Search results for: finger vein recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1987

Search results for: finger vein recognition

1417 The Effect of Spent Mushroom Substrate on Blood Metabolites in Kurdish Male Lambs

Authors: Alireza Vakili, Shahab Ehtesham, Mohsen Danesh Mesgaran

Abstract:

The objective of this study was use different levels of spent mushroom substrate as a suitable substitute for wheat straw in the ration of male lambs. In this study 20 male lambs with the age of 90 days and initial average weight of 33± 1.7 kg were used. The animals were divided separately into single boxes with four treatments (control treatment, spent mushroom substrate 15%, spent mushroom substrate 25% and spent mushroom substrate 35%) and five replications. The experiment period was 114 days being 14 days adaptation and 90 days for breeding. On the days 36 and 94, blood samples were taken from the jugular vein. In order to carry out the trial, 20 male lambs received the four experimental diets in completely randomized design. The statistical analyses were carried out by using the GLM procedure of SAS 9.1. Means among treatments were compared by Tukey test. The results of the study showed that there was no significant differences between the serum biochemical and hematological contents of the lambs in the four treatments (p>0.05). It was concluded that spent mushroom substrate consumption has no harmful effect on the blood parameters of Kurdish male lambs.

Keywords: alternative food, nutrition, sheep performance, spent mushroom substrate

Procedia PDF Downloads 351
1416 The Hijras of Odisha: A Study of the Self-Identity of the Eunuchs and Their Identification with Stereotypical Feminine Roles

Authors: Purnima Anjali Mohanty, Mousumi Padhi

Abstract:

Background of the study: In the background of the passage of the Transgender Bill 2016, which is the first such step of formal recognition of the rights of transgender, the Hijras have been recognized under the wider definition of Transgender. Fascinatingly, in the Hindu social context, Hijras have a long social standing during marriages and childbirths. Other than this ironically, they live an ostracized life. The Bill rather than recognizing their unique characteristics and needs, reinforces the societal dualism through a parallelism of their legal rights with rights available to women. Purpose of the paper: The research objective was to probe why and to what extent did they identify themselves with the feminine gender roles. Originality of the paper: In the Indian context, the subject of eunuch has received relatively little attention. Among the studies that exist, there has been a preponderance of studies from the perspective of social exclusion, rights, and physical health. There has been an absence of research studying the self-identity of Hijras from the gender perspective. Methodology: The paper adopts the grounded theory method to investigate and discuss the underlying gender identity of transgenders. Participants in the study were 30 hijras from various parts of Odisha. 4 Focus group discussions were held for collecting data. The participants were approached in their natural habitat. Following the methodological recommendations of the grounded theory, care was taken to select respondents with varying experiences. The recorded discourses were transcribed verbatim. The transcripts were analysed sentence by sentence, and coded. Common themes were identified, and responses were categorized under the themes. Data collected in the latter group discussions were added till saturation of themes. Finally, the themes were put together to prove that despite the demand for recognition as third gender, the eunuchs of Odisha identify themselves with the feminine roles. Findings: The Hijra have their own social structure and norms which are unique and are in contrast with the mainstream culture. These eunuchs live and reside in KOTHIS (house), where the family is led by a matriarch addressed as Maa (mother) with her daughters (the daughters are eunuchs/effeminate men castrated and not castrated). They all dress up as woman, do womanly duties, expect to be considered and recognized as woman and wife and have the behavioral traits of a woman. Looking from the stance of Feminism one argues that when the Hijras identify themselves with the gender woman then on what grounds they are given the recognition as third gender. As self-identified woman; their claim for recognition as third gender falls flat. Significance of the study: Academically it extends the study of understanding of gender identity and psychology of the Hijras in the Indian context. Practically its significance is far reaching. The findings can be used to address legal and social issues with regards to the rights available to the Hijras.

Keywords: feminism, gender perspective, Hijras, rights, self-identity

Procedia PDF Downloads 431
1415 The United States Film Industry and Its Impact on Latin American Identity Rationalizations

Authors: Alfonso J. García Osuna

Abstract:

Background and Significance: The objective of this paper is to analyze the inception and development of identity archetypes in early XX century Latin America, to explore their roots in United States culture, to discuss the influences that came to bear upon Latin Americans as the United States began to export images of standard identity paradigms through its film industry, and to survey how these images evolved and impacted Latin Americans’ ideas of national distinctiveness from the early 1900s to the present. Therefore, the general hypothesis of this work is that United States film in many ways influenced national identity patterning in its neighbors, especially in those nations closest to its borders, Cuba and Mexico. Very little research has been done on the social impact of the United States film industry on the country’s southern neighbors. From a historical perspective, the US’s influence has been examined as the projection of political and economic power, that is to say, that American influence is seen as a catalyst to align the forces that the US wants to see wield the power of the State. But the subtle yet powerful cultural influence exercised by film, the eminent medium for exporting ideas and ideals in the XX century, has not been significantly explored. Basic Methodologies and Description: Gramscian Marxist theory underpins the study, where it is argued that film, as an exceptional vehicle for culture, is an important site of political and social struggle; in this context, it aims to show how United States capitalist structures of power not only use brute force to generate and maintain control of overseas markets, but also promote their ideas through artistic products such as film in order to infiltrate the popular culture of subordinated peoples. In this same vein, the work of neo-Marxist theoreticians of popular culture is employed in order to contextualize the agency of subordinated peoples in the process of cultural assimilations. Indication of the Major Findings of the Study: The study has yielded much data of interest. The salient finding is that each particular nation receives United States film according to its own particular social and political context, regardless of the amount of pressure exerted upon it. An example of this is the unmistakable dissimilarity between Cuban and Mexican reception of US films. The positive reception given in Cuba to American film has to do with the seamless acceptance of identity paradigms that, for historical reasons discussed herein, were incorporated into the national identity grid quite unproblematically. Such is not the case with Mexico, whose express rejection of identity paradigms offered by the United States reflects not only past conflicts with the northern neighbor, but an enduring recognition of the country’s indigenous roots, one that precluded such paradigms. Concluding Statement: This paper is an endeavor to elucidate the ways in which US film contributed to the outlining of Latin American identity blueprints, offering archetypes that would be accepted or rejected according to each nation’s particular social requirements, constraints and ethnic makeup.

Keywords: film studies, United States, Latin America, identity studies

Procedia PDF Downloads 298
1414 Cognitive Development Theories as Determinant of Children's Brand Recall and Ad Recognition: An Indian Perspective

Authors: Ruchika Sharma

Abstract:

In the past decade, there has been an explosion of research that has examined children’s understanding of TV advertisements and its persuasive intent, socialization of child consumer and child psychology. However, it is evident from the literature review that no studies in this area have covered advertising messages and its impact on children’s brand recall and ad recognition. Copywriters use various creative devices to lure the consumers and very impressionable consumers such as children face far more drastic effects of these creative ways of persuasion. On the basis of Piaget’s theory of cognitive development as a theoretical basis for predicting/understanding children’s response and understanding, a quasi-experiment was carried out for the study, that manipulated measurement timing and advertising messages (familiar vs. unfamiliar) keeping gender and age group as two prominent factors. This study also examines children’s understanding of Advertisements and its elements, predominantly - Language, keeping in view Fishbein’s model. Study revealed significant associations between above mentioned factors and children’s brand recall and ad identification. Further, to test the reliability of the findings on larger sample, bootstrap simulation technique was used. The simulation results are in accordance with the findings of experiment, suggesting that the conclusions obtained from the study can be generalized for entire children’s (as consumers) market in India.

Keywords: advertising, brand recall, cognitive development, preferences

Procedia PDF Downloads 290
1413 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 234
1412 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 289
1411 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 174
1410 An Event-Related Potential Study of Individual Differences in Word Recognition: The Evidence from Morphological Knowledge of Sino-Korean Prefixes

Authors: Jinwon Kang, Seonghak Jo, Joohee Ahn, Junghye Choi, Sun-Young Lee

Abstract:

A morphological priming has proved its importance by showing that segmentation occurs in morphemes when visual words are recognized within a noticeably short time. Regarding Sino-Korean prefixes, this study conducted an experiment on visual masked priming tasks with 57 ms stimulus-onset asynchrony (SOA) to see how individual differences in the amount of morphological knowledge affect morphological priming. The relationship between the prime and target words were classified as morphological (e.g., 미개척 migaecheog [unexplored] – 미해결 mihaegyel [unresolved]), semantical (e.g., 친환경 chinhwangyeong [eco-friendly]) – 무공해 mugonghae [no-pollution]), and orthographical (e.g., 미용실 miyongsil [beauty shop] – 미확보 mihwagbo [uncertainty]) conditions. We then compared the priming by configuring irrelevant paired stimuli for each condition’s control group. As a result, in the behavioral data, we observed facilitatory priming from a group with high morphological knowledge only under the morphological condition. In contrast, a group with low morphological knowledge showed the priming only under the orthographic condition. In the event-related potential (ERP) data, the group with high morphological knowledge presented the N250 only under the morphological condition. The findings of this study imply that individual differences in morphological knowledge in Korean may have a significant influence on the segmental processing of Korean word recognition.

