Search results for: target hiding
2778 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering
Authors: Tianyang Xu
Abstract:
Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics
Procedia PDF Downloads 1332777 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target
Procedia PDF Downloads 1402776 Identification and Selection of a Supply Chain Target Process for Re-Design
Authors: Jaime A. Palma-Mendoza
Abstract:
A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.Keywords: decision support systems, multiple criteria analysis, supply chain management
Procedia PDF Downloads 4922775 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: video tracking, particle filter, greedy snake, neural network
Procedia PDF Downloads 3432774 Coral Reef Fishes in the Marine Protected Areas in Southern Cebu, Philippines
Authors: Christine M. Corrales, Gloria G. Delan, Rachel Luz V. Rica, Alfonso S. Piquero
Abstract:
Marine protected areas (MPAs) in the study sites were established 8-13 years ago and are presently operational. This study was conducted to gather baseline information on the diversity, density and biomass of coral reef fishes inside and outside the four marine protected areas (MPAs) of Cawayan, Dalaguete; Daan-Lungsod Guiwang, Alcoy; North Granada, Boljoon and Sta. Cruz, Ronda. Coral reef fishes in the MPAs were identified using Fish Visual Census Method. Results of the t-test showed that the mean diversity (fish species/250m2) of target and non-target reef fish species found inside and outside the MPAs were significantly different. Density (ind./1,000m2) of target species inside and outside the MPAs showed no significant difference. Similarly, density of non-target species inside and outside the MPAs also showed no significant difference. This is an indication that fish density inside and outside the MPAs were more or less of the same condition. The mean biomass (kg/1,000m2) of target species inside and outside the MPAs showed a significant difference in contrast with non-target species inside and outside the MPAs which showed a no significant difference. Higher biomass of target fish species belonging to family Caesonidae (fusiliers) and Scaridae (parrotfishes) were commonly observed inside the MPAs. Results showed that fish species were more diverse with higher density and biomass inside the MPAs than the outside area. However, fish diversity and density were mostly contributed by non-target species. Hence, long term protection and management of MPAs is needed to effectively increase fish diversity, density and biomass specifically on target fish species.Keywords: biomass, density, diversity, marine protected area, target fish species
Procedia PDF Downloads 3972773 A Students' Ability Analysis Methods, Devices, Electronic Equipment and Storage Media Design
Authors: Dequn Teng, Tianshuo Yang, Mingrui Wang, Qiuyu Chen, Xiao Wang, Katie Atkinson
Abstract:
Currently, many students are kind of at a loss in the university due to the complex environment within the campus, where every information within the campus is isolated with fewer interactions with each other. However, if the on-campus resources are gathered and combined with the artificial intelligence modelling techniques, there will be a bridge for not only students in understanding themselves, and the teachers will understand students in providing a much efficient approach in education. The objective of this paper is to provide a competency level analysis method, apparatus, electronic equipment, and storage medium. It uses a user’s target competency level analysis model from a plurality of predefined candidate competency level analysis models by obtaining a user’s promotion target parameters, promotion target parameters including at least one of the following parameters: target profession, target industry, and the target company, according to the promotion target parameters. According to the parameters, the model analyzes the user’s ability level, determines the user’s ability level, realizes the quantitative and personalized analysis of the user’s ability level, and helps the user to objectively position his ability level.Keywords: artificial intelligence, model, university, education, recommendation system, evaluation, job hunting
Procedia PDF Downloads 1442772 Two-Sided Information Dissemination in Takeovers: Disclosure and Media
Authors: Eda Orhun
Abstract:
Purpose: This paper analyzes a target firm’s decision to voluntarily disclose information during a takeover event and the effect of such disclosures on the outcome of the takeover. Such voluntary disclosures especially in the form of earnings forecasts made around takeover events may affect shareholders’ decisions about the target firm’s value and in return takeover result. This study aims to shed light on this question. Design/methodology/approach: The paper tries to understand the role of voluntary disclosures by target firms during a takeover event in the likelihood of takeover success both theoretically and empirically. A game-theoretical model is set up to analyze the voluntary disclosure decision of a target firm to inform the shareholders about its real worth. The empirical implication of model is tested by employing binary outcome models where the disclosure variable is obtained by identifying the target firms in the sample that provide positive news by issuing increasing management earnings forecasts. Findings: The model predicts that a voluntary disclosure of positive information by the target decreases the likelihood that the takeover succeeds. The empirical analysis confirms this prediction by showing that positive earnings forecasts by target firms during takeover events increase the probability of takeover failure. Overall, it is shown that information dissemination through voluntary disclosures by target firms is an important factor affecting takeover outcomes. Originality/Value: This study is the first to the author's knowledge that studies the impact of voluntary disclosures by the target firm during a takeover event on the likelihood of takeover success. The results contribute to information economics, corporate finance and M&As literatures.Keywords: takeovers, target firm, voluntary disclosures, earnings forecasts, takeover success
