Search results for: data making better
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28599

Search results for: data making better

28029 Optimization Financial Technology through E-Money PayTren Application: Reducing Poverty in Indonesia with a System Direct Sales Tiered Sharia

Authors: Erwanda Nuryahya, Aas Nurasyiah, Sri Yayu Ninglasari

Abstract:

Indonesia is the fourth most populous country that still has many troubles in its development. One of the problems which is very important and unresolved is poverty. Limited job opportunity is one unresolved cause of it until today. The purpose of making this scientific paper is to know benefits of E-Money Paytren Application to enhance its partners’ income, owned by company Veritra Sentosa International. The methodology used here is the quantitative and qualitative descriptive method by case study approach. The data used are primary and secondary data. The primary data is obtained from interviews and observation to company Veritra Sentosa International and the distribution of 400 questionnaires to Paytren partner. Secondary data is obtained from the literature study and documentary. The result is that the Paytren with a system direct sales tiered syariah proven able to enhance its partners’ income. Therefore, the Optimization Financial Technology through E-Money Paytren Application should be utilized by Indonesians because it is proven that it is able to increase the income of the partners. Therefore, Paytren Application is very useful for the government, the sharia financial industry, and society in reducing poverty in Indonesia.

Keywords: e-money PayTren application, financial technology, poverty, direct sales tiered Sharia

Procedia PDF Downloads 138
28028 A New Model for Production Forecasting in ERP

Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang

Abstract:

ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.

Keywords: ERP, grey system, LSSVM, production forecasting

Procedia PDF Downloads 464
28027 Measuring Stakeholder Engagement and Drivers of Success in Ethiopian Tourism Sector

Authors: Gezahegn Gizaw

Abstract:

The FDRE Tourism Training Institute organizes forums for debates, best practices exchange and focus group discussions to forge a sustainable and growing tourism sector while minimizing negative impacts on the environment, communities, and cultures. This study aimed at applying empirical research method to identify and quantify relative importance of success factors and individual engagement indicators that were identified in these forums. Response to the 12-question survey was collected from a total of 437 respondents in academic training institutes (212), business executive and employee (204) and non-academic government offices (21). Overall, capacity building was perceived as the most important driver of success for stakeholder engagement. Business executive and employee category rated capacity building as the most important driver of success (53%), followed by decision-making process (27%) and community participation (20%). Among educators and students, both capacity building and decision-making process were perceived as the most important factors (40% of respondents), whereas community participation was perceived as the most important success factor only by 20% of respondents. Individual engagement score in capacity building, decision-making process and community participation showed highest variability by educational level of participants (variance of 3.4% - 5.2%, p<0.001). Individual engagement score in capacity building was highly correlated to perceived benefit of training on improved efficiency, job security, higher customer satisfaction and self-esteem. On the other hand, individual engagement score in decision making process was highly correlated to its perceived benefit on lowering business costs, improving ability to meet the needs of a target market, job security, self-esteem and more teamwork. The study provides a set of recommendations that help educators, business executives and policy makers to maximize the individual and synergetic effect of training, decision making process on sustainability and growth of the tourism sector in Ethiopia.

Keywords: engagement score, driver of success, capacity building, tourism

Procedia PDF Downloads 77
28026 Redefining Health Information Systems with Machine Learning: Harnessing the Potential of AI-Powered Data Fusion Ecosystems

Authors: Shohoni Mahabub

Abstract:

Health Information Systems (HIS) are essential to contemporary healthcare; nonetheless, they frequently encounter challenges such as data fragmentation, inefficiencies, and an absence of real-time analytics. The advent of machine learning (ML) and artificial intelligence (AI) provides a revolutionary potential to address these difficulties via AI-driven data fusion ecosystems. These ecosystems integrate many health data sources, including electronic health records (EHRs), wearable devices, and genetic data, with sophisticated machine learning techniques such as natural language processing (NLP) and predictive analytics to produce actionable insights. Through the integration of strong data intake layers, secure interoperability protocols, and privacy-preserving models, these ecosystems provide individualized treatment, early illness diagnosis, and enhanced operational efficiency. This paradigm change enhances clinical decision-making and rectifies systemic inefficiencies in healthcare delivery. Nonetheless, adoption presents problems such as data privacy concerns, ethical considerations, and scalability constraints. The study examines options such as federated learning for safe, decentralized data sharing, explainable AI for transparency, and cloud-based infrastructure for scalability to address these issues. These ecosystems aim to address health equity disparities, particularly in resource-limited environments, and improve public health surveillance, notably in pandemic response initiatives. This article emphasizes the revolutionary potential of AI-driven data fusion ecosystems in redefining Health Information Systems by providing an implementation roadmap and showcasing successful deployment case studies. The suggested method promotes a cooperative initiative among legislators, healthcare professionals, and technology to establish a cohesive, efficient, and patient-centric healthcare model.

Keywords: AI-powered healthcare systems, data fusion ecosystem, predictive analytics, digital health interoperability

Procedia PDF Downloads 9
28025 An Extension of the Generalized Extreme Value Distribution

Authors: Serge Provost, Abdous Saboor

Abstract:

A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set.

Keywords: extreme value theory, generalized extreme value distribution, goodness-of-fit statistics, Gumbel distribution

Procedia PDF Downloads 350
28024 Risk-Realistic Decision Support Intervention for Women in the Workplace

Authors: Joshua Midha

Abstract:

This paper provides an evaluation of an intervention designed to promote a risk-realistic environment for women in the workplace and regulate their risk-related decision-making. In past research, women -specifically women of color- are highly risk-averse, and this may prove to be an innate obstacle in gender progress in corporations. By helping women see the risks and the benefits and increasing potential benefits, we can increase the chances of success in the workplace. Our intervention was a success and significantly increased comfort, trust, and frequency in the use of decision-making skills in the workplace. In this paper, we explore the intervention, the methods, the results, and the implications.

Keywords: behavioral economics, decision support, risk, gender equality

Procedia PDF Downloads 223
28023 Unlocking Synergy: Exploring the Impact of Integrating Knowledge Management and Competitive Intelligence for Synergistic Advantage for Efficient, Inclusive and Optimum Organizational Performance

Authors: Godian Asami Mabindah

Abstract:

The convergence of knowledge management (KM) and competitive intelligence (CI) has gained significant attention in recent years as organizations seek to enhance their competitive advantage in an increasingly complex and dynamic business environment. This research study aims to explore and understand the synergistic relationship between KM and CI and its impact on organizational performance. By investigating how the integration of KM and CI practices can contribute to decision-making, innovation, and competitive advantage, this study seeks to unlock the potential benefits and challenges associated with this integration. The research employs a mixed-methods approach to gather comprehensive data. A quantitative analysis is conducted using survey data collected from a diverse sample of organizations across different industries. The survey measures the extent of integration between KM and CI practices and examines the perceived benefits and challenges associated with this integration. Additionally, qualitative interviews are conducted with key organizational stakeholders to gain deeper insights into their experiences, perspectives, and best practices regarding the synergistic relationship. The findings of this study are expected to reveal several significant outcomes. Firstly, it is anticipated that organizations that effectively integrate KM and CI practices will outperform those that treat them as independent functions. The study aims to highlight the positive impact of this integration on decision-making, innovation, organizational learning, and competitive advantage. Furthermore, the research aims to identify critical success factors and enablers for achieving constructive interaction between KM and CI, such as leadership support, culture, technology infrastructure, and knowledge-sharing mechanisms. The implications of this research are far-reaching. Organizations can leverage the findings to develop strategies and practices that facilitate the integration of KM and CI, leading to enhanced competitive intelligence capabilities and improved knowledge management processes. Additionally, the research contributes to the academic literature by providing a comprehensive understanding of the synergistic relationship between KM and CI and proposing a conceptual framework that can guide future research in this area. By exploring the synergies between KM and CI, this study seeks to help organizations harness their collective power to gain a competitive edge in today's dynamic business landscape. The research provides practical insights and guidelines for organizations to effectively integrate KM and CI practices, leading to improved decision-making, innovation, and overall organizational performance.

