Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1327

Search results for: stochastic noise

1327 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation

Procedia PDF Downloads 299
1326 Identification of Wiener Model Using Iterative Schemes

Authors: Vikram Saini, Lillie Dewan

Abstract:

This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.

Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model

Procedia PDF Downloads 271
1325 Weak Solutions Of Stochastic Fractional Differential Equations

Authors: Lev Idels, Arcady Ponosov

Abstract:

Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.

Keywords: delay equations, operator methods, stochastic noise, weak solutions

Procedia PDF Downloads 50
1324 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad Daba, Jean-Pierre Dubois

Abstract:

Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process

Procedia PDF Downloads 386
1323 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 104
1322 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 50
1321 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A

Abstract:

This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 66
1320 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.

Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis

Procedia PDF Downloads 231
1319 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise

Procedia PDF Downloads 415
1318 A Paradigm for Characterization and Checking of a Human Noise Behavior

Authors: Himanshu Dehra

Abstract:

This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated.

Keywords: human brain, noise behavior, noise characterization, noise filters, physiological responses, psychoacoustics

Procedia PDF Downloads 384
1317 Analysis of Filtering in Stochastic Systems on Continuous- Time Memory Observations in the Presence of Anomalous Noises

Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov

Abstract:

For optimal unbiased filter as mean-square and in the case of functioning anomalous noises in the observation memory channel, we have proved insensitivity of filter to inaccurate knowledge of the anomalous noise intensity matrix and its equivalence to truncated filter plotted only by non anomalous components of an observation vector.

Keywords: mathematical expectation, filtration, anomalous noise, memory

Procedia PDF Downloads 285
1316 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises

Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov

Abstract:

We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.

Keywords: mathematical expectation, filtration, anomalous noise, memory

Procedia PDF Downloads 164
1315 Stochastic Age-Structured Population Models

Authors: Arcady Ponosov

Abstract:

Many well-known age-structured population models are derived from the celebrated McKendrick-von Foerster equation (MFE), also called the biological conservation law. A similar technique is suggested for the stochastically perturbed MFE. This technique is shown to produce stochastic versions of the deterministic population models, which appear to be very different from those one can construct by simply appending additive stochasticity to deterministic equations. In particular, it is shown that stochastic Nicholson’s blowflies model should contain both additive and multiplicative stochastic noises. The suggested transformation technique is similar to that used in the deterministic case. The difference is hidden in the formulas for the exact solutions of the simplified boundary value problem for the stochastically perturbed MFE. The analysis is also based on the theory of stochastic delay differential equations.

Keywords: boundary value problems, population models, stochastic delay differential equations, stochastic partial differential equation

Procedia PDF Downloads 98
1314 Low Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors

Procedia PDF Downloads 341
1313 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun

Abstract:

A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 341
1312 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 179
1311 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 102
1310 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: decentralized, optimal control, output, singular perturb

Procedia PDF Downloads 283
1309 Prediction of Conducted EMI Noise in a Converter

Authors: Jon Cobb, Nasir

Abstract:

Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.

Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise

Procedia PDF Downloads 301
1308 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: non-stationary stochastic optimization, oscillating water, temporal variability, wave energy

Procedia PDF Downloads 256
1307 An Algorithm for Removal of Noise from X-Ray Images

Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See

Abstract:

In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.

Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF

Procedia PDF Downloads 284
1306 Lyapunov and Input-to-State Stability of Stochastic Differential Equations

Authors: Arcady Ponosov, Ramazan Kadiev

Abstract:

Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework.

Keywords: asymptotic stability, delay equations, operator methods, stochastic perturbations

Procedia PDF Downloads 75
1305 Development of Low Noise Savonius Wind Turbines

Authors: Sanghyeon Kim, Cheolung Cheong

Abstract:

Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.

Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine

Procedia PDF Downloads 276
1304 Mapping of Traffic Noise in Riyadh City-Saudi Arabia

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways.

Keywords: noise pollution, road traffic noise, LimA predictor, GPS

Procedia PDF Downloads 199
1303 On Stability of Stochastic Differential Equations with Non Trivial Solutions

Authors: Fakhreddin Abedi, Wah June Leong

Abstract:

Exponential stability of stochastic differential equations with non-trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f (.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equations when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for the exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.

Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito’s formula

Procedia PDF Downloads 78
1302 Evaluation of Musical Conductor Exposure to Noise

Authors: Ahmed Saleh Summan

Abstract:

This article presents the results of a technical report on the evaluation of occupational noise exposures among a musical conductor in a musical rehearsal hall (party–center). A calibrated noise dosimeter was used to measure the personal exposure of a music teacher/conductor for 8 hours in two days of rehearsal involving 90 players. Results showed that noise exposure levels were much higher than the permissible levels regulated 85dBA/8hr by NIOSH. In fact, the first day of measurements recorded the highest exposure levels (91 dBA). A number of factors contributed to these results, such as players number, types of instruments used, and activities. Noise control measures were recommended to solve this situation.

Keywords: noise exposure, music conductors, occupational noise, noise in rooms

Procedia PDF Downloads 23
1301 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha

Abstract:

Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 363
1300 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 378
1299 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models

Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah

Abstract:

In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.

Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model

Procedia PDF Downloads 161
1298 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 485