Procedia PDF Downloads 3182771 Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP
Procedia PDF Downloads 3942770 An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar
Authors: Yanli Qi, Ning Lv, Jing Li
Abstract:
Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion.Keywords: inverse synthetic aperture radar (ISAR), deceptive jamming, Sub-Nyquist sampling jamming method (SNSJ), modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)
Procedia PDF Downloads 2182769 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers
Procedia PDF Downloads 2692768 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 4002767 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 3462766 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 1782765 Design of Target Selection for Pedestrian Autonomous Emergency Braking System
Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu
Abstract:
An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel
Procedia PDF Downloads 1572764 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform
Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park
Abstract:
Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.Keywords: target localization, ship-borne electro-optical stabilized platform, unscented kalman filter
Procedia PDF Downloads 5202763 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm
Authors: Vaibhav Barve
Abstract:
Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.Keywords: data embedding, decryption, encryption, reversible data hiding, steganography
Procedia PDF Downloads 2882762 Role-Specific Target-Systems in Professional Bureaucracies: A Qualitative Analysis in the OR
Authors: Kirsten Hoeper, Maike Kriependorf
Abstract:
This paper firstly discusses the initial situation and problems. Afterward, it defines professional bureaucracies and shows their impact for the OR-work. The OR-center and its actors are shown. Finally, the paper provides the empiric design for detecting the target systems of the different work groups within the OR, the quality criteria in qualitative research and empirical results. It is shown that different groups have different targets in their daily work and that helps for a better understanding. More precisely, by detecting the target systems of these experts, we can ‘bridge’ the different points of view to create a common basis for the work in the OR. One of the aims was to find bridges to overcome separating factors. This paper describes the situation in Germany focusing the Hannover Medical School. It can be assumed that the results can be transferred to other countries using the DRG-System (Diagnosis Related Groups).Keywords: hospital, OR, professional bureaucracies, target systems
Procedia PDF Downloads 2922761 Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images
Authors: Jie Huo, Jonathan Wu
Abstract:
Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method.Keywords: brain MRI segmentation, dynamic energy model, multi-atlas segmentation, energy minimization
Procedia PDF Downloads 3362760 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 3412759 Study on the Process of Detumbling Space Target by Laser
Authors: Zhang Pinliang, Chen Chuan, Song Guangming, Wu Qiang, Gong Zizheng, Li Ming
Abstract:
The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case.Keywords: detumbling, laser ablation drive, space target, space debris remove
Procedia PDF Downloads 852758 Synergism in the Inquiry Lab: An Analysis of Time Targets and Achievement
Authors: John M. Basey, Clinton D. Francis, Maxwell B. Joseph
Abstract:
After gathering data from experimental procedures, inquiry-oriented-science labs often allow students the freedom to stay and complete the write up in class or leave lab early and complete the write up later. Teachers must decide whether to allow students this freedom to self-regulate this time. Student interviews have indicated four time-target strategies that may influence how students utilize this time: grade-target-A, grade-target-C, time-limited, and proficiency. The hypothesis tested was that variability in class composition relative to the four grade-target strategies has an impact on when students leave class, which in turn may influence their overall learning as exemplified by grades. Students were divided into the four indicated groups with a survey. Class composition and the GTA teaching the class had significant impacts on how long students stayed in class with class composition having the greatest impact. A factor analysis identified two factors. Factor 1 included classes with percentages of grade-target students opposite time-limited/proficiency students and explained 43% of the variance. Factor 2 included classes with percentages of grade-target-A/proficiency students opposite grade-target-C students and explained 33% of the variance. Students who stayed longer received significantly higher grades (P = 0.008) with no significant relationships between grade and Factor 1 or Factor 2 (P > 0.05). The time students stayed in class was significantly positively related to Factor 1 (P = 0.006) and significantly negatively related to Factor 2 (P = 0.008). These results support the hypothesis and indicate that teachers may want to know the composition of student-target strategies before deciding on how to have students allocate study time at the end of inquiry-oriented labs. According to these results, ideal classes for self-regulation have a high proportion of proficiency and time-limited students and a low proportion of grade-target students, or a high proportion of grade-target-A and proficiency students and a low proportion of grade-target-C students. Non-ideal classes for self-regulation were comprised of the inverse proportions.Keywords: grades, inquiry lab design, synergism in student motivation, class composition