Keywords: Competitive Intelligence, Knowledge Management, Organizational Performance, Incusivity, Optimum Performance

Procedia PDF Downloads 93
28022 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 519
28021 Creativity, Skill, and Intelligence as Understood by Tradition Rooted Craftspersons

Authors: Swasti Singh Ghai

Abstract:

Creativity is understood as an intersubjective phenomenon shaped by socio-cultural values and economic forces. Creativity as a means to achieve progress is a very modern concept, driven by a global capitalist market economy. The dominant urban, often first-world articulations of creativity, overshadow the rural, local and cultural notions of people in the developing nations. Artisanal practices of making grounded in preindustrial and pre-capitalist contexts hold varying cultural and region-specific concepts and standards for ascribing creativity to a person or product, or process. These notions reflect the underlying philosophy that constitutes their worldview. The process of colonization through western education has blurred or overlapped some of these key philosophical concepts. This article adopts a post-colonial stance to understand the perceptions of skill, intelligence and creativity among tradition rooted textile craft practitioners of Kutch, Gujarat in India. The artisans, while negotiating their space in the contemporary markets, are making efforts to include the modern categories of art, craft, and design in their worldview. The paper will first review theories of creativity that throw light on the link between skill, intelligence and creativity. Then the paper will use secondary research and data from interviews to share crafts person notions of skill, creativity and intelligence and their interrelationship.

Keywords: traditional craft, textile, creativity, skill, intelligence

Procedia PDF Downloads 126
28020 Government Big Data Ecosystem: A Systematic Literature Review

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.

Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review

Procedia PDF Downloads 231
28019 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
28018 Human Resource Management Functions; Employee Performance; Professional Health Workers In Public District Hospitals

Authors: Benjamin Mugisha Bugingo

Abstract:

Healthcare staffhas been considered as asignificant pillar to the health care system. However, the contest of human resources for health in terms of the turnover of health workers in Uganda has been more distinct in the latest years. The objective of the paper, therefore, were to investigate the influence Role Human resource management functions in on employeeperformance of professional health workers in public district hospitals in Kampala. The study objectives were: to establish the effect of performance management function, financialincentives, non-financial incentives, participation, and involvement in the decision-making on the employee performance of professional health workers in public district hospitals in Kampala. The study was devised in the social exchange theory and the equity theory. This study adopted a descriptive research design using quantitative approaches. The study used a cross-sectional research design with a mixed-methods approach. With a population of 402 individuals, the study considered a sample of 252 respondents, including doctors, nurses, midwives, pharmacists, and dentists from 3 district hospitals. The study instruments entailed a questionnaire as a quantitative data collection tool and interviews and focus group discussions as qualitative data gathering tools. To analyze quantitative data, descriptive statistics were used to assess the perceived status of Human resource management functions and the magnitude of intentions to stay, and inferential statistics were used to show the effect of predictors on the outcome variable by plotting a multiple linear regression. Qualitative data were analyzed in themes and reported in narrative and verbatim quotes and were used to complement descriptive findings for a better understanding of the magnitude of the study variables. The findings of this study showed a significant and positive effect of performance management function, financialincentives, non-financial incentives, and participation and involvement in decision-making on employee performance of professional health workers in public district hospitals in Kampala. This study is expected to be a major contributor for the improvement of the health system in the country and other similar settings as it has provided the insights for strategic orientation in the area of human resources for health, especially for enhanced employee performance in relation with the integrated human resource management approach

