. The limit of quantification (LOQ) was found to be 5ng.mL-1 based on 100µL of plasma. The variations for intra- and inter-assay precision were less than 10%, and the accuracy values were ranged between 93.3% and 102.5%. The extraction recovery (R%) was more than 83%. The method involved a single extraction step of a very small plasma volume (100µL). The assay was successfully applied to an in-vivo pharmacokinetic study of LNG in rats that were administered a single oral dose of 10mg.kg-1 LNG. The maximum concentration (Cmax) was found to be 927.5 ± 23.9ng.mL-1. The area under the plasma concentration-time curve (AUC0-72) was 18285.02 ± 605.76h.ng.mL-1. In conclusion, the good accuracy and low LOQ of the bioanalytical HPLC method were suitable for monitoring the full pharmacokinetic profile of LNG in rats. The main advantages of the method were the sensitivity, small sample volume, single-step extraction procedure and the short time of analysis.Keywords: HPLC, linagliptin, pharmacokinetic study, rat plasma
Procedia PDF Downloads 2414898 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning
Authors: ChoLiang Chung, YuMin Chen
Abstract:
C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.Keywords: carbon, TiO2, chitosan, electrospinning
Procedia PDF Downloads 2574897 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers
Authors: L. Achab, F. Iachachene
Abstract:
In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method
Procedia PDF Downloads 564896 MHD Equilibrium Study in Alborz Tokamak
Authors: Maryamosadat Ghasemi, Reza Amrollahi
Abstract:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations.Keywords: equilibrium, grad–shafranov, radial basis functions, Alborz Tokamak
Procedia PDF Downloads 4734895 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen
Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar
Abstract:
Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation
Procedia PDF Downloads 1144894 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration
Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu
Abstract:
The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.Keywords: porphyry, gold, geochronology, magnetic, exploration
Procedia PDF Downloads 624893 A New Approach for Solving Fractional Coupled Pdes
Authors: Prashant Pandey
Abstract:
In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method
Procedia PDF Downloads 1454892 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.Keywords: benchmark, blast furnace, CO₂ emission, fuel rate
Procedia PDF Downloads 2804891 Optical Ignition of Nanoenergetic Materials with Tunable Explosion Reactivity
Authors: Ji Hoon Kim, Jong Man Kim, Hyung Woo Lee, Soo Hyung Kim
Abstract:
The applications of nanoenergetic materials (nEMs) could be extended by developing more convenient and reliable ignition methods. However, the underwater ignition of nEMs is a significant challenge because water perturbs the reactants prior to ignition and also quenches the subsequent combustion reaction of nEMs upon ignition. In this study, we developed flash and laser-ignitable nEMs for underwater explosion. This was achieved by adding various carbon nanotubes (CNTs) as the optical igniter into an nEM matrix, composed of Al/CuO nanoparticles. The CNTs absorb the irradiated optical energy and rapidly convert it into thermal energy, and then the thermal energy is concentrated to ignite the core catalysts and neighboring nEMs. The maximum burn rate was achieved by adding 1 wt% CNTs into the nEM matrix. The burn rate significantly decreased with increasing amount of CNTs (≥ 2 wt%), indicating that the optical ignition and controlled-explosion reactivity of nEMs are possible by incorporating an appropriate amount of CNTs.Keywords: nanoenergetic materials, carbon nanotubes, optical ignition, tunable explosion
Procedia PDF Downloads 3044890 Multi-Sensor Concept in Optical Surface Metrology
Authors: Özgür Tan
Abstract:
In different fields of industry, there is a huge demand to acquire surface information in the dimension of micrometer up to centimeter in order to characterize functional behavior of products. Thanks to the latest developments, there are now different methods in surface metrology, but it is not possible to find a unique measurement technique which fulfils all the requirements. Depending on the interaction with the surface, regardless of optical or tactile, every method has its own advantages and disadvantages which are given by nature. However new concepts like ‘multi-sensor’, tools in surface metrology can be improved to solve most of the requirements simultaneously. In this paper, after having presented different optical techniques like confocal microscopy, focus variation and white light interferometry, a new approach is presented which combines white-light interferometry with chromatic confocal probing in a single product. Advantages of different techniques can be used for challenging applications.Keywords: flatness, chromatic confocal, optical surface metrology, roughness, white-light interferometry
Procedia PDF Downloads 2604889 Influence of TEOS Concentration and Triton Additive on the Nanostructured Silica Sol-Gel Antireflective Coatings
Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Nanostructure silica antireflective surfaces were fabricated on glasses by Sol-Gel technique. Various silica sols (varying in composition: tetraethyl orthosilicate (TEOS) concentration and Triton additive) were synthesized by the polymeric process and then subsequently coated on substrates. Silica thin films were investigated by using UV-Visible Spectroscopy; Fourier-Transformed Infrared Spectrophotometer and Filed Emission Scanning Electron Microscopy were used. Results indicated that dense silica layers, obtained from the polymeric method, permit a considerable reduction of these light reflections compared with uncoated glasses in all the cases studied, but the degree of reduction is different depending on the composition of the precursor solution. It was found that the transmittance increased from 0.915 for the bare slide up to 0.96 for the best made sample corresponding to the Triton-doped silica. The addition of Triton x-100 to the silica sols improved the optical property of thin film because of it helps to create nanoporous in the coating. Also the results showed SiO2 content is an effective parameter to prepare the antireflective films. Loss of SiO2 cause to rapid the reactions and Si-O-Si bonding form better under this condition.Keywords: sol–gel, silica thin films, antireflective coatings, optical properties, triton
