Search results for: space traffic management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13806

Search results for: space traffic management

13776 Coordination of Traffic Signals on Arterial Streets in Duhok City

Authors: Dilshad Ali Mohammed, Ziyad Nayef Shamsulddin Aldoski, Millet Salim Mohammed

Abstract:

The increase in levels of traffic congestion along urban signalized arterials needs efficient traffic management. The application of traffic signal coordination can improve the traffic operation and safety for a series of signalized intersection along the arterials. The objective of this study is to evaluate the benefits achievable through actuated traffic signal coordination and make a comparison in control delay against the same signalized intersection in case of being isolated. To accomplish this purpose, a series of eight signalized intersections located on two major arterials in Duhok City was chosen for conducting the study. Traffic data (traffic volumes, link and approach speeds, and passenger car equivalent) were collected at peak hours. Various methods had been used for collecting data such as video recording technique, moving vehicle method and manual methods. Geometric and signalization data were also collected for the purpose of the study. The coupling index had been calculated to check the coordination attainability, and then time space diagrams were constructed representing one-way coordination for the intersections on Barzani and Zakho Streets, and others represented two-way coordination for the intersections on Zakho Street with accepted progression bandwidth efficiency. The results of this study show great progression bandwidth of 54 seconds for east direction coordination and 17 seconds for west direction coordination on Barzani Street under suggested controlled speed of 60 kph agreeable with the present data. For Zakho Street, the progression bandwidth is 19 seconds for east direction coordination and 18 seconds for west direction coordination under suggested controlled speed of 40 kph. The results show that traffic signal coordination had led to high reduction in intersection control delays on both arterials.

Keywords: bandwidth, congestion, coordination, traffic, signals, streets

Procedia PDF Downloads 305
13775 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 13
13774 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City

Authors: Adinarayana Badveeti, Mohammad Shafi Mir

Abstract:

In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.

Keywords: traffic congestion, modeling, traffic management, travel time index

Procedia PDF Downloads 318
13773 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 102
13772 Gender Diversity Practices in Talent Management: An Exploratory Study in the Space Industry in Luxembourg

Authors: K. Usanova

Abstract:

This study contributes to the conceptual and empirical understanding of how gender diversity management (GDM) is integrated into talent management (TM). Following the grounded theory, we interviewed 40 HR managers and talents from the space industry in Luxembourg. We provide a nuanced picture of what attitude on the GDM in TM organizations have, what strategies and practices they conduct, and how they differ from each other. Based on these differences, we developed three types of GDM integration to TM and explained the talents’ view on this issue. To the author's best knowledge, this study is the first empirical investigation of GDM in TM in the space industry that integrates both the TM executives' and TM receivers' views on gender equality in TM.

Keywords: gender diversity management, high-technology industry, human resource management, talent management

Procedia PDF Downloads 132
13771 The Effect of User Comments on Traffic Application Usage

Authors: I. Gokasar, G. Bakioglu

Abstract:

With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.

Keywords: traffic app, real–time information, traffic congestion, regression analysis, dummy variables

Procedia PDF Downloads 428
13770 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 523
13769 Emergency Management and Patient Transportation of Road Traffic Accident Victims Admitted to the District General Hospital, Matale, Sri Lanka

Authors: Asanka U. K. Godamunne

Abstract:

Road traffic accidents (RTA) are a leading cause of death globally as well as in Sri Lanka and results in a large proportion of disability especially among young people. Ninety-percent of world’s road traffic deaths occur in low- and middle-income countries. The gross disparities in injury outcomes relate to immediate post-crash and hospital management. Emergency management, methods of patient transportation following road traffic accidents and safety measures are important factors to reduce mortality and morbidity. Studies in this area are limited in Sri Lanka. The main objective of this research was to assess the emergency management and proper method of transportation of road traffic accident victims. This offers the best way to explore the ways to reduce the mortality and morbidity and raise the public awareness. This study was conducted as a descriptive cross-sectional study. All the consecutive road traffic accident victims admitted to surgical wards at District General Hospital, Matale, Sri Lanka, over a period of three months were included in the study. Data from 387 victims were analyzed. The majority were in the 20-30 year age group. Seventy six percent of the patients were males. Motorcycles and trishaws were most affected. First-aid was given to only 2% of patients and it was given by non-medical persons. A significant proportion of patients (75%) were transported to the hospital by trishaws and only 1% transported by ambulance. About 86% of the patients were seated while transport and 14% were flat. Limbs and head were the most affected areas of the body. As per this study, immediate post-crash management and patient transportation were not satisfactory. There is a need to strengthen certain road safety laws and make sure people follow them.

