Search results for: data exchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26253

Search results for: data exchange

25683 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 437
25682 The Role Of Data Gathering In NGOs

Authors: Hussaini Garba Mohammed

Abstract:

Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.

Keywords: reliable information, data assessment, data mining, data communication

Procedia PDF Downloads 180
25681 A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network

Authors: Cathal Ffrench, Ryan Barrett, Mike Quayle

Abstract:

It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop.

Keywords: categorization, group dynamics, initial contact, minimal social networks, momentary contact

Procedia PDF Downloads 150
25680 Board Characteristics, Audit Committee Characteristics, and the Level of Bahraini Corporate Compliance with Mandatory IFRS Disclosure Requirements

Authors: Omar Juhmani

Abstract:

This paper examines the relation between internal corporate governance and the level of corporate compliance with mandatory IFRS disclosure requirements. The internal corporate governance is measured by board and audit committee characteristics. Using data from Bahrain Stock Exchange, the results show that board independence is positively and significantly associated with level of compliance with IFRS disclosure requirements. This suggests that internal corporate governance mechanisms are effective in the financial reporting practices by increasing the level of compliance with IFRS disclosures. Also, the results of the regression analyses indicate that two of the control variables; company size and audit firm size are significantly positively associated with the level of corporate compliance with mandatory IFRS disclosure requirements in Bahrain.

Keywords: Bahrain, board and audit committee characteristics, compliance, disclosure, IFRS

Procedia PDF Downloads 421
25679 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 854
25678 To Handle Data-Driven Software Development Projects Effectively

Authors: Shahnewaz Khan

Abstract:

Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.

Keywords: data, data-driven projects, data science, NLP, software project

Procedia PDF Downloads 84
25677 Classical Improvisation Facilitating Enhanced Performer-Audience Engagement and a Mutually Developing Impulse Exchange with Concert Audiences

Authors: Pauliina Haustein

Abstract:

Improvisation was part of Western classical concert culture and performers’ skill sets until early 20th century. Historical accounts, as well as recent studies, indicate that improvisatory elements in the programme may contribute specifically towards the audiences’ experience of enhanced emotional engagement during the concert. This paper presents findings from the author’s artistic practice research, which explored re-introducing improvisation to Western classical performance practice as a musician (cellist and ensemble partner/leader). In an investigation of four concert cycles, the performer-researcher sought to gain solo and chamber music improvisation techniques (both related to and independent of repertoire), conduct ensemble improvisation rehearsals, design concerts with an improvisatory approach, and reflect on interactions with audiences after each concert. Data was collected through use of reflective diary, video recordings, measurement of sound parameters, questionnaires, a focus group, and interviews. The performer’s empirical experiences and findings from audience research components were juxtaposed and interrogated to better understand the (1) rehearsal and planning processes that enable improvisatory elements to return to Western classical concert experience and (2) the emotional experience and type of engagement that occur throughout the concert experience for both performer and audience members. This informed the development of a concert model, in which a programme of solo and chamber music repertoire and improvisations were combined according to historically evidenced performance practice (including free formal solo and ensemble improvisations based on audience suggestions). Inspired by historical concert culture, where elements of risk-taking, spontaneity, and audience involvement (such as proposing themes for fantasies) were customary, this concert model invited musicians to contribute to the process personally and creatively at all stages, from programme planning, and throughout the live concert. The type of democratic, personal, creative, and empathetic collaboration that emerged, as a result, appears unique in Western classical contexts, rather finding resonance in jazz ensemble, drama, or interdisciplinary settings. The research identified features of ensemble improvisation, such as empathy, emergence, mutual engagement, and collaborative creativity, that became mirrored in audience’s responses, generating higher levels of emotional engagement, empathy, inclusivity, and a participatory, co-creative experience. It appears that duringimprovisatory moments in the concert programme, audience members started feeling more like active participants in za\\a creative, collaborative exchange and became stakeholders in a deeper phenomenon of meaning-making and narrativization. Examining interactions between all involved during the concert revealed that performer-audience impulse exchange occurred on multiple levels of awareness and seemed to build upon each other, resulting in particularly strong experiences of both performer and audience’s engagement. This impact appeared especially meaningful for audience members who were seldom concertgoers and reported little familiarity with classical music. The study found that re-introducing improvisatory elements to Western classical concert programmes has strong potential in increasing audience’s emotional engagement with the musical performance, enabling audience members to connect more personally with the individual performers, and in reaching new-to-classical-music audiences.