Keywords: human resource functions, employee performance, employee wellness, profecial workers

Procedia PDF Downloads 100
28017 Form of Social Quality Moving Process of Suburb Communities in a Changing World

Authors: Supannee Chaiumporn

Abstract:

This article is to introduce the meaning and form of social quality moving process as indicated by members of two suburb communities with different social and cultural contexts. The form of social quality moving process is very significant for the community and social development, because it will make the people living together with sustainable happiness. This is a qualitative study involving 30 key-informants from two suburb communities. Data were collected though key-informant interviews, and analyzed using logical content description and descriptive statistics. This research found that on the social quality component, the people in both communities stressed the procedure for social quality-making. This includes the generousness, sharing and assisting among people in the communities. These practices helped making people to live together with sustainable happiness. Living as a family or appear to be a family is the major social characteristic of these two communities. This research also found that form of social quality’s moving process of both communities stress relation of human and nature; “nature overpower humans” paradigm and influence of religious doctrine that emphasizes relations among humans. Both criteria make the form of social’s moving process simple, adaptive to nature and caring for opinion sharing and understanding among each other before action. This form of social quality’s moving process is composed of 4 steps; (1) awareness building, (2) motivation to change, (3) participation from every party concerned (4) self-reliance.

Keywords: social quality, form of social quality moving process, happiness, different social and cultural context

Procedia PDF Downloads 386
28016 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 115
28015 Effects of Land Certification in Securing Women’s Land Rights: The Case of Oromia Regional State, Central Ethiopia

Authors: Mesfin Nigussie Ibido

Abstract:

The study is designed to explore the effects of land certification in securing women’s land rights of two rural villages in Robe district at Arsi Zone of Oromia regional state. The land is very critical assets for human life survival and the backbone for rural women livelihood. Equal access and control power to the land have given a chance for rural women to participate in different economic activities and improve their bargaining ability for decision making on their rights. Unfortunately, women were discriminated and marginalized from access and control of land for centuries through customary practices. However, in many countries, legal reform is used as a powerful tool for eliminating discriminatory provisions in property rights. Among other equity and efficiency concerns, the land certification program in Ethiopia attempts to address gender bias concerns of the current land-tenure system. The existed rural land policy was recognizing a women land rights and benefited by strengthened wives awareness of their land rights and contribute to the strong involvement of wives in decision making. However, harmful practices and policy implementation problems still against women do not fully exercise a provision of land rights in a different area of the country. Thus, this study is carried out to examine the effect of land certification in securing women’s land rights by eliminating the discriminatory nature of cultural abuses of study areas. Probability and non-probability sampling types were used, and the sample size was determined by using the sampling distribution of the proportion method. Systematic random sampling method was applied by taking the nth element of the sample frame. Both quantitative and qualitative research methods were applied, and survey respondents of 192 households were conducted and administering questionnaires in the quantitative method. The qualitative method was applied by interviews with focus group discussions with rural women, case stories, Village, and relevant district offices. Triangulation method was applied in data collection, data presentation and in the analysis of findings. Study finding revealed that the existence of land certification is affected by rural women positively by advancing their land rights, but still, some women are challenged by unsolved problems in the study areas. The study forwards recommendation on the existed problems or gaps to ensure women’s equal access to and control over land in the study areas.

Keywords: decision making, effects, land certification, land right, tenure security

Procedia PDF Downloads 207
28014 Evaluation of TRIS-DMA-NVP Hydrogels for Making Silicone-Based Contact Lenses

Authors: N. P. D. Tran, H. Q. D. Nguyen, M. C. Yang

Abstract:

In this study, contact lenses were prepared through the polymerization of tris-(trimethyl-silyl-propyl-methacrylate) (TRIS), N,N-dimethylacrylamide (DMA), N-vinylpyrrolidone (NVP), and cross-linked with ethylene glycol dimethylacrylate (EGDMA). The equilibrium water content (EWC), oxygen permeability (Dk), light transmittance, and in vitro cytotoxicity of TRIS-DMA-NVP with various ratios were measured. The results showed that the EWC increased while the Dk decreased with the increase of NVP content. For the sample with 25 wt% NVP, the EWC attained 53% whereas the Dk decreased to 46 barrers. All these lenses exhibited light transmittance over than 95%. In addition, all these lenses exhibited no inhibition to the growth of L292 fibroblasts. Thus, this study showed that TRIS-DMA-NVP can be applicable for making contact lens.

