Search results for: umbilical cord blood derived mesenchymal stem cells (UC-MSCs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8134

Search results for: umbilical cord blood derived mesenchymal stem cells (UC-MSCs)

8104 Efficacy of Umbilical Cord Lining Stem Cells For Wound Healing in Diabetic Murine Model

Authors: Fui Ping Lim, Wen Choong Chua, Toan Thang Phan

Abstract:

Aim: This study investigates the roles of Cord Lining Stem Cells (CLSCs) as potential therapeutic agents for diabetic wounds. Method: 20 genetically diabetic db/db mice were randomly assigned to two arms; (i) control group received placebo treatment (sham media or cells delivery material), and (ii) active comparator received CLSCs. Two full-thickness wounds, each sized 10mm X 10mm were created, one on each side of the midline on the back of the mice. Digital pictures were taken on day 1, 3, 7, 10, 14, 17, 21, 24, 28. Wound areas were analyzed with ImageJ TM software and calculated as percentage of the original wound. Time to closure was defined as the day the wound bed was completely epithelized and filled with new tissues. Results: The CLSCs-treated wounds, showed a significant increase in the percentage of wound closure and achieved 100% closure of the wound sooner than the control group by an average of 3.7 days. The mice treated with CLSCs have a shorter wound closure time (mean closure day: 19.8 days) as compared to the control group (mean closure day: 23.5 days). Conclusion: Our preliminary findings inferred that CLSCs treated wound achieved higher percentage of wound closure within a shorter duration of time.

Keywords: cord lining stem cell, diabetic wound, stem cell, wound

Procedia PDF Downloads 285
8103 Normal Hematopoietic Stem Cell and the Toxic Effect of Parthenolide

Authors: Alsulami H., Alghamdi N., Alasker A., Almohen N., Shome D.

Abstract:

Most conventional chemotherapeutic agents which are used for the treatment of cancers not only eradicate cancer cells but also affect normal hematopoietic Stem cells (HSCs) that leads to severe pancytopenia during treatment. Therefore, a need exists for novel approaches to treat cancer without or with minimum effect on normal HSCs. Parthenolide (PTL), a herbal product occurring naturally in the plant Feverfew, is a potential new chemotherapeutic agent for the treatment of many cancers such as acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). In this study we investigated the effect of different PTL concentrations on the viability of normal HSCs and also on the ability of these cells to form colonies after they have been treated with PTL in vitro. Methods: In this study, 24 samples of bone marrow and cord blood were collected with consent, and mononuclear cells were separated using density gradient separation. These cells were then exposed to various concentrations of PTL for 24 hours. Cell viability after culture was determined using 7ADD in a flow cytometry test. Additionally, the impact of PTL on hematopoietic stem cells (HSCs) was evaluated using a colony forming unit assay (CFU). Furthermore, the levels of NFҝB expression were assessed by using a PE-labelled anti-pNFκBP65 antibody. Results: this study showed that there was no statistically significant difference in the percentage of cell death between untreated and PTL treated cells with 5 μM PTL (p = 0.7), 10 μM PTL (p = 0.4) and 25 μM (p = 0.09) respectively. However, at higher doses, PTL caused significant increase in the percentage of cell death. These results were significant when compared to untreated control (p < 0.001). The response of cord blood cells (n=4) on the other hand was slightly different from that for bone marrow cells in that the percentage of cell death was significant at 100 μM PTL. Therefore, cord blood cells seemed more resistant than bone marrow cells. Discussion &Conclusion: At concentrations ≤25 μM PTL has a minimum or no effect on HSCs in vitro. Cord blood HSCs are more resistant to PTL compared to bone marrow HSCs. This could be due to the higher percentage of T-lymphocytes, which are resistant to PTL, in CB samples (85% in CB vs. 56% in BM. Additionally, CB samples contained a higher proportion of CD34+ cells, with 14.5% of brightly CD34+ cells compared to only 1% in normal BM. These bright CD34+ cells in CB were mostly negative for early-stage stem cell maturation antigens, making them young and resilient to oxidative stress and high concentrations of PTL.