Keywords: artistic research, audience engagement, audience experience, classical improvisation, ensemble improvisation, emotional engagement, improvisation, improvisatory approach, musical performance, practice research

Procedia PDF Downloads 128
25676 Numerical Study of Fluid Flow and Heat Transfer in Microchannel with Thin Obstacles

Authors: Malorzata Kmiotek, Anna Kucaba-Pietal, Robert Smusz

Abstract:

Due to the miniaturisation process, in many technical devices, microchannels are used in cooling systems. Because of the small size of microchannels, the flow inside is laminar, which caused a slow heat exchange. In order to intensify the heat exchange, the flow must be disturbed, for example, by introducing obstacles. We present results on the influence of a thin obstacle, placed on microchannel wall, on the fluid and heat flow in the aspect of their use by constructors of heat exchangers. The obstacle is called 'thin' when its geometrical parameter (o=w/h, w- width, h - height of the obstacle) satisfies inequality: o < 0.5. In this work, we report numerical results on heat and mass transfer in the microchannels of 400 micrometer height (H - height of the microchannel), where thin obstacles are immersed on the walls, to disturb the flow. The Reynolds number of the flow in microchannel varies between 20 and 200 and is typical for the flow in micro heat exchangers. The equations describing the fluid and heat flows in microchannels were solved numerically by using the finite element method with an application of CFD&FSI package of ADINA R&D, Inc. 9.4 solver. In the case of flows in the microchannels with sequences of thin rectangular obstacles placed on the bottom and the top wall of a microchannel, the influence of distances s (s is the distance between two thin obstacles) and heights of obstacles on the fluid and heat transfer was investigated. Thermal and flow conditions of the application area of microchannels in electronic cooling systems, i.e., wall temperature of 60 °C, the fluid temperature of 20°C were used to solve equations. Additionally, the distance s between the thin obstacles in microchannels as a multiple of the amount of the channel height was determined. Results show that placing thin obstacles on microchannel walls increase the length of recirculation zones of the flow and improves the heat transfer.

Keywords: Finite Element Method, heat transfer, mechanical engineering, microchannel

Procedia PDF Downloads 134
25675 Exploring the Intersection of Accounting, Business, and Economics: Bridging Theory and Practice for Sustainable Growth

Authors: Stephen Acheampong Amoafoh

Abstract:

In today's dynamic economic landscape, businesses face multifaceted challenges that demand strategic foresight and informed decision-making. This abstract explores the pivotal role of financial analytics in driving business performance amidst evolving market conditions. By integrating accounting principles with economic insights, organizations can harness the power of data-driven strategies to optimize resource allocation, mitigate risks, and capitalize on emerging opportunities. This presentation will delve into the practical applications of financial analytics across various sectors, highlighting case studies and empirical evidence to underscore its efficacy in enhancing operational efficiency and fostering sustainable growth. From predictive modeling to performance benchmarking, attendees will gain invaluable insights into leveraging advanced analytics tools to drive profitability, streamline processes, and adapt to changing market dynamics. Moreover, this abstract will address the ethical considerations inherent in financial analytics, emphasizing the importance of transparency, integrity, and accountability in data-driven decision-making. By fostering a culture of ethical conduct and responsible stewardship, organizations can build trust with stakeholders and safeguard their long-term viability in an increasingly interconnected global economy. Ultimately, this abstract aims to stimulate dialogue and collaboration among scholars, practitioners, and policymakers, fostering knowledge exchange and innovation in the realms of accounting, business, and economics. Through interdisciplinary insights and actionable recommendations, participants will be equipped to navigate the complexities of today's business environment and seize opportunities for sustainable success.

Keywords: financial analytics, business performance, data-driven strategies, sustainable growth

Procedia PDF Downloads 55
25674 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks

Authors: Mehdi Janbaz

Abstract:

The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.

Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED

Procedia PDF Downloads 145
25673 Capacity Building in Dietary Monitoring and Public Health Nutrition in the Eastern Mediterranean Region

Authors: Marisol Warthon-Medina, Jenny Plumb, Ayoub Aljawaldeh, Mark Roe, Ailsa Welch, Maria Glibetic, Paul M. Finglas

Abstract:

Similar to Western Countries, the Eastern Mediterranean Region (EMR) also presents major public health issues associated with the increased consumption of sugar, fat, and salt. Therefore, one of the policies of the World Health Organization’s (WHO) EMR is to reduce the intake of salt, sugar, and fat (Saturated fatty acids, trans fatty acids) to address the risk of non-communicable diseases (i.e. diabetes, cardiovascular disease, cancer) and obesity. The project objective is to assess status and provide training and capacity development in the use of improved standardized methodologies for updated food composition data, dietary intake methods, use of suitable biomarkers of nutritional value and determine health outcomes in low and middle-income countries (LMIC). Training exchanges have been developed with clusters of countries created resulting from regional needs including Sudan, Egypt and Jordan; Tunisia, Morocco, and Mauritania; and other Middle Eastern countries. This capacity building will lead to the development and sustainability of up-to-date national and regional food composition databases in LMIC for use in dietary monitoring assessment in food and nutrient intakes. Workshops were organized to provide training and capacity development in the use of improved standardized methodologies for food composition and food intake. Training needs identified and short-term scientific missions organized for LMIC researchers including (1) training and knowledge exchange workshops, (2) short-term exchange of researchers, (3) development and application of protocols and (4) development of strategies to reduce sugar and fat intake. An initial training workshop, Morocco 2018 was attended by 25 participants from 10 EMR countries to review status and support development of regional food composition. 4 training exchanges are in progress. The use of improved standardized methodologies for food composition and dietary intake will produce robust measurements that will reinforce dietary monitoring and policy in LMIC. The capacity building from this project will lead to the development and sustainability of up-to-date national and regional food composition databases in EMR countries. Supported by the UK Medical Research Council, Global Challenges Research Fund, (MR/R019576/1), and the World Health Organization’s Eastern Mediterranean Region.

Keywords: dietary intake, food composition, low and middle-income countries, status.

Procedia PDF Downloads 165
25672 The Relationship Between Artificial Intelligence, Data Science, and Privacy

Authors: M. Naidoo

Abstract:

Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.

Keywords: artificial intelligence, data science, law, policy

Procedia PDF Downloads 106
25671 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 177
25670 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 444
25669 The Adaptation and Evaluation of a Psychoeducational Program for Patients with Depression in General Practices in Germany

Authors: Feyza Gökce, Jochen Gensichen, Antonius Schneider, Karolina de Valerio, Gabriele Pitschel-Walz

Abstract:

People with depressive symptoms often first consult a General Practitioner (GP) before making use of other treatment options. The present study shows the adaptation and evaluation of a psychoeducational program for patients with depressive symptoms that are treated by GPs in Bavaria, Germany. The adaptation of an existing psychoeducational program, that is used in inpatient psychiatric settings, was performed in exchange with experts (psychotherapists, general practitioners, and a patient representative). As a result, a program consisting of 4 psychoeducational sessions was developed, which is carried out in individual settings in GP practices by the practitioners themselves. This program will be compared to treatment as usual that patients with depression receive by GPs. Data is collected at 3 measurement points (baseline, 3-months-follow-up, 6-months-follow-up) using different questionnaires (BDI-II, D-Lit-R German, FERUS, PAM13-D, PHQ-9, GAD-7, PHQ-15, PC-PTSD-5). In addition to the change in depressive symptoms, changes in depression knowledge, self-efficacy, and patient activation will be analyzed, and the feasibility of the program and the subjective benefit for GPs and patients will be assessed. By now, 84 patients have been recruited by 20 cluster-randomized GP practices, with 73.5% of the participants being female and 26.5% being males. The average age was M= 50.1 (SD= 14.67) years. The change in depression symptoms over the 3-month period will be compared between the two study conditions by using a linear mixed model by the end of data collection (December 2023). The subjective benefit for the patients and GPs will be assessed via feedback questionnaires. Results will be presentable by the beginning of 2024 and will provide indications for further development and barriers to the implementation of such a program for GP practices.