Keywords: DMA, TRIS, NVP, silicone hydrogel, contact lens

Procedia PDF Downloads 322
28013 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data

Procedia PDF Downloads 335
28012 Ranking Effective Factors on Strategic Planning to Achieve Organization Objectives in Fuzzy Multivariate Decision-Making Technique

Authors: Elahe Memari, Ahmad Aslizadeh, Ahmad Memari

Abstract:

Today strategic planning is counted as the most important duties of senior directors in each organization. Strategic planning allows the organizations to implement compiled strategies and reach higher competitive benefits than their competitors. The present research work tries to prepare and rank the strategies form effective factors on strategic planning in fulfillment of the State Road Management and Transportation Organization in order to indicate the role of organizational factors in efficiency of the process to organization managers. Connection between six main factors in fulfillment of State Road Management and Transportation Organization were studied here, including Improvement of Strategic Thinking in senior managers, improvement of the organization business process, rationalization of resources allocation in different parts of the organization, coordination and conformity of strategic plan with organization needs, adjustment of organization activities with environmental changes, reinforcement of organizational culture. All said factors approved by implemented tests and then ranked using fuzzy multivariate decision-making technique.

Keywords: Fuzzy TOPSIS, improvement of organization business process, multivariate decision-making, strategic planning

Procedia PDF Downloads 423
28011 The Influence of Students’ Learning Factor and Parents’ Involvement in Their Learning and Suspension: The Application of Big Data Analysis of Internet of Things Technology

Authors: Chih Ming Kung

Abstract:

This study is an empirical study examining the enrollment rate and dropout rate of students from the perspectives of students’ learning, parents’ involvement and the learning process. Methods: Using the data collected from the entry website of Internet of Things (IoT), parents’ participation and the installation pattern of exit poll website, an investigation was conducted. Results: This study discovered that in the aspect of the degree of involvement, the attractiveness of courses, self-performance and departmental loyalty exerts significant influences on the four aspects: psychological benefits, physical benefits, social benefits and educational benefits of learning benefits. Parents’ participation also exerts a significant influence on the learning benefits. A suitable tool on the cloud was designed to collect the dynamic big data of students’ learning process. Conclusion: This research’s results can be valuable references for the government when making and promoting related policies, with more macro view and consideration. It is also expected to be contributory to schools for the practical study of promotion for enrollment.

Keywords: students’ learning factor, parents’ involvement, involvement, technology

Procedia PDF Downloads 147
28010 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 67
28009 An Outsourcing System Model for the Thai Electrical Appliances Industry

Authors: Sudawan Somjai

Abstract:

The purpose of this paper was to find an appropriate outsourcing system model for the Thai electrical appliances industry. The objective was to increase competitive capability of the industry with an outsourcing system. The population for this study was the staff in the selected 10 companies in Thai electrical appliances industry located in Bangkok and the eastern part of Thailand. Data collecting techniques included in-depth interviews, focus group and storytelling techniques. The data was collected from 5 key informants from each company, making a total of 50 informants. The findings revealed that an outsourcing model would consist of important factors including outsourcing system, labor flexibility, capability of business process, manpower management efficiency, cost reduction, business risk elimination, core competency and competitiveness. Different suggestions were made as well in this research paper.

