Search results for: gaussian selection operator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3040

Search results for: gaussian selection operator

2470 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 151
2469 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters

Authors: Hecson Christian, Joel Macwan

Abstract:

Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.

Keywords: GIS, AHP, MCDA, Geo-technical

Procedia PDF Downloads 145
2468 Non-Universality in Barkhausen Noise Signatures of Thin Iron Films

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

We discuss angle dependent changes to the Barkhausen noise signatures of thin epitaxial Fe films upon altering the angle of the applied field. We observe a sub-critical to critical phase transition in the hysteresis loop of the sample upon increasing the out-of-plane component of the applied field. The observations are discussed in the light of simulations of a 2D Gaussian Random Field Ising Model with references to a reducible form of the Random Anisotropy Ising Model.

Keywords: Barkhausen noise, Planar Hall effect, Random Field Ising Model, Random Anisotropy Ising Model

Procedia PDF Downloads 388
2467 Classification of Sturm-Liouville Problems at Infinity

Authors: Kishor J. shinde

Abstract:

We determine the values of k and p such that the Sturm-Liouville differential operator τu=-(d^2 u)/(dx^2) + kx^p u is in limit point case or limit circle case at infinity. In particular it is shown that τ is in the limit point case when (i) for p=2 and ∀k, (ii) for ∀p and k=0, (iii) for all p and k>0, (iv) for 0≤p≤2 and k<0, (v) for p<0 and k<0. τ is in the limit circle case when (i) for p>2 and k<0.

Keywords: limit point case, limit circle case, Sturm-Liouville, infinity

Procedia PDF Downloads 367
2466 The Relationship Study between Topological Indices in Contrast with Thermodynamic Properties of Amino Acids

Authors: Esmat Mohammadinasab, Mostafa Sadeghi

Abstract:

In this study are computed some thermodynamic properties such as entropy and specific heat capacity, enthalpy, entropy and gibbs free energy in 10 type different Aminoacids using Gaussian software with DFT method and 6-311G basis set. Then some topological indices such as Wiener, shultz are calculated for mentioned molecules. Finaly is showed relationship between thermodynamic peoperties and above topological indices and with different curves is represented that there is a good correlation between some of the quantum properties with topological indices of them. The instructive example is directed to the design of the structure-property model for predicting the thermodynamic properties of the amino acids which are discussed here.

Keywords: amino acids, DFT Method, molecular descriptor, thermodynamic properties

Procedia PDF Downloads 432
2465 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 357
2464 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.

Keywords: antenna array, detection curves, performance characteristics, quadrature processing, signal detection

Procedia PDF Downloads 405
2463 Global Stability Of Nonlinear Itô Equations And N. V. Azbelev's W-method

Authors: Arcady Ponosov., Ramazan Kadiev

Abstract:

The work studies the global moment stability of solutions of systems of nonlinear differential Itô equations with delays. A modified regularization method (W-method) for the analysis of various types of stability of such systems, based on the choice of the auxiliaryequations and applications of the theory of positive invertible matrices, is proposed and justified. Development of this method for deterministic functional differential equations is due to N.V. Azbelev and his students. Sufficient conditions for the moment stability of solutions in terms of the coefficients for sufficiently general as well as specific classes of Itô equations are given.

Keywords: asymptotic stability, delay equations, operator methods, stochastic noise

Procedia PDF Downloads 224
2462 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix

Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung

Abstract:

The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.

Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation

Procedia PDF Downloads 474
2461 Investigation of Additives' Corrosion Inhibition Effects on Dye

Authors: Abdullah Bilal Ozturk, Nil Acarali, Hediye Irem Ozgunduz, Hava Gizem Kandilci, Hanifi Sarac

Abstract:

In this study, zeolite, shellac and different boron chemicals were used as additive to dye and effects were comprehensively investigated. Considering previous studies additive materials that had not used before were determined for produce dye with physical properties. Literature research about the materials provides determining easily sufficient amount of additive materials. Accessible of additives or yearly production amounts are become important issue at selection of materials. Zeolite and boron chemicals are suitable selection in that easy access and has large amount of production in our country. Previous research about boron chemicals shows they have flame retardant effect on textile materials besides numerous usage areas. Also, from previous research, shellac was used widely for protection and insulation of metallic materials. Zeolite added to dye to increase adhesive effect of dye. In this study, corrosion tests were applied to find out if there are positive effects of zeolite, shellac, and boron chemicals to dye’s physical properties.