Keywords: ERP, individual differences, morphological priming, sino-Korean prefixes

Procedia PDF Downloads 212
1409 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
1408 An Ontological Approach to Existentialist Theatre and Theatre of the Absurd in the Works of Jean-Paul Sartre and Samuel Beckett

Authors: Gülten Silindir Keretli

Abstract:

The aim of this study is to analyse the works of playwrights within the framework of existential philosophy. It is to observe the ontological existence in the plays of No Exit and Endgame. Literary works will be discussed separately in each section of this study. The despair of post-war generation of Europe problematized the ‘human condition’ in every field of literature which is the very product of social upheaval. With this concern in his mind, Sartre’s creative works portrayed man as a lonely being, burdened with terrifying freedom to choose and create his own meaning in an apparently meaningless world. The traces of the existential thought are to be found throughout the history of philosophy and literature. On the other hand, the theatre of the absurd is a form of drama showing the absurdity of the human condition and it is heavily influenced by the existential philosophy. Beckett is the most influential playwright of the theatre of the absurd. The themes and thoughts in his plays share many tenets of the existential philosophy. The existential philosophy posits the meaninglessness of existence and it regards man as being thrown into the universe and into desolate isolation. To overcome loneliness and isolation, the human ego needs recognition from the other people. Sartre calls this need of recognition as the need for ‘the Look’ (Le regard) from the Other. In this paper, existentialist philosophy and existentialist angst will be elaborated and then the works of existentialist theatre and theatre of absurd will be discussed within the framework of existential philosophy.

Keywords: consciousness, existentialism, the notion of the absurd, the other

Procedia PDF Downloads 157
1407 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 364
1406 Being Your Own First Responder: A Training to Identify and Respond to Mental Health

Authors: Joe Voshall, Leigha Shoup

Abstract:

In 2022, the Ohio Peace Officer Training Council and the Attorney General required officers to complete a minimum of 24 hours of continued professional training for the year. Much of the training was based on Mental Health or similarly related topics. This includes Officer Wellness and Officer Mental Health. It is becoming clearer that the stigma of Officer / First Responder Mental Health is a topic that is becoming more prevalently faced. To assist officers and first responders in facing mental health issues, we are developing new training. This training will aid in recognizing mental health-related issues in officers/first responders and citizens, as well as further using the same information to better respond and interact with one another and the public. In general, society has many varying views of mental health, much of which is largely over-sensationalized by television, movies, and other forms of entertainment. There has also been a stigma in law enforcement / first responders related to mental health and being weak as a result of on-the-job-related trauma-induced struggles. It is our hope this new training will assist officers and first responders in not only positively facing and addressing their mental health but using their own experience and education to recognize signs and symptoms of mental health within individuals in the community. Further, we hope that through this recognition, officers and first responders can use their experiences and more in-depth understanding to better interact within the field and with the public. Through recognition and better understanding of mental health issues and more positive interaction with the public, additional achievements are likely to result. This includes in the removal of bias and stigma for everyone.

Keywords: law enforcement, mental health, officer related mental health, trauma

Procedia PDF Downloads 162
1405 Mirrors and Lenses: Multiple Views on Recognition in Holocaust Literature

Authors: Kirsten A. Bartels

Abstract:

There are a number of similarities between survivor literature and Holocaust fiction for children and young adults. The paper explores three facets of the parallels of recognition found specifically between Livia Bitton-Jackson’s memoir of her experience during the Holocaust as an inmate in Auschwitz, I Have Lived a Thousand Years (1999) and Morris Glietzman series of Holocaust fiction. While Bitton-Jackson reflects on her past and Glietzman designs a fictive character, both are judicious with what they are willing to impart, only providing information about their appearance or themselves when it impacts others or when it serves a necessary purpose to the story. Another similarity lies in another critical aspect of many works of Holocaust literature – the idea of being ‘representatively Jewish’. The authors come to this idea from different angles, perhaps best explained as the difference between showing and telling, for Bitton-Jackson provides personal details, and Gleitzman constructed Felix arguably with this idea in mind. Interwoven through their journeys is a shift in perspectives on being recognized -- from wanting to be seen as individuals to being seen as Jew. With this, being Jewish takes on different meaning, both youths struggle with being labeled as something they do not truly understand, and may have not truly identified with, from a label, to a death warrant. With survivor literature viewed as the most credible and worthwhile type of Holocaust literature and Holocaust fiction is often seen as the least (with children’s and young-adult being the lowest form) the similarities in approaches to telling the stories may go overlooked or be undervalued. This paper serves as an exploration in the some of parallel messages shared between the two.