Procedia PDF Downloads 4214888 Heart and Plasma LDH and CK in Response to Intensive Treadmill Running and Aqueous Extraction of Red Crataegus pentagyna in Male Rats
Authors: A. Abdi, A. Barari, A. Hojatollah Nikbakht, Khosro Ebrahim
Abstract:
Aim: The purpose of the current study was to investigate the effect of a high intensity treadmill running training (8 weeks) with or without aqueous extraction of Crataegus pentagyna on heart and plasma LDH and CK. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were used. Animals were randomly assigned into training (n = 16) and control (n = 16) groups and further divided into saline-control (SC, n = 8), saline-training (ST, n = 8), red Crataegus pentagyna extraction -control (CPEC, n = 8), and red Crataegus pentagyna extraction -training (CPET, n = 8) groups. Training groups have performed a high-intensity running program 34 m/min on 0% grade, 60 min/day, 5 days/week) on a motor-driven treadmill for 8 weeks. Animals were fed orally with Crataegus extraction and saline solution (500mg/kg body weight/or 10ml/kg body weight) for last six weeks. Seventy- two hours after the last training session, rats were sacrificed; plasma and heart were excised and immediately frozen in liquid nitrogen. LDH and CK levels were measured by colorimetric method. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: Result showed that consumption crataegus lowers LDH and CK in heart and plasma. Also the heart LDH and CK were lower in the CPET compared to the ST, while plasma LDH and CK in CPET was higher than the ST. The results of ANOVA showed that the due high-intensity exercise and consumption crataegus, there are significant differences between levels of hearth LDH (P < 0/001), plasma (P < 0/006) and hearth (P < 0/001) CK. Conclusion: It appears that high-intensity exercise led to increased tissue damage and inflammatory factors in plasma. In other hand, consumption aqueous extraction of Red Crataegus maybe inhibits these factors and prevents muscle and heart damage.Keywords: LDH, CK, crataegus, intensity
Procedia PDF Downloads 4374887 Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves
Authors: Sanjit Kumar Paul, A. A. Mamun, M. R. Amin
Abstract:
The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.Keywords: dust acoustic waves, dusty plasma, Boltzmann distributed electrons, charge fluctuation
Procedia PDF Downloads 6394886 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance
Authors: Binnur Sagbas
Abstract:
Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.Keywords: artificial joints, plasma surface modification, UHMWPE, vitamin E, wear
Procedia PDF Downloads 3064885 Optical Fiber Data Throughput in a Quantum Communication System
Authors: Arash Kosari, Ali Araghi
Abstract:
A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.Keywords: absorption, data throughput, depolarization, optical fiber
Procedia PDF Downloads 2864884 The Effect of the Deposition Parameters on the Microstructural and Optical Properties of Mn-Doped GeTe Chalcogenide Materials
Authors: Adam Abdalla Elbashir Adam, Xiaomin Cheng, Xiang Shui Miao
Abstract:
In this work, the effect of the magnetron sputtering system parameters on the optical properties of the Mn doped GeTe were investigated. The optical properties of the Ge1-xMnxTe thin films with different thicknesses are determined by analyzing the transmittance and reflectance data. The energy band gaps of the amorphous Mn-doped GeTe thin films with different thicknesses were calculated. The obtained results demonstrated that the energy band gap values of the amorphous films are quite different and they are dependent on the films thicknesses. The extinction coefficients of amorphous Mn-doped GeTe thin films as function of wavelength for different thicknesses were measured. The results showed that the extinction coefficients of all films are varying inversely with their optical transmission. Moreover, the results emphasis that, not only the microstructure, electrical and magnetic properties of Mn doped GeTe thin films vary with the films thicknesses but also the optical properties differ with the film thickness.Keywords: phase change magnetic materials, transmittance, absorbance, extinction coefficients
Procedia PDF Downloads 4044883 Electronic and Optical Properties of Orthorhombic NdMnO3 with the Modified Becke-Johnson Potential
Authors: B. Bouadjemi, S. Bentata, T. Lantri, A. Abbad, W. Benstaali, A. Zitouni, S. Cherid
Abstract:
We investigate the electronic structure, magnetic and optical properties of the orthorhombic NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA and GGA+U approaches, the exchange and correlation effects are taken into account by an orbital independent modified Becke Johnson (MBJ). The predicted band gaps using the MBJ exchange approximation show a significant improvement over previous theoretical work with the common GGA and GGA+U very closer to the experimental results. Band gap dependent optical parameters like dielectric constant, index of refraction, absorption coefficient, reflectivity and conductivity are calculated and analyzed. We find that when using MBJ we have obtained better results for band gap of NdMnO3 than in the case of GGA and GGA+U. The values of band gap founded in this work by MBJ are in a very good agreement with corresponding experimental values compared to other calculations. This comprehensive theoretical study of the optoelectronic properties predicts that this material can be effectively used in optical devices.Keywords: DFT, optical properties, absorption coefficient, strong correlation, MBJ, orthorhombic NdMnO3, optoelectronic
Procedia PDF Downloads 909