Keywords: emergency management, patient transportation, road traffic accident victims, Sri Lanka

Procedia PDF Downloads 244
13768 Geographic Information System for Simulating Air Traffic By Applying Different Multi-Radar Positioning Techniques

Authors: Amara Rafik, Mostefa Belhadj Aissa

Abstract:

Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.

Keywords: ATM, GIS, radar data, simulation

Procedia PDF Downloads 115
13767 The Kidney-Spine Traffic System: Future Cities, Ensuring World Class Civic Amenities in Urban India

Authors: Abhishek Srivastava, Jeevesh Nandan, Manish Kumar

Abstract:

The study was taken to analyse the alternative source of traffic system for effective and more convenient traffic flow by reducing points of conflicts as well as angle of conflict and keeping in view to minimize the problem of unnecessarily long waiting time, delays, congestion, traffic jam and geometric delays due to intersection between circular and straight lanes. It is a twin kidney-spine type structure system with special allowance for Highway users for quicker passes. Thus reduction in number and intensity of accidents, significance reduction in traffic jam, conservation of valuable time.

Keywords: traffic system, collision reduction of vehicles, smooth flow of vehicles, traffic jam

Procedia PDF Downloads 423
13766 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 132
13765 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 221
13764 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth

Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson

Abstract:

Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.

Keywords: dynamic accessibility, hot spot, transport research, TomTom® API

Procedia PDF Downloads 387
13763 Closed Loop Traffic Control System Using PLC

Authors: Chinmay Shah

Abstract:

The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC.

Keywords: close loop, IR sensor, PLC, light control system

Procedia PDF Downloads 569
13762 Distributed Actor System for Traffic Simulation

Authors: Han Wang, Zhuoxian Dai, Zhe Zhu, Hui Zhang, Zhenyu Zeng

Abstract:

In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation.

Keywords: actor system, cloud computing, distributed system, traffic simulation

Procedia PDF Downloads 190
13761 Investigating the Effective Parameters in Determining the Type of Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing – as a strategy in travel demand management in urban areas to reduce traffic congestion, air pollution and noise pollution – has drawn many attentions towards itself. Unlike the satisfying findings in this method, there are still problems in determining the best functional congestion pricing scheme with regard to the situation. The so-called problems in this process will result in further complications and even the scheme failure. That is why having proper knowledge of the significance of congestion pricing schemes and the effective factors in choosing them can lead to the success of this strategy. In this study, first, a variety of traffic congestion pricing schemes and their components are introduced; then, their functional usage is discussed. Next, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of pricing schemes are described. The results, accordingly, show that the selection of the best scheme depends on various parameters. Finally, based on examining the effective parameters, it is concluded that the implementation of area-based schemes (cordon and zonal) has been more successful in non-diversion of traffic. That is considering the topology of the cities and the fact that traffic congestion is often created in the city centers, area-based schemes would be notably functional and appropriate.

Keywords: congestion pricing, demand management, flat toll, variable toll

Procedia PDF Downloads 388
13760 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 64
13759 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 172
13758 Density Based Traffic System Using Pic Microcontroller

Authors: Tatipamula Samiksha Goud, .A.Naveena, M.sresta

Abstract:

Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this.

Keywords: infrared sensors, micro-controllers, LEDs, oscillators

Procedia PDF Downloads 140
13757 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 74
13756 Enhanced Traffic Light Detection Method Using Geometry Information

Authors: Changhwan Choi, Yongwan Park

Abstract:

In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.

Keywords: traffic light, intelligent vehicle, night, detection, DGPS

Procedia PDF Downloads 323
13755 The Management of Urban Facilities in the City of Chlef

Authors: Belakhdar Salah Brahim

Abstract:

The Urban management is a major element of social control of public space and thus the functioning of society. As such, it is a key element of a social conception of sustainable development. Also, it is a cross-cutting sector that relies on land management, infrastructure management, habitat management, management of social services, the management of economic development, etc. This study aims to study how urban management focusing on the study of problems related to urban waste management in developing countries. It appears from the study that the city management is to improve infrastructure and urban services in order to increase the city's development and improve living conditions in cities. It covers various aspects including management of urban space, economic management, administrative management, asset management or infrastructure and finally waste management. Environmental management is important because it solves the pollution problems of life and preserve resources for future generations. Changing perceptions of waste has led to the definition of new policies for integrated waste management requirements appropriate to the urban site.