Keywords: dye, corrosion, zeolite, shellac, boron

Procedia PDF Downloads 338
2460 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510
2459 Consumers’ Willingness to Pay for Organic Vegetables in Oyo State

Authors: Olanrewaju Kafayat, O., Salman Kabir, K.

Abstract:

The role of organic agriculture in providing food and income is now gaining wider recognition (Van Elzakker et al 2007). The increasing public concerns about food safety issues on the use of fertilizers, pesticide residues, growth hormones, GM organisms, and increasing awareness of environmental quality issues have led to an expanding demand for environmentally friendly products (Thompson, 1998; Rimal et al., 2005). As a result national governments are concerned about diet and health, and there has been renewed recognition of the role of public policy in promoting healthy diets, thus to provide healthier, safer, more confident citizens (Poole et al., 2007), With these benefits, a study into organic vegetables is very vital to all the major stakeholders. This study analyzed the willingness of consumers to pay for organic vegetables in Oyo state, Nigeria. Primary data was collected with the aid of structured questionnaire administered to 168 respondents. These were selected using multistage random sampling. The first stage involved the selection two (2) ADP zones out of the three (3) ADP zones in Oyo state, The second stage involved the random selection of two (2) local government areas each out of the two (2) ADP zones which are; Ibadan South West and Ogbomoso North and random selection of 4 wards each from the local government areas. The third stage involved random selection of 42 household each from of the local government areas. Descriptive statistics, the principal component analysis, and the logistic regression were used to analyze the data. Results showed 55 percent of the respondents were female while 80 percent were  50 years. 74 percent of the respondents agreed that organic vegetables are of better quality. 31 percent of the respondents were aware of organic vegetables as against 69 percent who were not aware. From the logistic model, educational attainment, amount spent on organic vegetables monthly, better quality of organic vegetables and accessibility to organic vegetables were significant and had a positive relationship on willingness to pay for organic vegetable. The variables that were significant and had a negative relationship with WTP are less attractiveness of organic vegetables and household size of the respondents. This study concludes that consumers with higher level of education were more likely to be aware and willing to pay for organic vegetables than those with low levels of education, the study therefore recommends creation of awareness on the relevance of consuming organic vegetables through effective marketing and educational campaigns.

Keywords: consumers awareness, willingness to pay, organic vegetables, Oyo State

Procedia PDF Downloads 271
2458 Quantum Coherence Sets the Quantum Speed Limit for Mixed States

Authors: Debasis Mondal, Chandan Datta, S. K. Sazim

Abstract:

Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.

Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information

Procedia PDF Downloads 353
2457 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 83
2456 Internet-Of-Things and Ergonomics, Increasing Productivity and Reducing Waste: A Case Study

Authors: V. Jaime Contreras, S. Iliana Nunez, S. Mario Sanchez

Abstract:

Inside a manufacturing facility, we can find innumerable automatic and manual operations, all of which are relevant to the production process. Some of these processes add more value to the products more than others. Manual operations tend to add value to the product since they can be found in the final assembly area o final operations of the process. In this areas, where a mistake or accident can increase the cost of waste exponentially. To reduce or mitigate these costly mistakes, one approach is to rely on automation to eliminate the operator from the production line - requires a hefty investment and development of specialized machinery. In our approach, the center of the solution is the operator through sufficient and adequate instrumentation, real-time reporting and ergonomics. Efficiency and reduced cycle time can be achieved thorough the integration of Internet-of-Things (IoT) ready technologies into assembly operations to enhance the ergonomics of the workstations. Augmented reality visual aids, RFID triggered personalized workstation dimensions and real-time data transfer and reporting can help achieve these goals. In this case study, a standard work cell will be used for real-life data acquisition and a simulation software to extend the data points beyond the test cycle. Three comparison scenarios will run in the work cell. Each scenario will introduce a dimension of the ergonomics to measure its impact independently. Furthermore, the separate test will determine the limitations of the technology and provide a reference for operating costs and investment required. With the ability, to monitor costs, productivity, cycle time and scrap/waste in real-time the ROI (return on investment) can be determined at the different levels to integration. This case study will help to show that ergonomics in the assembly lines can make significant impact when IoT technologies are introduced. Ergonomics can effectively reduce waste and increase productivity with minimal investment if compared with setting up to custom machine.

Keywords: augmented reality visual aids, ergonomics, real-time data acquisition and reporting, RFID triggered workstation dimensions

Procedia PDF Downloads 214
2455 English Language Proficiency and Use as Determinants of Transactional Success in Gbagi Market, Ibadan, Nigeria

Authors: A. Robbin

Abstract:

Language selection can be an efficient negotiation strategy employed by both service or product providers and their customers to achieve transactional success. The transactional scenario in Gbagi Market, Ibadan, Nigeria provides an appropriate setting for the exploration of the Nigerian multilingual situation with its own interesting linguistic peculiarities which questions the functionality of the ‘Lingua Franca’ in trade situations. This study examined English Language proficiency among Yoruba Traders in Gbagi Market, Ibadan and its use as determinants of transactional success during service encounters. Randomly selected Yoruba-English bilingual traders and customers were administered questionnaires and the data subjected to statistical and descriptive analysis using Giles Communication Accommodation Theory. Findings reveal that only fifty percent of the traders used for the study were proficient in speaking English language. Traders with minimal proficiency in Standard English, however, resulted in the use of the Nigerian Pidgin English. Both traders and customers select the Mother Tongue, which is the Yoruba Language during service encounters but are quick to converge to the other’s preferred language as the transactional exchange demands. The English language selection is not so much for the prestige or lingua franca status of the language as it is for its functions, which include ease of communication, negotiation, and increased sales. The use of English during service encounters is mostly determined by customer’s linguistic preference which the trader accommodates to for better negotiation and never as a first choice. This convergence is found to be beneficial as it ensures sales and return patronage. Although the English language is not a preferred code choice in Gbagi Market, it serves a functional trade strategy for transactional success during service encounters in the market.

Keywords: communication accommodation theory, language selection, proficiency, service encounter, transaction

Procedia PDF Downloads 158
2454 Study on Energy Absorption Characteristic of Cab Frame with FEM

Authors: Shigeyuki Haruyama, Oke Oktavianty, Zefry Darmawan, Tadayuki Kyoutani, Ken Kaminishi

Abstract:

Cab’s frame strength is considered as an important factor in excavator’s operator safety, especially during roll-over. In this study, we use a model of cab frame with different thicknesses and perform elastoplastic numerical analysis by using Finite Element Method (FEM). Deformation mode and energy absorption's of cab’s frame part are investigated on two conditions, with wrinkle and without wrinkle. The occurrence of wrinkle when deforming cab frame can reduce energy absorption, and among 4 parts with wrinkle, the energy absorption significantly decreases in part C. Residual stress that generated upon the bending process of part C is analyzed to confirm it possibility in increasing the energy absorption.

Keywords: ROPS, FEM, hydraulic excavator, cab frame

Procedia PDF Downloads 430
2453 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context

Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal

Abstract:

Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.

Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS

Procedia PDF Downloads 470
2452 Identification and Validation of Co-Dominant Markers for Selection of the CO-4 Anthracnose Disease Resistance Gene in Common Bean Cultivar G2333

Authors: Annet Namusoke, Annet Namayanja, Peter Wasswa, Shakirah Nampijja

Abstract:

Common bean cultivar G2333 which offers broad resistance for anthracnose has been widely used as a source of resistance in breeding for anthracnose resistance. The cultivar is pyramided with three genes namely CO-4, CO-5 and CO-7 and of these three genes, the CO-4 gene has been found to offer the broadest resistance. The main aim of this work was to identify and validate easily assayable PCR based co-dominant molecular markers for selection of the CO-4 gene in segregating populations derived from crosses of G2333 with RWR 1946 and RWR 2075, two commercial Andean cultivars highly susceptible to anthracnose. Marker sequences for the study were obtained by blasting the sequence of the COK-4 gene in the Phaseolus gene database. Primer sequence pairs that were not provided from the Phaseolus gene database were designed by the use of Primer3 software. PCR conditions were optimized and the PCR products were run on 6% HPAGE gel. Results of the polymorphism test indicated that out of 18 identified markers, only two markers namely BM588 and BM211 behaved co-dominantly. Phenotypic evaluation for reaction to anthracnose disease was done by inoculating 21days old seedlings of three parents, F1 and F2 populations with race 7 of Colletotrichum lindemuthianum in the humid chamber. DNA testing of the BM588 marker onto the F2 segregating population of the crosses RWR 1946 x G 2333 and RWR 2075 x G2333 further revealed that the marker BM588 co-segregated with disease resistance with co-dominance of two alleles of 200bp and 400bp, fitting the expected segregation ratio of 1:2:1. The BM588 marker was significantly associated with disease resistance and gave promising results for marker assisted selection of the CO-4 gene in the breeding lines. Activities to validate the BM211 marker are also underway.

Keywords: codominant, Colletotrichum lindemuthianum, MAS, Phaseolus vulgaris

Procedia PDF Downloads 291
2451 Non Commutative Lᵖ Spaces as Hilbert Modules

Authors: Salvatore Triolo

Abstract:

We discuss the possibility of extending the well-known Gelfand-Naimark-Segal representation to modules over a C*algebra. We focus our attention on the case of Hilbert modules. We consider, in particular, the problem of the existence of a faithful representation. Non-commutative Lᵖ-spaces are shown to constitute examples of a class of CQ*-algebras. Finally, we have shown that any semisimple proper CQ*-algebra (X, A#), with A# a W*-algebra can be represented as a CQ*-algebra of measurable operators in Segal’s sense.

Keywords: Gelfand-Naimark-Segal representation, CQ*-algebras, faithful representation, non-commutative Lᵖ-spaces, operator in Hilbert spaces

Procedia PDF Downloads 248
2450 Content Based Face Sketch Images Retrieval in WHT, DCT, and DWT Transform Domain

Authors: W. S. Besbas, M. A. Artemi, R. M. Salman

Abstract:

Content based face sketch retrieval can be used to find images of criminals from their sketches for 'Crime Prevention'. This paper investigates the problem of CBIR of face sketch images in transform domain. Face sketch images that are similar to the query image are retrieved from the face sketch database. Features of the face sketch image are extracted in the spectrum domain of a selected transforms. These transforms are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Walsh Hadamard Transform (WHT). For the performance analyses of features selection methods three face images databases are used. These are 'Sheffield face database', 'Olivetti Research Laboratory (ORL) face database', and 'Indian face database'. The City block distance measure is used to evaluate the performance of the retrieval process. The investigation concludes that, the retrieval rate is database dependent. But in general, the DCT is the best. On the other hand, the WHT is the best with respect to the speed of retrieving images.