Keywords: stem cell, parthenolide, NFKB, CLL

Procedia PDF Downloads 52
8102 Differential Expression of Biomarkers in Cancer Stem Cells and Side Populations in Breast Cancer Cell Lines

Authors: Dipali Dhawan

Abstract:

Cancerous epithelial cells are confined to a primary site by the continued expression of adhesion molecules and the intact basal lamina. However, as the cancer progresses some cells are believed to undergo an epithelial-mesenchymal transition (EMT) event, leading to increased motility, invasion and, ultimately, metastasis of the cells from the primary tumour to secondary sites within the body. These disseminated cancer cells need the ability to self-renew, as stem cells do, in order to establish and maintain a heterogeneous metastatic tumour mass. Identification of the specific subpopulation of cancer stem cells amenable to the process of metastasis is highly desirable. In this study, we have isolated and characterized cancer stem cells from luminal and basal breast cancer cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-468, MCF7 and T47D) on the basis of cell surface markers CD44 and CD24; as well as Side Populations (SP) using Hoechst 33342 dye efflux. The isolated populations were analysed for epithelial and mesenchymal markers like E-cadherin, N-cadherin, Sfrp1 and Vimentin by Western blotting and Immunocytochemistry. MDA-MB-231 cell lines contain a major population of CD44+CD24- cells whereas MCF7, T47D and MDA-MB-231 cell lines show a side population. We observed higher expression of N-cadherin in MCF-7 SP cells as compared to MCF-7NSP (Non-side population) cells suggesting that the SP cells are mesenchymal like cells and hence express increased N-cadherin with stem cell-like properties. There was an expression of Sfrp1 in the MCF7- NSP cells as compared to no expression in MCF7-SP cells, which suggests that the Wnt pathway is expressed in the MCF7-SP cells. The mesenchymal marker Vimentin was expressed only in MDA-MB-231 cells. Hence, understanding the breast cancer heterogeneity would enable a better understanding of the disease progression and therapeutic targeting.

Keywords: cancer stem cells, epithelial to mesenchymal transition, biomarkers, breast cancer

Procedia PDF Downloads 526
8101 A Combination of Mesenchymal Stem Cells and Low-Intensity Ultrasound for Knee Meniscus Regeneration: A Preliminary Study

Authors: Mohammad Nasb, Muhammad Rehan, Chen Hong

Abstract:

Background Meniscus defects critically alter knee function and lead to degenerative changes. Regenerative medicine applications including stem cell transplantation have showed a promising efficacy in finding alternatives to overcome traditional treatment limitations. However, stem cell therapy remains limited due to the substantially reduced viability and inhibitory microenvironment. Since tissue growth and repair are under the control of biochemical and mechanical signals, several approaches have recently been investigated (e.g., low intensity pulsed ultrasound [LIPUS]) to promote the regeneration process. This study employed LIPUS to improve growth and osteogenic differentiation of mesenchymal stem cells derived from human embryonic stem cells to improve the regeneration of meniscus tissue. Methodology: The Mesenchymal stromal cells (MSCs) were transplanted into the epicenter of the injured meniscus in rabbits, which were randomized into two main groups: a treatment group (n=32 New Zealand rabbits) including 4 subgroups of 8 rabbits in each subgroup (LIPUS treatment, MSC treatment, LIPUS with MSC and control), and a second group (n=9) to track implanted cells and their progeny using green fluorescence protein (GFP). GFP consists of the MSC and LIPUS-MSC combination subgroups. Rabbits were then subjected to histological, immunohistochemistry, and MRI assessment. Results: The quantity of the newly regenerated tissue in the combination treatment group that had Ultrasound irradiation after mesenchymal stem cells were better at all end points. Likewise, Tissue quality scores were also greater in knees treated with both approaches compared with controls and single treatment at all end points, achieving significance at twelve and twenty-four weeks [p < 0.05], and [p = 0.008] at twelve weeks. Differentiation into type-I and II collagen-expressing cells were higher in the combination group at up to twenty-four weeks. Conclusions: the combination of mesenchymal stem cells and LIPUS showed greater adhering to the sites of meniscus injury, differentiate into cells resembling meniscal fibrochondrocytes, and improve both quality and quantity of meniscal regeneration.

Keywords: stem cells, regenerative medicine, osteoarthritis, knee

Procedia PDF Downloads 120
8100 Isolation and Expansion of Human Periosteum-Derived Mesenchymal Stem Cells in Defined Serum-Free Culture Medium

Authors: Ainur Mukhambetova, Miras Karzhauov, Vyacheslav Ogay

Abstract:

Introduction: Mesenchymal stem cells (MSCs) have the capacity to be differentiated into several cell lineages and are a promising source for cell therapy and tissue engineering. However, currently most MSCs culturing protocols use media supplemented with fetal bovine serum (FBS), which limits their application in clinic due to the possibility of zoonotic infections, contamination and immunological reactions. Consequently, formulating effective serum free culture medium becomes one of the important problems in contemporary cell biotechnology. Objectives: The aim of this study was to define an optimal serum-free medium for culturing of periosteum derived MSCs. Materials and methods: The MSCs were extracted from human periosteum and transferred to the culture flasks pretreated with CELLstart™. Immunophenotypic characterization, proliferation and in vitro differentiation of cells grown on STEM PRO® MSC SFM were compared to the cells cultured in the standard FBS containing media. Chromosome analysis and flow cytometry were also performed. Results: We have shown that cells were grown on STEM PRO® MSC SFM retained all the morphological, immunophenotypic (CD73, CD90, CD105, vimentin and Stro-1) and cell differentiation characteristics specific to MSCs. Chromosome analysis indicated no anomalies in the chromosome structure. Flow cytometry showed a high expression of cell adhesion molecules CD44 (98,8%), CD90 (97,4%), CD105 (99,1%). In addition, we have shown that cell is grown on STEM PRO® MSC SFM have higher proliferation capacity compared to cell expanded on standard FBS containing the medium. Conclusion: We have shown that STEM PRO® MSC SFM is optimal for culturing periosteum derived human MSCs which subsequently can be safely used in cell therapy.

Keywords: cell technologies, periosteum-derived MSCs, regenerative medicine, serum-free medium

Procedia PDF Downloads 299
8099 Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion and Chorion-Derived Mesenchymal Stem Cells

Authors: Kenichi Yamahara, Makiko Ohshima, Shunsuke Ohnishi, Hidetoshi Tsuda, Akihiko Taguchi, Toshihiro Soma, Hiroyasu Ogawa, Jun Yoshimatsu, Tomoaki Ikeda

Abstract:

We have previously reported the therapeutic potential of rat fetal membrane(FM)-derived mesenchymal stem cells (MSCs) using various rat models including hindlimb ischemia, autoimmune myocarditis, glomerulonephritis, renal ischemia-reperfusion injury, and myocardial infarction. In this study, 1) we isolated and characterized MSCs from human amnion and chorion; 2) we examined their differences in the expression profile of growth factors and cytokines; and 3) we investigated the therapeutic potential and difference of these MSCs using murine hindlimb ischemia and acute graft-versus-host disease (GVHD) models. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of GVHD disease. Our results highlight that human amnionand chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.

Keywords: amnion, chorion, fetal membrane, mesenchymal stem cells

Procedia PDF Downloads 417
8098 Wound Healing Potential and Comparison of Mummy Substance Effect on Adipose and Wharton’s Jelly-Derived Mesenchymal Stem Cells Co-Cultured with Human Fibroblast

Authors: Sepideh Hassanpour Khodaei

Abstract:

Background/Objectives: The purpose of this study is to evaluate the effect of mummy substances on two issues of proliferation and production of matrix protein synthesis in wound healing. Methods: The methodology used for this aim involves isolating mesenchymal stem cells and human fibroblasts procured at Pastor Institute, Iran. The cells were treated with mummy substances separately and co-cultured between ASCs and WJSCs, and fibroblasts. Proliferation was assessed by Ki67 method in monolayer conditions. Synthesis of components of extracellular matrix (ECM) such as collagen type I, type III, and fibronectin 1 (FN1) was determined by qPCR. Results: The effects of adipocyte stem cells (ASCs), Wharton Jelly Stem Cells (WJSCs), and Mummy material on fibroblast proliferation and migration were evaluated. The present finding underlined the importance of Mummy material, ASCs, and WJSCs in the proliferation and migration of fibroblast cells. Furthermore, the expression of collagen I, III, and FN1 was increased in the presence of the above material and cells. Conclusion: This study presented an effective in vitro method for the healing process. Hence, the prospect of utilizing Mummy material and stem cell-based therapies in wound healing as a therapeutic approach is promising.

Keywords: mummy material, wound healing, adipose tissue, Wharton’s jelly

Procedia PDF Downloads 108
8097 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 184
8096 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations

Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska

Abstract:

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.

Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture

Procedia PDF Downloads 268
8095 A Case of Umbilical Arterial Atresia in the Third Trimester of Pregnancy

Authors: Caixiu Pu, Zhen Chen

Abstract:

We present the rare case of umbilical arterial atresia, leading to a good outcome and provide clinical and pathological findings. A 27-year-old nulliparous first gravida with PGDM was found single umbilical artery(SUA) by routine ultrasound san at 30 weeeks of gestation. Fetal status was monitored weekly. A healthy male newborn was delivered by cesarean section at 39 weeks. The umbilical cord was overly twisted and no thrombus was found along the whole diseased vessel. The cause of umbilical arterial atresia was unclear, and the correct diagnosis was a challenge. Expected clinical management was recommended, in which sonographic diagnosis may play a very important part.