Keywords: depression, general practice, psychoeducation, primary care

Procedia PDF Downloads 84
25668 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 462
25667 Is There Relationship between Cyberchondria and Emotional Intelligence among Omani University Students? A Descriptive Correlational Study

Authors: Mohammed Qutishat, Khaldoun Aldiabat, Khaled Bader, Mohammad Al Qadire

Abstract:

Cyberchondria refers to the irrational increase of distress about the condition of one's health as a consequence of the World Wide Web quest for medical details. The aim of this study was to examine the relationship between emotional intelligence and cyberchondria among Omani university students. A descriptive correlational design was used to collect data from eligible 370 participants using the Emotional Intelligence Questionnaire, and the short-form version of the Cyberchondria Severity Scale (CSS-12) between January and May 2020 at XX University-Oman. The participants’ age ranged between 18 and 37 years (M = 20.28). The majority of the participants were female, 59.7% (n = 221), single 99.5% (368), in their second academic year, 29.2% (n =108). The mean score of cyberchondria experiences was 32.51, and the mean score of emotional intelligence was 34.91. Linear regression indicated a strong association between cyberchondria and emotional intelligence [F (34.639) = 5.885, P=.000], with a .086 R². In conclusion, the exchange of expertise and peer networking for health-related details utilizing the Internet can benefit students with and without having health problems. Further research and methods should be developed to help students track the online medical tools effectively for the right purposes.

Keywords: emotional intelligence, cyberchondria, smartphone addiction, social media

Procedia PDF Downloads 254
25666 Intercultural Education and Changing Paradigms of Education: A Research Survey

Authors: Shalini Misra

Abstract:

The means and methods of education have been changing fast since the invention of internet. Both, ancient and modern education emphasized on the holistic development of students. But, a significant change has been observed in the 21st century learners. Online classes, intercultural and interdisciplinary education which were exceptions in the past, are setting new trends in the field of education. In the modern era, intercultural and interpersonal skills are of immense importance, not only for students but for everyone. It sets a platform for better understanding and deeper learning by ensuring the active participation and involvement of students belonging to different social and cultural backgrounds in various academic and non-academic pursuits. On October 31, 2015, on the occasion of 140th birth anniversary of Sardar Vallabhbhai Patel, Hon’ble Prime Minister of India, Narendra Modi announced a wonderful initiative, ‘Ek Bharat Shreshtha Bharat’ i.e. ‘One India Best India’ commonly known as ‘EBSB’. The program highlighted India’s rich culture and traditions. The objective of the program was to foster a better understanding and healthy relationship among Indian States. Under this program, a variety of subjects were covered like ‘Arts, Culture and Language’ .It was claimed to be a successful cultural exchange where students from diverse communities shared their thoughts and experiences with one another. Under this online cultural exchange program, the state of Uttarakhand was paired with the state of Karnataka in the year 2022. The present paper proposes to undertake a survey of a total of thirty secondary level students of Uttarakhand and the partner state Karnataka, who participated in this program with a purpose of learning and embracing new ideas and culture thus promoting intercultural education. It aims to study and examine the role of intercultural education in shifting and establishing new paradigms of education.

Keywords: education, intercultural, interpersonal, traditions, understanding

Procedia PDF Downloads 81
25665 Preparation of New Organoclays and Applications for Adsorption of Telon Dyes in Aqueous Solutions

Authors: Benamar Makhoukhi

Abstract:

Clay ion-exchange using bismidazolium salts (MBIM) could provide organophilic clays materials that allow effective retention of polluting dyes. The present investigations deal with bentonite (Bt) modification using (ortho, meta and para) bisimidazolium cations and attempts to remove a synthetic textile dyes, such as (Telon-Orange, Telon-Red and Telon-Blue) by adsorption, from aqueous solutions. The surface modification of MBIM–Bt was examined using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption tests applied to Telon dyes revealed a significant increase of the maximum adsorption capacity from ca. 21-28 to 88-108 mg.g-1 after intercalation. The highest adsorption level was noticed for Telon-Orange dye on the p-MBIM–Bt, presumably due higher interlayer space and better diffusion. The pseudo-first order rate equation was able to provide the best description of adsorption kinetics data for all three dyestuffs. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The results show that MBIM–Bt could be employed as low-cost material for the removal of Telon dyes from effluents.