Keywords: holocaust fiction, Holocaust literature, representatively Jewish, survivor literature

Procedia PDF Downloads 166
1404 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 74
1403 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
1402 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: electric field, finite element method, microwave energy, natural rubber glove

Procedia PDF Downloads 262
1401 Development of Soft-Core System for Heart Rate and Oxygen Saturation

Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik

Abstract:

This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.

Keywords: heart rate, NIOS II, oxygen saturation, photoplethysmography, soft-core, SOPC

Procedia PDF Downloads 193
1400 Effective Nutrition Label Use on Smartphones

Authors: Vladimir Kulyukin, Tanwir Zaman, Sarat Kiran Andhavarapu

Abstract:

Research on nutrition label use identifies four factors that impede comprehension and retention of nutrition information by consumers: label’s location on the package, presentation of information within the label, label’s surface size, and surrounding visual clutter. In this paper, a system is presented that makes nutrition label use more effective for nutrition information comprehension and retention. The system’s front end is a smartphone application. The system’s back end is a four node Linux cluster for image recognition and data storage. Image frames captured on the smartphone are sent to the back end for skewed or aligned barcode recognition. When barcodes are recognized, corresponding nutrition labels are retrieved from a cloud database and presented to the user on the smartphone’s touchscreen. Each displayed nutrition label is positioned centrally on the touchscreen with no surrounding visual clutter. Wikipedia links to important nutrition terms are embedded to improve comprehension and retention of nutrition information. Standard touch gestures (e.g., zoom in/out) available on mainstream smartphones are used to manipulate the label’s surface size. The nutrition label database currently includes 200,000 nutrition labels compiled from public web sites by a custom crawler. Stress test experiments with the node cluster are presented. Implications for proactive nutrition management and food policy are discussed.

Keywords: mobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 372
1399 Management and Conservation of Crop Biodiversity in Karnali Mountains of Nepal

Authors: Chhabi Paudel

Abstract:

The food and nutrition security of the people of the mountain of Karnali province of Nepal is dependent on traditional crop biodiversity. The altitude range of the study area is 1800 meters to 2700 meters above sea level. The climate is temperate to alpine. Farmers are adopting subsistent oriented diversified farming systems and selected crop species, cultivars, and local production systems by their own long adaptation mechanism. The major crop species are finger millet, proso millet, foxtail millet, potato, barley, wheat, mountain rice, buckwheat, Amaranths, medicinal plants, and many vegetable species. The genetic and varietal diversity of those underutilized indigenous crops is also very high, which has sustained farming even in uneven climatic events. Biodiversity provides production synergy, inputs, and other agro-ecological services for self-sustainability. But increase in human population and urban accessibility are seen as threats to biodiversity conservation. So integrated conservation measures are suggested, including agro-tourism and other monetary benefits to the farmers who conserve the local biodiversity.

Keywords: crop biodiversity, climate change, in-situ conservation, resilience, sustainability, agrotourism

Procedia PDF Downloads 96
1398 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 21
1397 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 10
1396 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 268
1395 Entrepreneurial Leadership in Malaysian Public University: Competency and Behavior in the Face of Institutional Adversity

Authors: Noorlizawati Abd Rahim, Zainai Mohamed, Zaidatun Tasir, Astuty Amrin, Haliyana Khalid, Nina Diana Nawi

Abstract:

Entrepreneurial leaders have been sought as in-demand talents to lead profit-driven organizations during turbulent and unprecedented times. However, research regarding the pertinence of their roles in the public sector has been limited. This paper examined the characteristics of the challenging experiences encountered by senior leaders in public universities that require them to embrace entrepreneurialism in their leadership. Through a focus group interview with five Malaysian university top senior leaders with experience being Vice-Chancellor, we explored and developed a framework of institutional adversity characteristics and exemplary entrepreneurial leadership competency in the face of adversity. Complexity of diverse stakeholders, multiplicity of academic disciplines, unfamiliarity to lead different and broader roles, leading new directions, and creating change in high velocity and uncertain environment are among the dimensions that characterise institutional adversities. Our findings revealed that learning agility, opportunity recognition capacity, and bridging capability are among the characteristics of entrepreneurial university leaders. The findings reinforced that the presence of specific attributes in institutional adversity and experiences in overcoming those challenges may contribute to the development of entrepreneurial leadership capabilities.