Keywords: outsourcing system, model, Thailand, electrical appliances industry

Procedia PDF Downloads 591
28008 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 78
28007 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 285
28006 Building Children's Capacity towards Sustainable Future: Making a Case for a Socio-Cultural Approach to Understanding Sustainability

Authors: Taiwo Frances Gbadegesin

Abstract:

Children’s capacity to contribute to social and economic status of a nation has been given more recognition than ever. Global policy priority aimed at ensuring sustainable development has been extended to the developing nations of the world. However, many developing countries have continued to puzzle out the extent and possibilities of exploring sustainability within their socio-economic environment. This paper considers ways in which the theoretical framework of Dahlberg, Moss and Pence (1999; 2007) and Moss (2007; 2012) that embraces meaning-making, social construction of childhood experiences and democratic perspectives can be used to understand children’s capacity for building a sustainable future. This paper presents data collected through interviews and observations from ECCE teachers and children in Lagos, Nigeria. A distinct finding is that children’s participation in building sustainable future is a consequence of the knowledge of the workings of their social, economic and cultural nuances and not a matter of economic wealth per se. It further argues that sustainability is situated within a complex network of local and global contexts. It thus challenges the present neo-liberal approach and advocates a democratic approach to preparing children for a sustainable society. It concludes that sustainability cannot be built on what may be seen as decontextualized responses by relevant stakeholders to the needs and experiences of the “whole child”.

Keywords: children, ECCE, sustainable development, Nigeria

Procedia PDF Downloads 361
28005 Evaluation of a Personalized Online Decision Aid for Colorectal Cancer Screening: A Randomized Controlled Trial

Authors: Linda P. M. Pluymen, Mariska M. G. Leeflang, I. Stegeman, Henock G. Yebyo, Anne E. M. Brabers, Patrick M. Bossuyt, E. Dekker, Anke J. Woudstra, Mirjam P. Fransen

Abstract:

Weighing the benefits and harms of colorectal cancer screening can be difficult for individuals. An existing online decision aid was expanded with a benefit-harm analysis to help people make an informed decision about participating in colorectal cancer screening. In a randomized controlled trial, we investigated whether those in the intervention group who used the decision aid with benefit-harm analysis were more certain about their decision than those in the control group who used the decision aid without benefit-harm analysis. Participants were 623 (39% of those invited) men and women aged 45 until 75 years old. Analyses were performed in those 386 participants (62%) who reported to have completed the entire decision aid. No statistically significant differences were observed between intervention and control group in decisional conflict score (mean difference 2.4, 95% CI -0.9, 5.6), clarity of values (mean difference 1.0, 95% CI -4.4, 6.6), deliberation score (mean difference 0.5, 95% CI -0.6, 1.7), anxiety score (mean difference 0.0, 95% CI -0.3, 0.3) and risk perception score (mean difference 0.1, -0.1, 0.3). Adding a benefit-harm analysis to an online decision aid did not improve informed decision making about participating in colorectal cancer screening.

Keywords: benefit-harm analysis, decision aid, informed decision making, personalized decision making

Procedia PDF Downloads 171
28004 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 171
28003 The Significance of Awareness about Gender Diversity for the Future of Work: A Multi-Method Study of Organizational Structures and Policies Considering Trans and Gender Diversity

Authors: Robin C. Ladwig

Abstract:

The future of work becomes less predictable, which requires increasing the adaptability of organizations to social and work changes. Society is transforming regarding gender identity in the sense that more people come forward to identify as trans and gender diverse (TGD). Organizations are ill-equipped to provide a safe and encouraging work environment by lacking inclusive organizational structures. The qualitative multi-method research about TGD inclusivity in the workplace explores the enablers and barriers for TGD individuals to satisfactory engage in the work environment and organizational culture. Furthermore, these TGD insights are analyzed about their organizational implications and awareness from a leadership and management perspective. The semi-structured online interviews with TGD individuals and the photo-elicit open-ended questionnaire addressed to leadership and management in diversity, career development, and human resources have been analyzed with a critical grounded theory approach. Findings demonstrated the significance of TGD voices, the support of leadership and management, as well as the synergy between voices and leadership. Hence, it indicates practical implications such as the revision of exclusive language used in policies, data collection, or communication and reconsideration of organizational decision-making by leaders to include TGD voices.