Keywords: Bentonite, Organoclay, Bisimidazolium, Dyes, Isotherms, Adsorption

Procedia PDF Downloads 445
25664 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 503
25663 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 128
25662 Tax Avoidance During The Financial Crisis: Role Of Independent Commissioners And External Auditors

Authors: Yasir Ramadhan

Abstract:

This study aims to investigate tax avoidance practices when a financial crisis occurs due to the effects of the COVID-19 pandemic. This study also finds out how the influence of independent commissioners and external auditors on tax avoidance practices during the COVID-19 pandemic. Tax avoidance practices are measured by the current ETR. The role of the independent board of commissioners is measured by the proportion of independent commissioners in the composition of the board of commissioners, while the external auditor is measured by audit quality. In this study, there were 342 observations of companies listed on the Indonesia Stock Exchange from 2019 to 2020. This study used the difference-in-differences (DiD) method in data analysis. The results of this study indicate that companies do tax avoidance during the COVID-19 pandemic. Meanwhile, independent commissioners and qualified audits are not proven to be able to negate tax avoidance practices during the COVID-19 Pandemic. These results also show that a higher proportion of independent commissioners and audit quality are not sufficient for countries with low levels of auditor litigation and investor protection and weak regulatory frameworks.

Keywords: audit, commissioner, tax avoidance, COVID-19 pandemic

Procedia PDF Downloads 149
25661 Reliability and Maintainability Optimization for Aircraft’s Repairable Components Based on Cost Modeling Approach

Authors: Adel A. Ghobbar

Abstract:

The airline industry is continuously challenging how to safely increase the service life of the aircraft with limited maintenance budgets. Operators are looking for the most qualified maintenance providers of aircraft components, offering the finest customer service. Component owner and maintenance provider is offering an Abacus agreement (Aircraft Component Leasing) to increase the efficiency and productivity of the customer service. To increase the customer service, the current focus on No Fault Found (NFF) units must change into the focus on Early Failure (EF) units. Since the effect of EF units has a significant impact on customer satisfaction, this needs to increase the reliability of EF units at minimal cost, which leads to the goal of this paper. By identifying the reliability of early failure (EF) units with regards to No Fault Found (NFF) units, in particular, the root cause analysis with an integrated cost analysis of EF units with the use of a failure mode analysis tool and a cost model, there will be a set of EF maintenance improvements. The data used for the investigation of the EF units will be obtained from the Pentagon system, an Enterprise Resource Planning (ERP) system used by Fokker Services. The Pentagon system monitors components, which needs to be repaired from Fokker aircraft owners, Abacus exchange pool, and commercial customers. The data will be selected on several criteria’s: time span, failure rate, and cost driver. When the selected data has been acquired, the failure mode and root cause analysis of EF units are initiated. The failure analysis approach tool was implemented, resulting in the proposed failure solution of EF. This will lead to specific EF maintenance improvements, which can be set-up to decrease the EF units and, as a result of this, increasing the reliability. The investigated EFs, between the time period over ten years, showed to have a significant reliability impact of 32% on the total of 23339 unscheduled failures. Since the EFs encloses almost one-third of the entire population.

Keywords: supportability, no fault found, FMEA, early failure, availability, operational reliability, predictive model

Procedia PDF Downloads 129
25660 IIROC's Enforcement Performance: Funnel in, Funnel out, and Funnel away

Authors: Mark Lokanan

Abstract:

The paper analyzes the processing of complaints against investment brokers and dealer members through the Investment Industry Regulatory Organization of Canada (IIROC) from 2008 to 2017. IIROC is the self-regulatory organization (SRO) that is responsible for policing investment dealers and brokerage firms that trade in Canada’s securities market. Data from the study came from IIROC's enforcement annual reports for the years examined. The case processing is evaluated base on the misconduct funnel that was originally designed for street crime and applies to the enforcement of investment fraud. The misconduct funnel is used as a framework to examine IIROC’s claim that it brought in more complaints (funnel in) than government regulators and shows how these complaints are funneled out and funneled away as they are processed through IIROC’s enforcement system. The results indicate that IIROC is ineffective in disciplining its members and is unable to handle the more serious quasi-criminal and improper sales practices offenses. It is hard not to see the results of the paper being used by the legislator in Ottawa to show the importance of a federal securities regulatory agency such as the Securities and Exchange Commission (SEC) in the United States.