Keywords: bridging capability, entrepreneurial leadership, leadership development, learning agility, opportunity recognition, university leaders

Procedia PDF Downloads 110
1394 Detaching the ‘Criminal Justice Conveyor Belt’: Diversion as a Responsive Mechanism for Children in Kenya

Authors: Sarah Kinyanjui, Mahnaaz Mohamed

Abstract:

The child justice system in Kenya is organically departing from a managerial and retributive model to one that espouses restorative justice. Notably, the Children Act 2001, and the most recent, Children Act 2022, signalled an aspiration to facilitate meaningful interventions as opposed to ‘processing’ children through the justice system. In this vein, the Children Act 2022 formally recognises diversion and provides modalities for its implementation. This paper interrogates the diversion promise and reflects on the implementation of diversion as envisaged by the 2022 Act. Using restorative justice, labelling and differential association theories as well as the value of care lenses, the paper discusses diversion as a meaningful response to child offending. It further argues that while diversion presents a strong platform for the realisation of the restorative and rehabilitative ideals, in the absence of a well-planned, coordinated, and resourced framework, diversion may remain a mere alternative ‘conveyor belt’. Strategic multi-agency planning, capacity building and cooperation are highlighted as essential minimums for the realisation of the goals of diversion.

Keywords: diversion for child offenders, restorative justice, responsive criminal justice system, children act 2022 kenya

Procedia PDF Downloads 65
1393 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 137
1392 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling

Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil

Abstract:

The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.

Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody

Procedia PDF Downloads 411
1391 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
1390 Development of DNA Fingerprints in Selected Medicinal Plants of India

Authors: V. Verma, Hazi Raja

Abstract:

Conventionally, morphological descriptors are routinely used for establishing the identity of varieties. But these morphological descriptors suffer from many drawbacks such as influence of environment on trait expression, epistatic interactions, pleiotrophic effects etc. Furthermore, the paucity of a sufficient number of these descriptors for unequivocal identification of increasing number of reference collection varieties enforces to look for alternatives. Therefore, DNA based finger-print based techniques were selected to define the systematic position of the selected medicinal plants like Plumbago zeylanica, Desmodium gangeticum, Uraria picta. DNA fingerprinting of herbal plants can be useful in authenticating the various claims of medical uses related to the plants, in germplasm characterization and conservation. In plants it has not only helped in identifying species but also in defining a new realm in plant genomics, plant breeding and in conserving the biodiversity. With world paving way for developments in biotechnology, DNA fingerprinting promises a very powerful tool in our future endeavors. Data will be presented on the development of microsatellite markers (SSR) used to fingerprint, characterize, and assess genetic diversity among 12 accessions of both Plumbago zeylanica, 4 accessions of Desmodium gengaticum, 4 accessions of Uraria Picta.

Keywords: Plumbago zeylanica, Desmodium gangeticum, Uraria picta, microsaetllite markers

Procedia PDF Downloads 214
1389 The Visible Third: Female Artists’ Participation in the Portuguese Contemporary Art World

Authors: Sonia Bernardo Correia

Abstract:

This paper is part of ongoing research that aims to understand the role of gender in the composition of the Portuguese contemporary art world and the possibilities and limits to the success of the professional paths of women and men artists. The field of visual arts is gender-sensitive as it differentiates the positions occupied by artists in terms of visibility and recognition. Women artists occupy a peripheral space, which may hinder the progression of their professional careers. Based on the collection of data on the participation of artists in Portuguese exhibitions, art fairs, auctions, and art awards between 2012 and 2019, the goal of this study is to portray female artists’ participation as a condition of professional, social, and cultural visibility. From the analysis of a significant sample of institutions from the artistic field, it was possible to observe that the works of female authors are under exhibited, never exceeding one-third of the total of exhibitions. Male artists also enjoy a comfortable majority as gallery artists (around 70%) and as part of institutional collections (around 80%). However, when analysing the younger age cohorts of artists by gender, it appears that there is representation parity, which may be a good sign of change. The data shows that there are persistent gender inequalities in accessing the artist profession. Women are not yet occupying positions of exposure, recognition, and legitimation in the market similar to those of their male counterparts, suggesting that they may face greater obstacles in experiencing successful professional trajectories.

Keywords: inequalities, invisibility of the woman artist, gender, visual arts

Procedia PDF Downloads 135
1388 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157