Keywords: pregnancy, single umbilical artery, umbilical arterial atresia, prenatal diagnosis

Procedia PDF Downloads 33
8094 The Comparison of the Effects of Adipose-Derived Mesenchymal Stem Cells Delivery by Systemic and Intra-Tracheal Injection on Elastase-Induced Emphysema Model

Authors: Maryam Radan, Fereshteh Nejad Dehbashi, Vahid Bayati, Mahin Dianat, Seyyed Ali Mard, Zahra Mansouri

Abstract:

Pulmonary emphysema is a pathological respiratory condition identified by alveolar destruction which leads to limitation of airflow and diminished lung function. A substantial body of evidence suggests that mesenchymal stem cells (MSCs) have the ability to induce tissue repair primarily through a paracrine effect. In this study, we aimed to determine the efficacy of Intratracheal adipose-derived mesenchymal stem cells (ADSCs) therapy in comparison to this approach with that of Intravenous (Systemic) therapy. Fifty adult male Sprague–Dawley rats weighing between 180 and 200 g were used in this experiment. The animals were randomized to Control groups (Intratracheal or Intravenous vehicle), Elastase group (intratracheal administration of porcine pancreatic elastase; 25 U/kg on day 0 and day 10th), Elastase+Intratracheal ADSCs therapy (1x107 Cells, on day 28) and Elastase+Systemic ADSCs therapy (1x107 Cells, on day 28). The rats which not subjected to any treatment, considered as the control. All rats were sacrificed 3 weeks later. Morphometric findings in lung tissues (Mean linear intercept) confirmed the establishment of the emphysema model via alveolar disruption. Contrarily, ADSCs administration partially restored alveolar architecture. These results were associated with improving arterial oxygenation, reducing lung edema, and decreasing lung inflammation with higher significant effects in the Intratracheal therapy route. These results documented that the efficacy of intratracheal ADSCs was comparable with intravenous ADSCs therapy. Accordingly, the obtained data suggested that intratracheal delivery of ADSCs would enhance lung repair in pulmonary emphysema. Moreover, this method provides benefits over a systemic administration, such as the reduction of cell number and the low risk to engraft other organs.

Keywords: mesenchymal stem cell, emphysema, Intratracheal, systemic

Procedia PDF Downloads 212
8093 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats

Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia

Abstract:

Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).

Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells

Procedia PDF Downloads 303
8092 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 302
8091 Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells

Authors: Ali A. Alshatwi, Vaiyapuri S. Periasamy, Jegan Athinarayanan

Abstract:

Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.

Keywords: cobalt oxide, human mesenchymal stem cells, MgO, silver

Procedia PDF Downloads 390
8090 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9

Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani

Abstract:

Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.

Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9

Procedia PDF Downloads 317
8089 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 302
8088 Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate

Authors: A. Reum Son, Jin Seon Kwon, Seung Hun Park, Hai Bang Lee, Moon Suk Kim

Abstract:

These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications.

Keywords: injectable hydrogel, stem cell, osteogenic differentiation, tissue engineering

Procedia PDF Downloads 447
8087 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry

Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki

Abstract:

In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.

Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration

Procedia PDF Downloads 432
8086 Insulin-Producing Cells from Adult Human Bone Marrow Mesenchymal Stem Cells Control Chemically-Induced Diabetes in Dogs

Authors: Maha Azzam, Mahmoud Gabr, Mahmoud Zakaria, Ayman Refaie, Amani Ismail, Sherry Khater, Sylvia Ashamallah, Mohamed Ghoniem

Abstract:

Evidence was provided that human bone marrow-derived mesenhymal stem cells (HBM-MSCs) could be differentiated to form insulin-producing cells (IPCs). Transplantation of these cells was able to cure chemically-induced diabetes in nude mice. The efficacy of these cells to control diabetes in large animals was carried out to evaluate the sufficient number of cells needed/Kg body weight and to determine the functional longevity in vivo. Materials/Methods: Ten male mongrel dogs weighing 15-20 Kg were used in this study. Diabetes was chemically-induced in 7 dogs by a mixture of alloxan and streptozotocin. Three non-diabetic served as normal controls. Differentiated HBM-MSCs (5 million/Kg) were encapsulated in theracyte capsules and transplanted beneath the rectus sheath. Each dog received 2 capsules. One dog died 4 days postoperative from inhalation pneumonia. The remaining 6 dogs were followed up for 6-18 months. Results: Four dogs became normoglycemic within 6-8 weeks with normal glucose tolerance curves providing evidence that the transplanted cells were glucose-sensitive and insulin-responsive. In the remaining 2 dogs, fasting blood glucose was reduced but did not reach euglycemic levels. The sera of all transplanted dogs contained human insulin and c-peptide but negligible levels of canine insulin. When the HBM-MSCs loaded capsules were removed, rapid return of diabetic state was noted. The harvested capsules were examined by immunofluorescence. IPCs were seen and co-expression of with c-peptide was confirmed. Furthermore, all the pancreatic endocrine genes were expressed by the transplanted cells. Conclusions: This study provided evidence that theracyte capsules could protect the xenogenic HBM-MSCs from the host immune response. This is an important issue when clinical stem cell therapy is considered for definitive treatment for T1DM.