Keywords: future of work, occupational identity, organisational decision-making, trans and gender diverse identity

Procedia PDF Downloads 128
28002 Cultural and Natural Heritage Conservation by GIS Tourism Inventory System Project

Authors: Gamze Safak, Umut Arslanoglu

Abstract:

Cultural and tourism conservation and development zones and tourism centers are the boundaries declared for the purpose of protecting, using, and evaluating the sectoral development and planned development in areas where historical and cultural values are heavily involved and/or where tourism potential is high. The most rapidly changing regions in Turkey are tourism areas, especially the coastal areas. Planning these regions is not about only an economic gain but also a natural and physical environment and refers to a complex process. If the tourism sector is not well controlled, excessive use of natural resources and wrong location choices may cause damage to natural areas, historical values, and socio-cultural structure. Since the strategic decisions taken in the environmental order and zoning plans, which are the means of guiding the physical environment of the Ministry of Culture and Tourism, which have the authority to make plans in tourism centers, are transformed into plan decisions that find the spatial expression, comprehensive evaluation of all kinds of data, following the historical development and based on the correct and current data is required. In addition, the authority has a number of competences in tourism promotion as well as the authority to plan, leading to the necessity of taking part in the applications requiring complex analysis such as the management and integration of the country's economic, political, social and cultural resources. For this purpose, Tourism Inventory System (TES) project, which consists of a series of subsystems, has been developed in order to solve complex planning and method problems in the management of site-related information. The scope of the project is based on the integration of numerical and verbal data in the regions within the jurisdiction of the authority, and the monitoring of the historical development of urban planning studies, making the spatial data of the institution easily accessible, shared, questionable and traceable in international standards. A dynamic and continuous system design has been put into practice by utilizing the advantage of the use of Geographical Information Systems in the planning process to play a role in making the right decisions, revealing the tools of social, economic, cultural development, and preservation of natural and cultural values. This paper, which is prepared by the project team members in TES (Tourism Inventory System), will present a study regarding the applicability of GIS in cultural and natural heritage conservation.

Keywords: cultural conservation, GIS, geographic information system, tourism inventory system, urban planning

Procedia PDF Downloads 119
28001 Sustainable Approach for Strategic Planning of Construction of Buildings using Multi-Criteria Decision Making Tools

Authors: Kishor Bhagwat, Gayatri Vyas

Abstract:

Construction industry is earmarked with complex processes depending on the nature and scope of the project. In recent years, developments in this sector are remarkable and have resulted in both positive and negative impacts on the environment and human being. Sustainable construction can be looked upon as one of the solution to overcome the negative impacts since sustainable construction is a vast concept, which includes many parameters, and sometimes the use of multi-criteria decision making [MCDM] tools becomes necessary. The main objective of this study is to determine the weightage of sustainable building parameters with the help of MCDM tools. Questionnaire survey was conducted to examine the perspective of respondents on the importance of weights of the criterion, and the respondents were architects, green building consultants, and civil engineers. This paper presents an overview of research related to Indian and international green building rating systems and MCDM. The results depict that economy, environmental health, and safety, site selection, climatic condition, etc., are important parameters in sustainable construction.

Keywords: green building, sustainability, multi-criteria decision making method [MCDM], analytical hierarchy process [AHP], technique for order preference by similarity to an ideal solution [TOPSIS], entropy

Procedia PDF Downloads 100
28000 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm

Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima

Abstract:

In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.

Keywords: cloud space, AES, FTP, NetBeans IDE

Procedia PDF Downloads 206