Keywords: Content Based Image Retrieval (CBIR), face sketch image retrieval, features selection for CBIR, image retrieval in transform domain

Procedia PDF Downloads 493
2449 Using Wavelet Uncertainty Relations in Quantum Mechanics: From Trajectories Foam to Newtonian Determinism

Authors: Paulo Castro, J. R. Croca, M. Gatta, R. Moreira

Abstract:

Owing to the development of quantum mechanics, we will contextualize the foundations of the theory on the Fourier analysis framework, thus stating the unavoidable philosophical conclusions drawn by Niels Bohr. We will then introduce an alternative way of describing the undulatory aspects of quantum entities by using gaussian Morlet wavelets. The description has its roots in de Broglie's realistic program for quantum physics. It so happens that using wavelets it is possible to formulate a more general set of uncertainty relations. A set from which it is possible to theoretically describe both ends of the behavioral spectrum in reality: the indeterministic quantum trajectorial foam and the perfectly drawn Newtonian trajectories.

Keywords: philosophy of quantum mechanics, quantum realism, morlet wavelets, uncertainty relations, determinism

Procedia PDF Downloads 171
2448 RAD-Seq Data Reveals Evidence of Local Adaptation between Upstream and Downstream Populations of Australian Glass Shrimp

Authors: Sharmeen Rahman, Daniel Schmidt, Jane Hughes

Abstract:

Paratya australiensis Kemp (Decapoda: Atyidae) is a widely distributed indigenous freshwater shrimp, highly abundant in eastern Australia. This species has been considered as a model stream organism to study genetics, dispersal, biology, behaviour and evolution in Atyids. Paratya has a filter feeding and scavenging habit which plays a significant role in the formation of lotic community structure. It has been shown to reduce periphyton and sediment from hard substrates of coastal streams and hence acts as a strongly-interacting ecosystem macroconsumer. Besides, Paratya is one of the major food sources for stream dwelling fishes. Paratya australiensis is a cryptic species complex consisting of 9 highly divergent mitochondrial DNA lineages. Among them, one lineage has been observed to favour upstream sites at higher altitudes, with cooler water temperatures. This study aims to identify local adaptation in upstream and downstream populations of this lineage in three streams in the Conondale Range, North-eastern Brisbane, Queensland, Australia. Two populations (up and down stream) from each stream have been chosen to test for local adaptation, and a parallel pattern of adaptation is expected across all streams. Six populations each consisting of 24 individuals were sequenced using the Restriction Site Associated DNA-seq (RAD-seq) technique. Genetic markers (SNPs) were developed using double digest RAD sequencing (ddRAD-seq). These were used for de novo assembly of Paratya genome. De novo assembly was done using the STACKs program and produced 56, 344 loci for 47 individuals from one stream. Among these individuals, 39 individuals shared 5819 loci, and these markers are being used to test for local adaptation using Fst outlier tests (Arlequin) and Bayesian analysis (BayeScan) between up and downstream populations. Fst outlier test detected 27 loci likely to be under selection and the Bayesian analysis also detected 27 loci as under selection. Among these 27 loci, 3 loci showed evidence of selection at a significance level using BayeScan program. On the other hand, up and downstream populations are strongly diverged at neutral loci with a Fst =0.37. Similar analysis will be done with all six populations to determine if there is a parallel pattern of adaptation across all streams. Furthermore, multi-locus among population covariance analysis will be done to identify potential markers under selection as well as to compare single locus versus multi-locus approaches for detecting local adaptation. Adaptive genes identified in this study can be used for future studies to design primers and test for adaptation in related crustacean species.

Keywords: Paratya australiensis, rainforest streams, selection, single nucleotide polymorphism (SNPs)

Procedia PDF Downloads 255
2447 Jurisdiction Conflicts in Contracts of International Maritime Transport: The Application of the Forum Selection Clause in Brazilian Courts

Authors: Renan Caseiro De Almeida, Mateus Mello Garrute

Abstract:

The world walks to be ever more globalised. This trend promotes an increase on the number of transnational commercial transactions. The main modal for carriage of goods is by sea, and many countries have their economies dependent on the maritime freightage – it could be because they exercise largely this activity or because they follow the tendency of using the maritime logistic widely. Among these ones, Brazil is included. This nation counts with sixteen ports with good capacities, which receive most of the international income by sea. It is estimated that 85 per cent of the total influx of goods in Brazil is by maritime modal, leaving mere 15 per cent for the other ones. This made it necessary to develop maritime law in international and national basis, to create a standard to be applied with the intention to harmonize the transnational carriage of goods by sea. Maritime contracts are very specific and have interesting peculiarities, but in their range, little research has been made on what causes the main divergences when it comes to international contracts: the jurisdiction conflict. Likewise any other international contract, it is common for the parties to set a forum selection clause to choose the forum which will be able to judge the litigations that could rise from a maritime transport contract and, consequently, also which law should be applied to the cases. However, the forum choice in Brazil has always been somewhat polemical – not only in the maritime law sphere - for sometimes national tribunals overlook the parties’ choice and call the competence for themselves. In this sense, it is interesting to mention that the Mexico Convention of 1994 about the law applicable to international contracts did not gain strength in Brazil, nor even reached the Congress to be considered for ratification. Furthermore, it is also noteworthy that Brazil has a new Civil Procedure Code, which was put into reinforcement in 2016 bringing new legal provisions specifically about the forum selection. This represented a mark in the national legal system in this matter. Therefore, this paper intends to give an insight through Brazilian jurisprudence, making an analysis of how this issue has been treated on litigations about maritime contracts in the national tribunals, as well as the solutions found by the Brazilian legal system for the jurisdiction conflicts in those cases. To achieve the expected results, the hypothetical-deductive method will be used in combination with researches on doctrine and legislations. Also, jurisprudential research and case law study will have a special role, since the main point of this paper is to verify and study the position of the courts in Brazil in a specific matter. As a country of civil law, the Brazilian judges and tribunals are very attached to the rules displayed on codes. However, the jurisprudential understanding has been changing during the years and with the advent of the new rules about the applicable law and forum selection clause, it is noticeable that new winds are being blown.

Keywords: applicable law, forum selection clause, international business, international maritime contracts, litigation in courts

Procedia PDF Downloads 274
2446 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 274
2445 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
2444 Pawn or Potentates: Corporate Governance Structure in Indian Central Public Sector Enterprises

Authors: Ritika Jain, Rajnish Kumar

Abstract:

The Department of Public Enterprises had made submissions of Self Evaluation Reports, for the purpose of corporate governance, mandatory for all central government owned enterprises. Despite this, an alarming 40% of the enterprises did not do so. This study examines the impact of external policy tools and internal firm-specific factors on corporate governance of central public sector enterprises (CPSEs). We use a dataset of all manufacturing and non-financial services owned by the central government of India for the year 2010-11. Using probit, ordered logit and Heckman’s sample selection models, the study finds that the probability and quality of corporate governance is positively influenced by the CPSE getting into a Memorandum of Understanding (MoU) with the central government of India, and hence, enjoying more autonomy in terms of day to day operations. Besides these, internal factors, including bigger size and lower debt size contribute significantly to better corporate governance.

Keywords: corporate governance, central public sector enterprises (CPSEs), sample selection, Memorandum of Understanding (MoU), ordered logit, disinvestment

Procedia PDF Downloads 257
2443 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 200
2442 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
2441 Factors Constraining the Utilization of Risk Management Strategies in the Execution of Public Construction Projects in North East Nigeria

Authors: S. U. Kunya, S. A. Mohammad

Abstract:

Construction projects in Nigeria are characterized with risks emanating from delays and accompanying cost-overruns. The aim of the study was to identify and assess factors constraining the utilization of risk management strategies in the execution of public construction project in North-East Nigeria. Data was collected with the aid of a well-structured questionnaire administered to three identified projects in the North-east. Data collected were analysed using the severity index. Findings revealed political involvement, selection of inexperienced contractors and lack of coordinated public sector strategy as the most severe factors constraining the utilization of risk management strategies. The study recommended that: formulation of laws to prevent negative political meddling in construction projects; selection of experienced, risk-informed contractors; and comprehensive risk assessment and planning on all public construction projects.

Keywords: factors, Nigeria, north-east, public projects, risk management, strategies, utilization

Procedia PDF Downloads 532