Keywords: diabetes, mesenchymal stem cells, dogs, Insulin-producing cells

Procedia PDF Downloads 204
8085 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 424
8084 A pilot Study of Umbilical Cord Mini-Clamp

Authors: Seng Sing Tan

Abstract:

Clamping of the umbilical cord after birth is widely practiced as a part of labor management. Further improvements were proposed to produce a smaller, lighter and more comfortable clamp while still maintaining current standards of clamping. A detachable holder was also developed to facilitate the clamping process. This pilot study on the efficacy of the mini-clamp was conducted to evaluate a tightness of the seal and a firm grip of the clamp on the umbilical cord. The study was carried out at National University Hospital, using 5 sets of placental cord. 18 samples of approximate 10 cm each were harvested. The test results showed that the mini-clamp was able to stop the flow through the cord after clamping without rupturing the cord. All slip tests passed with a load of 0.2 kg. In the pressure testing, 30kPa of saline was exerted into the umbilical veins. Although there was no physical sign of fluid leaking through the end secured by the mini-clamp, the results showed the pressure was not able to sustain the pressure set during the tests. 12 out of the 18 test samples have more than 7% of pressure drop in 30 seconds. During the pressure leak test, it was observed on several samples that when pressurized, small droplets of saline were growing on the outer surface of the cord lining membrane. It was thus hypothesized that the pressure drop was likely caused by the perfusion of the injected saline through the Wharton’s jelly and the cord lining membrane. The average pressure in the umbilical vein is roughly 2.67kPa (20 mmHg), less than 10% of 30kPa (~225mmHg), set for the pressure testing. As such, the pressure set could be over-specified, leading to undesirable outcomes. The development of the mini-clamp was an attempt to increase the comfort of newly born babies while maintaining the usability and efficacy of hospital grade umbilical cord clamp. The pressure leak in this study would be unfair to fully attribute it to the design and efficacy of the mini-clamp. Considering the unexpected leakage of saline through the umbilical membrane due to over-specified pressure exerted on the umbilical veins, improvements can definitely be made to the existing experimental setup to obtain a more accurate and conclusive outcome. If proven conclusive and effective, the mini-clamp with a detachable holder could be a smaller and potentially cheaper alternative to existing umbilical cord clamps. In addition, future clinical trials could be conducted to determine the user-friendliness of the mini-clamp and evaluate its practicality in the clinical setting by labor ward clinicians. A further potential improvement could be proposed on the sustainability factor of the mini-clamp. A biodegradable clamp would revolutionise the industry in this increasingly environmentally sustainability world.

Keywords: leak test, mini-clamp, slip test, umbilical cord

Procedia PDF Downloads 132
8083 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell

Authors: Ahmed Khalaf Reyad Raslan

Abstract:

Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.

Keywords: hydrogel, alginate, reduced graphene oxide, collagen

Procedia PDF Downloads 146
8082 Advancement in Adhesion and Osteogenesis of Stem Cells with Histatin Coated 3D-Printed Bio-Ceramics

Authors: Haiyan Wang, Dongyun Wang, Yongyong Yan, Richard T. Jaspers, Gang Wu

Abstract:

Mesenchymal stem cell and 3D printing-based bone tissue engineering present a promising technique to repair large-volume bone defects. Its success is highly dependent on cell attachment, spreading, osteogenic differentiation, and in vivo survival of stem cells on 3D-printed scaffolds. In this study, human salivary histatin-1 (Hst1) was utilized to enhance the interactions between human adipose-derived stem cells (hASCs) and 3D-printed β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Fluorescent images showed that Hst1 significantly enhanced the adhesion of hASCs to both bioinert glass and 3D-printed β-TCP scaffold. In addition, Hst1 was associated with significantly higher proliferation and osteogenic differentiation of hASCs on 3D-printed β-TCP scaffolds. Moreover, coating 3D-printed β-TCP scaffolds with histatin significantly promotes the survival of hASCs in vivo. The ERK and p38 but not JNK signaling was found to be involved in the superior adhesion of hASCs to β-TCP scaffolds with the aid of Hst1. In conclusion, Hst1 could significantly promote the adhesion, spreading, osteogenic differentiation, and in vivo survival of hASCs on 3D-printed β-TCP scaffolds, bearing a promising application in stem cell/3D printing-based constructs for bone tissue engineering.