Keywords: urbanization, urban management, environmental management, waste management

Procedia PDF Downloads 431
13754 Evaluation of Traffic Noise Around Different Facilities Located in Silent Zones

Authors: Khaled Shaaban

Abstract:

Schools and hospitals are supposed to be located in silent zones. In these areas, it is expected to maintain low noise levels in order to promote a peaceful environment for studying or recovering. However, many of these facilities are located in urban areas and are subject to high levels of noise. In this study, an evaluation of traffic noise around schools and hospitals was conducted during different periods of the day. The results indicated that the noise is positively correlated with the traffic volume around these facilities. Locations with higher traffic volumes tend to have higher noise levels. The results also showed that the noise levels exceed the recommended values by the World Health Organization. Several solutions were suggested as potential courses of action to decrease the excessive level of noise around these facilities.

Keywords: traffic noise, road traffic, noise levels, traffic volume

Procedia PDF Downloads 98
13753 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 120
13752 Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman

Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon

Abstract:

The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates.

Keywords: road safety, rural roads, traffic crash, GIS tools

Procedia PDF Downloads 145
13751 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: block, space syntax and methodology, street, urban space, Yangzhou

Procedia PDF Downloads 178
13750 Collision Avoidance Maneuvers for Vessels Navigating through Traffic Separation Scheme

Authors: Aswin V. J., Sreeja S., R. Harikumar

Abstract:

Ship collision is one of the major concerns while navigating in the ocean. In congested sea routes where there are hectic offshore operations, ships are often forced to take close encounter maneuvers. Maritime rules for preventing collision at sea are defined in the International Regulations for Preventing Collision at Sea. Traffic Separation Schemes (TSS) are traffic management route systems ruled by International Maritime Organization (IMO), where the traffic lanes indicate the general direction of traffic flow. The Rule 10 of International Regulations for Preventing Collision at Sea prescribes the conduct of vessels while navigating through TSS. But no quantitative criteria regarding the procedures to detect and evaluate collision risk is specified in International Regulations for Preventing Collision at Sea. Most of the accidents that occur are due to operational errors affected by human factors such as lack of experience and loss of situational awareness. In open waters, the traffic density is less when compared to that in TSS, and hence the vessels can be operated in autopilot mode. A collision avoidance method that uses the possible obstacle trajectories in advance to predict “collision occurrence” and can generate suitable maneuvers for collision avoidance is presented in this paper. The suitable course and propulsion changes that can be used in a TSS considering International Regulations for Preventing Collision at Sea are found out for various obstacle scenarios.

Keywords: collision avoidance, maneuvers, obstacle trajectories, traffic separation scheme

Procedia PDF Downloads 75
13749 Evaluation of the Efficiency of Intelligent Systems in Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing as one of the demand management strategies constrains expenditure to network users so that it helps reduction in traffic congestion and environment pollution like air pollution. Despite the development of congestion pricing schemes for traffic in our country, the matters of traditional toll collection, drivers’ waste of time and delay in traffic are still widespread. Electronic toll collection as a part of the intelligent transportation system provides the possibility of collecting tolls without car-stop and traffic disruption. Unlike the satisfying outcomes of using intelligent systems in congestion pricing schemes, implementation costs and technological problems are the barriers in these schemes. In this research first, a variety of electronic pay toll systems and their components are introduced then their functional usage is discussed. In the following, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of intelligent systems are described and the results show that the choice of the best technology depends on the various parameters which, by examining them, it is concluded that in a long-term run and by providing the necessary conditions, DSRC technology as the main system in the schemes and ANPR as a major backup system of the main one can be employed.

Keywords: congestion pricing, electronic toll collection, intelligent systems, technology, traffic

Procedia PDF Downloads 608
13748 Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji, Adeyemi Adedokun

Abstract:

Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections.

Keywords: intersections, traffic conflict, traffic safety, street audit, accidents predictions

Procedia PDF Downloads 231
13747 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 23