Keywords: investment fraud, securities regulation, compliance, enforcement

Procedia PDF Downloads 161
25659 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 173
25658 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: big data, big data analytics, Hadoop, cloud

Procedia PDF Downloads 312
25657 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 479
25656 Netnography Research in Leisure, Tourism, and Hospitality: Lessons from Research and Education

Authors: Marisa P. De Brito

Abstract:

The internet is affecting the way the industry operates and communicates. It is also becoming a customary means for leisure, tourism, and hospitality consumers to seek and exchange information and views on hotels, destinations events and attractions, or to develop social ties with other users. On the one hand, the internet is a rich field to conduct leisure, tourism, and hospitality research; on the other hand, however, there are few researchers formally embracing online methods of research, such as netnography. Within social sciences, netnography falls under the interpretative/ethnographic research methods umbrella. It is an adaptation of anthropological techniques such as participant and non-participant observation, used to study online interactions happening on social media platforms, such as Facebook. It is, therefore, a research method applied to the study of online communities, being the term itself a contraction of the words network (as on internet), and ethnography. It was developed in the context of marketing research in the nineties, and in the last twenty years, it has spread to other contexts such as education, psychology, or urban studies. Since netnography is not universally known, it may discourage researchers and educators from using it. This work offers guidelines for researchers wanting to apply this method in the field of leisure, tourism, and hospitality or for educators wanting to teach about it. This is done by means of a double approach: a content analysis of the literature side-by-side with educational data, on the use of netnography. The content analysis is of the incidental research using netnography in leisure, tourism, and hospitality in the last twenty years. The educational data is the author and her colleagues’ experience in coaching students throughout the process of writing a paper using primary netnographic data - from identifying the phenomenon to be studied, selecting an online community, collecting and analyzing data to writing their findings. In the end, this work puts forward, on the one hand, a research agenda, and on the other hand, an educational roadmap for those wanting to apply netnography in the field or the classroom. The educator’s roadmap will summarise what can be expected from mini-netnographies conducted by students and how to set it up. The research agenda will highlight for which issues and research questions the method is most suitable; what are the most common bottlenecks and drawbacks of the method and of its application, but also where most knowledge opportunities lay.

Keywords: netnography, online research, research agenda, educator's roadmap

Procedia PDF Downloads 186
25655 The role of Financial Development and Institutional Quality in Promoting Sustainable Development through Tourism Management

Authors: Hashim Zameer

Abstract:

Effective tourism management plays a vital role in promoting sustainability and supporting ecosystems. A common principle that has been in practice over the years is “first pollute and then clean,” indicating countries need financial resources to promote sustainability. Financial development and the tourism management both seems very important to promoting sustainable development. However, without institutional support, it is very difficult to succeed. In this context, it seems prominently significant to explore how institutional quality, tourism development, and financial development could promote sustainable development. In the past, no research explored the role of tourism development in sustainable development. Moreover, the role of financial development, natural resources, and institutional quality in sustainable development is also ignored. In this regard, this paper aims to investigate the role of tourism development, natural resources, financial development, and institutional quality in sustainable development in China. The study used time-series data from 2000–2021 and employed the Bayesian linear regression model because it is suitable for small data sets. The robustness of the findings was checked using a quantile regression approach. The results reveal that an increase in tourism expenditures stimulates the economy, creates jobs, encourages cultural exchange, and supports sustainability initiatives. Moreover, financial development and institution quality have a positive effect on sustainable development. However, reliance on natural resources can result in negative economic, social, and environmental outcomes, highlighting the need for resource diversification and management to reinforce sustainable development. These results highlight the significance of financial development, strong institutions, sustainable tourism, and careful utilization of natural resources for long-term sustainability. The study holds vital insights for policy formulation to promote sustainable tourism.

Keywords: sustainability, tourism development, financial development, institutional quality

Procedia PDF Downloads 83
25654 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 418