Keywords: 3d printing, adipose-derived stem cells, bone tissue engineering, histatin-1, osteogenesis

Procedia PDF Downloads 64
8081 Derivation of Human NK Cells from T Cell-Derived Induced Pluripotent Stem Cells Using Xenogeneic Serum-Free and Feeder Cell-Free Culture System

Authors: Aliya Sekenova, Vyacheslav Ogay

Abstract:

The derivation of human induced pluripotent stem cells (iPSCs) from somatic cells by direct reprogramming opens wide perspectives in the regenerative medicine. It means the possibility to develop the personal and, consequently, any immunologically compatible cells for applications in cell-based therapy. The purpose of our study was to develop the technology for the production of NK cells from T cell-derived induced pluripotent stem cells (TiPSCs) for subsequent application in adoptive cancer immunotherapy. Methods: In this study iPSCs were derived from peripheral blood T cells using Sendai virus vectors expressing Oct4, Sox2, Klf4 and c-Myc. Pluripotent characteristics of TiPSCs were examined and confirmed with alkaline phosphatase staining, immunocytochemistry and RT-PCR analysis. For NK cell differentiation, embryoid bodies (EB) formed from (TiPSCs) were cultured in xenogeneic serum-free medium containing human serum, IL-3, IL-7, IL-15, SCF, FLT3L without using M210-B4 and AFT-024 stromal feeder cells. After differentiation, NK cells were characterized with immunofluorescence analysis, flow cytometry and cytotoxicity assay. Results: Here, we for the first time demonstrate that TiPSCs can effectively differentiate into functionally active NK cells without M210-B4 and AFT-024 xenogeneic stroma cells. Immunofluorescence and flow cytometry analysis showed that EB-derived cells can differentiate into a homogeneous population of NK cell expressing high levels of CD56, CD45 and CD16 specific markers. Moreover, these cells significantly express killing activation receptors such as NKp44 and NKp46. In the comparative analysis, we observed that NK cells derived using feeder-free culture system have more high killing activity against K-562 tumor cells, than NK cells derived by feeder-dependent method. Thus, we think that our obtained data will be useful for the development of large-scale production of NK cells for translation into cancer immunotherapy.

Keywords: induced pluripotent stem cells, NK cells, T cells, cell diffentiation, feeder cell-free culture system

Procedia PDF Downloads 328
8080 Comparison of the Effectiveness between Exosomes from Different Origins in Reversing Skin Aging

Authors: Iannello G., Coppa F., Pennisi S., Giuffrida G., Lo Faro R., Cartelli S., Ferruggia G., Brundo M. V.

Abstract:

Skin is the largest multifunctional human organ and possesses a complex, multilayered structure with the ability to regenerate and renew. The key role in skin regeneration is played by fibroblasts, which also occupy an important role in the wound healing process. Different methods, including dynamic light scattering, scanning electron microscopy, ELISA, and MTT assay, were employed to evaluate on fibroblasts the in vitro effects of plant-derived nanovesicles and cord blood stem cells‐derived exosomes. We compared the results with those of cells exposed to a technology called AMPLEX PLUS, containing a mixture of 20 different biologically active factors (GF20) and exosomes isolated and purified from bovine colostrum. AMPLEX PLUS was able to significantly enhance the cell proliferation status of cells at both 24 and 48 hours compared to untreated cells (control). The obtained results suggest how AMPLEX PLUS could be potentially effective in treating skin rejuvenation.

Keywords: AMPLEX PLUS, cell vitality, colostrum, nanovesicles

Procedia PDF Downloads 42
8079 Superiority of Bone Marrow Derived-Osteoblastic Cells (ALLOB®) over Bone Marrow Derived-Mesenchymal Stem Cells

Authors: Sandra Pietri, Helene Dubout, Sabrina Ena, Candice Hoste, Enrico Bastianelli

Abstract:

Bone Therapeutics is a bone cell therapy company addressing high unmet medical needs in the field of bone fracture repair, more specifically in non-union and delayed-union fractures where the bone repair process is impaired. The company has developed a unique allogeneic osteoblastic cell product (ALLOB®) derived from bone marrow which is currently tested in humans in the indication of delayed-union fractures. The purpose of our study was to directly compare ALLOB® vs. non-differentiated mesenchymal stem cells (MSC) for their in vitro osteogenic characteristics and their in vivo osteogenic potential in order to determine which cellular type would be the most adapted for bone fracture repair. Methods: Healthy volunteers’ bone marrow aspirates (n=6) were expended (i) into BM-MSCs using a complete MSC culture medium or (ii) into ALLOB® cells according to its manufacturing process. Cells were characterized in vitro by morphology, immunophenotype, gene expression and differentiation potential. Additionally, their osteogenic potential was assessed in vivo in the subperiosteal calvaria bone formation model in nude mice. Results: The in vitro side-by-side comparison studies showed that although ALLOB® and BM-MSC shared some common general characteristics such as the 3 minimal MSC criteria, ALLOB® expressed significantly higher levels of chondro/osteoblastic genes such as BMP2 (fold change (FC) > 100), ALPL (FC > 12), CBFA1 (FC > 3) and differentiated significantly earlier than BM-MSC toward the osteogenic lineage. Moreover the bone formation model in nude mice demonstrated that used at the same cellular concentration, ALLOB® was able to induce significantly more (160% vs.107% for control animals) bone formation than BM-MSC (118% vs. 107 % for control animals) two weeks after administration. Conclusion: Our side-by-side comparison studies demonstrated that in vitro and in vivo, ALLOB® displays superior osteogenic capacity to BM-MScs and is therefore a better candidate for the treatment of bone fractures.

Keywords: gene expression, histomorphometry, mesenchymal stem cells, osteogenic differentiation potential, preclinical

Procedia PDF Downloads 331
8078 Role of Human Wharton’s Jelly Mesenchymal Stem Cells Conditioned Media in Alleviating Kidney Injury via Inhibition of Renin-Angiotensin System in Diabetic Nephropathy

Authors: Pardis Abolghasemi, Benyamin Hatamsaz

Abstract:

Background: Diabetic nephropathy is a serious health problem described by specific kidney structure and functional disturbance. Renoprotective effects of the stem cells secretase have been shown in many kidney diseases. The aim is to evaluate the capability of human Wharton’s jelly mesenchymal stem cells conditioned media (hWJMSCs-CM) to alleviate DN in streptozotocin (STZ)-induced diabetes. Methods: Diabetic nephropathy was induced by injection of STZ (60 mg/kg, IP) in twenty rats. Conditioned media was extracted from hWJMSCs at third passages. At week 8, diabetic rats were divided into two groups: treated (hWJMSCs-CM, 500 μl/rat for three weeks, IP) and not treated (DN). In the 11th week, three groups (control, DN and DN+hWJMSCs-CM) were kept in metabolic cages and urine was collected for 24h. Blood pressure (BP) and heart rate (HR) were continuously recorded. The serum samples were maintained for measuring BUN, Cr and angiotensin-converting enzyme (ACE) activity. The left kidney was kept at -80°C for ACE activity assessment. The right kidney and pancreas were used for histopathologic evaluation. Result: Diabetic nephropathy was detected by microalbuminuria and increased albumin/creatinine ratio, as well as the pancreas and renal structural disturbance. Glomerular filtration rate, BP and HR increased in the DN group. The ACE activity was elevated in the serum and kidneys of the DN group. Administration of hWJMSCs-CM modulated the renal functional and structural disturbance and decreased the ACE activity. Conclusion: Conditioned media was extracted from hWJMSCs may have a Renoprotective effect in diabetic nephropathy. This may happen through regulation of ACE activity and renin-angiotensin system inhibition.

Keywords: diabetic nephropathy, mesenchymal stem cells, immunomodulation, anti-inflammation

Procedia PDF Downloads 205
8077 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 160
8076 Implementation of Cord- Blood Derived Stem Cells in the Regeneration of Two Experimental Models: Carbon Tetrachloride and S. Mansoni Induced Liver Fibrosis

Authors: Manal M. Kame, Zeinab A. Demerdash, Hanan G. El-Baz, Salwa M. Hassan, Faten M. Salah, Wafaa Mansour, Olfat Hammam

Abstract:

Cord blood (CB) derived Unrestricted Somatic Stem Cells (USSCs) with their multipotentiality hold great promise in liver regeneration. This work aims at evaluation of the therapeutic potentiality of USSCs in two experimental models of chronic liver injury induced either by S. mansoni infection in balb/c mice or CCL4 injection in hamsters. Isolation, propagation, and characterization of USSCs from CB samples were performed. USSCs were induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. Cells of the third passage were transplanted in two models of liver fibrosis: (1) Twenty hamsters were induced to liver fibrosis by repeated i. p. injection of 100 μl CCl4 /hamster for 8 weeks. This model was designed as; 10 hamsters with liver fibrosis and treated with i.h. injection of 3x106 USSCs (USSCs transplanted group), 10 hamsters with liver fibrosis (pathological control group), and 10 hamsters with healthy livers (normal control group). (2) Murine chronics S.mansoni model: twenty mice were induced to liver fibrosis with S. mansoni ceracariae (60 cercariae/ mouse) using the tail immersion method and left for 12 weeks. This model was designed as; 10 mice with liver fibrosis were transplanted with i. v. injection of 1×106 USCCs (USSCs transplanted group). Other 2 groups were designed as in hamsters model. Animals were sacrificed 12 weeks after USSCs transplantation, and their liver sections were examined for detection of human hepatocyte-like cells by immunohistochemistry staining. Moreover, liver sections were examined for fibrosis level, and fibrotic indices were calculated. Sera of sacrificed animals were tested for liver functions. CB USSCs, with fibroblast-like morphology, expressed high levels of CD44, CD90, CD73 and CD105 and were negative for CD34, CD45, and HLA-DR. USSCs showed high expression of transcripts for Oct4 and Sox2 and were in vitro differentiated into osteoblasts, adipocytes. In both animal models, in vitro induced hepatocyte-like cells were confirmed by cytoplasmic expression of glycogen, alpha-fetoprotein, and cytokeratin18. Livers of USSCs transplanted group showed engraftment with human hepatocyte-like cells as proved by cytoplasmic expression of human alpha-fetoprotein, cytokeratin18, and OV6. In addition, livers of this group showed less fibrosis than the pathological control group. Liver functions in the form of serum AST & ALT level and serum total bilirubin level were significantly lowered in USSCs transplanted group than pathological control group (p < 0.001). Moreover, the fibrotic index was significantly lower (p< 0.001) in USSCs transplanted group than pathological control group. In addition liver sections, of i. v. injection of 1×106 USCCs of mice, stained with either H&E or sirius red showed diminished granuloma size and a relative decrease in hepatic fibrosis. Our experimental liver fibrosis models transplanted with CB-USSCs showed liver engraftment with human hepatocyte-like cells as well as signs of liver regeneration in the form of improvement in liver function assays and fibrosis level. These data provide hope that human CB- derived USSCs are introduced as multipotent stem cells with great potentiality in regenerative medicine & strengthens the concept of cellular therapy for the treatment of liver fibrosis.

Keywords: cord blood, liver fibrosis, stem cells, transplantation

Procedia PDF Downloads 310
8075 Correlation between Fetal Umbilical Cord pH and the Day, the Time and the Team Hand over Times: An Analysis of 6929 Deliveries of the Ulm University Hospital

Authors: Sabine Pau, Sophia Volz, Emanuel Bauer, Amelie De Gregorio, Frank Reister, Wolfgang Janni, Florian Ebner

Abstract:

Purpose: The umbilical cord pH is a well evaluated contributor for prediction of neonatal outcome. This study correlates nenonatal umbilical cord pH with the weekday of delivery, the time of birth as well as the staff hand over times (midwifes and doctors). Material and Methods: This retrospective study included all deliveries of a 20 year period (1994-2014) at our primary obstetric center. All deliveries with a newborn cord pH under 7,20 were included in this analysis (6929 of 48974 deliveries (14,4%)). Further subgroups were formed according to the pH (< 7,05; 7,05 – 7,09; 7,10 – 7,14; 7,15 – 7,19). The data were then separated in day- and night time (8am-8pm/8pm-8am) for a first analysis. Finally, handover times were defined at 6 am – 6.30 am, 2 pm -2.30 pm, 10 pm- 10.30 pm (midwives) and for the doctors 8-8.30 am, 4 – 4.30 pm (Monday- Thursday); 2 pm -2.30 pm (Friday) and 9 am – 9.30 am (weekend). Routinely a shift consists of at least three doctors as well as three midwives. Results: During the last 20 years, 6929 neonates were born with an umbilical cord ph < 7,20 ( < 7,05 : 7,1%; 7,05 – 7,09 : 10,9%; 7,10 – 7,14 : 30,2%; 7,15 – 7,19:51,8%). There was no significant difference between either night/day delivery (p = 0.408), delivery on different weekdays (p = 0.253), delivery between Monday to Thursday, Friday and the weekend (p = 0.496 ) or delivery during the handover times of the doctors as well as the midwives (p = 0.221). Even the standard deviation showed no differences between the groups. Conclusion: Despite an increased workload over the last 20 years, the standard of care remains high even during the handover times and night shifts. This applies for midwives and doctors. As the neonatal outcome depends on various factors, further studies are necessary to take more factors influencing the fetal outcome into consideration. In order to maintain this high standard of care, an adaption of work-load and changing conditions is necessary.

Keywords: delivery, fetal umbilical cord pH, day time, hand over times

Procedia PDF Downloads 316