Procedia PDF Downloads 1292757 Simulation for the Magnetized Plasma Compression Study
Authors: Victor V. Kuzenov, Sergei V. Ryzhkov
Abstract:
Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed.Keywords: magnetized target, magneto-inertial fusion, mathematical model, plasma and laser beams
Procedia PDF Downloads 2962756 Highly Accurate Target Motion Compensation Using Entropy Function Minimization
Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani
Abstract:
One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)
Procedia PDF Downloads 1522755 Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell
Authors: Hongjian Jia
Abstract:
A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials.Keywords: hemispherical cylindrical shell;, fine echo characteristics;, geometric and material parameters;, formant interval
Procedia PDF Downloads 1092754 Pupil Size: A Measure of Identification Memory in Target Present Lineups
Authors: Camilla Elphick, Graham Hole, Samuel Hutton, Graham Pike
Abstract:
Pupil size has been found to change irrespective of luminosity, suggesting that it can be used to make inferences about cognitive processes, such as cognitive load. To see whether identifying a target requires a different cognitive load to rejecting distractors, the effect of viewing a target (compared with viewing distractors) on pupil size was investigated using a sequential video lineup procedure with two lineup sessions. Forty one participants were chosen randomly via the university. Pupil sizes were recorded when viewing pre target distractors and post target distractors and compared to pupil size when viewing the target. Overall, pupil size was significantly larger when viewing the target compared with viewing distractors. In the first session, pupil size changes were significantly different between participants who identified the target (Hits) and those who did not. Specifically, the pupil size of Hits reduced significantly after viewing the target (by 26%), suggesting that cognitive load reduced following identification. The pupil sizes of Misses (who made no identification) and False Alarms (who misidentified a distractor) did not reduce, suggesting that the cognitive load remained high in participants who failed to make the correct identification. In the second session, pupil sizes were smaller overall, suggesting that cognitive load was smaller in this session, and there was no significant difference between Hits, Misses and False Alarms. Furthermore, while the frequency of Hits increased, so did False Alarms. These two findings suggest that the benefits of including a second session remain uncertain, as the second session neither provided greater accuracy nor a reliable way to measure it. It is concluded that pupil size is a measure of face recognition strength in the first session of a target present lineup procedure. However, it is still not known whether cognitive load is an adequate explanation for this, or whether cognitive engagement might describe the effect more appropriately. If cognitive load and cognitive engagement can be teased apart with further investigation, this would have positive implications for understanding eyewitness identification. Nevertheless, this research has the potential to provide a tool for improving the reliability of lineup procedures.Keywords: cognitive load, eyewitness identification, face recognition, pupillometry
Procedia PDF Downloads 4042753 YOLO-IR: Infrared Small Object Detection in High Noise Images
Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long
Abstract:
Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion
Procedia PDF Downloads 742752 A Method for Processing Unwanted Target Caused by Reflection in Secondary Surveillance Radar
Authors: Khanh D.Do, Loi V.Nguyen, Thanh N.Nguyen, Thang M.Nguyen, Vu T.Tran
Abstract:
Along with the development of Secondary surveillance radar (SSR) in air traffic surveillance systems, the Multipath phenomena has always been a noticeable problem. This following article discusses the geometrical aspect and power aspect of the Multipath interference caused by reflection in SSR and proposes a method to deal with these unwanted multipath targets (ghosts) by false-target position predicting and adaptive target suppressing. A field-experiment example is mentioned at the end of the article to demonstrate the efficiency of this measure.Keywords: multipath, secondary surveillance radar, digital signal processing, reflection
Procedia PDF Downloads 1642751 Understanding Consumption Planning Behaviors
Authors: Gaosheng Ju
Abstract:
Our empirical evidence supports a model of consumption planning behaviors with the following two characteristics. First, households formulate a rational consumption target based on their desired target, displaying a diminishing sensitivity to the discrepancy between them. Second, the established target is a reference point for their planned consumption. The diminishing sensitivity leads to opposite reactions in higher and lower quantiles of both consumption targets and consumption growth to changes in economic conditions. This phenomenon accounts for the perplexingly low correlation between consumption and other macroeconomic variables. Furthermore, the opposing movements of consumption targets offer new insights into consumption-based asset pricing.Keywords: consumption planning, reference point, diminishing sensitivity, quantile regression, asset pricing puzzles
Procedia PDF Downloads 832750 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter
Authors: Lina Pan
Abstract:
In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood
Procedia PDF Downloads 4652749 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 48