Search results for: sequential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 441

Search results for: sequential

411 Verbal Working Memory in Sequential and Simultaneous Bilinguals: An Exploratory Study

Authors: Archana Rao R., Deepak P., Chayashree P. D., Darshan H. S.

Abstract:

Cognitive abilities in bilinguals have been widely studied over the last few decades. Bilingualism has been found to extensively facilitate the ability to store and manipulate information in Working Memory (WM). The mechanism of WM includes primary memory, attentional control, and secondary memory, each of which makes a contribution to WM. Many researches have been done in an attempt to measure WM capabilities through both verbal (phonological) and nonverbal tasks (visuospatial). Since there is a lot of speculations regarding the relationship between WM and bilingualism, further investigation is required to understand the nature of WM in bilinguals, i.e., with respect to sequential and simultaneous bilinguals. Hence the present study aimed to highlight the verbal working memory abilities in sequential and simultaneous bilinguals with respect to the processing and recall abilities of nouns and verbs. Two groups of bilinguals aged between 18-30 years were considered for the study. Group 1 consisted of 20 (10 males and 10 females) sequential bilinguals who had acquired L1 (Kannada) before the age of 3 and had exposure to L2 (English) for a period of 8-10 years. Group 2 consisted of 20 (10 males and 10 females) simultaneous bilinguals who have acquired both L1 and L2 before the age of 3. Working memory abilities were assessed using two tasks, and a set of stimuli which was presented in gradation of complexity and the stimuli was inclusive of frequent and infrequent nouns and verbs. The tasks involved the participants to judge the correctness of the sentence and simultaneously remember the last word of each sentence and the participants are instructed to recall the words at the end of each set. The results indicated no significant difference between sequential and simultaneous bilinguals in processing the nouns and verbs, and this could be attributed to the proficiency level of the participants in L1 and the alike cognitive abilities between the groups. And recall of nouns was better compared to verbs, maybe because of the complex argument structure involved in verbs. Similarly, authors found a frequency of occurrence of nouns and verbs also had an effect on WM abilities. The difference was also found across gradation due to the load imposed on the central executive function and phonological loop.

Keywords: bilinguals, nouns, verbs, working memory

Procedia PDF Downloads 129
410 Using Data-Driven Model on Online Customer Journey

Authors: Ing-Jen Hung, Tzu-Chien Wang

Abstract:

Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.

Keywords: LSTM, customer journey, marketing, channel ads

Procedia PDF Downloads 121
409 A Heuristic for the Integrated Production and Distribution Scheduling Problem

Authors: Christian Meinecke, Bernd Scholz-Reiter

Abstract:

The integrated problem of production and distribution scheduling is relevant in many industrial applications. Thus, many heuristics to solve this integrated problem have been developed in the last decade. Most of these heuristics use a sequential working principal or a single decomposition and integration approach to separate and solve sub-problems. A heuristic using a multi-step decomposition and integration approach is presented in this paper and evaluated in a case study. The result show significant improved results compared with sequential scheduling heuristics.

Keywords: production and outbound distribution, integrated planning, heuristic, decomposition, integration

Procedia PDF Downloads 429
408 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation

Procedia PDF Downloads 180
407 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 289
406 Book Recommendation Using Query Expansion and Information Retrieval Methods

Authors: Ritesh Kumar, Rajendra Pamula

Abstract:

In this paper, we present our contribution for book recommendation. In our experiment, we combine the results of Sequential Dependence Model (SDM) and exploitation of book information such as reviews, tags and ratings. This social information is assigned by users. For this, we used CLEF-2016 Social Book Search Track Suggestion task. Finally, our proposed method extensively evaluated on CLEF -2015 Social Book Search datasets, and has better performance (nDCG@10) compared to other state-of-the-art systems. Recently we got the good performance in CLEF-2016.

Keywords: sequential dependence model, social information, social book search, query expansion

Procedia PDF Downloads 289
405 Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability

Authors: Mingjun Xu, Man Pun Wan

Abstract:

This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method.

Keywords: performance-based design, perpetual tenability, smoke control, fire plume

Procedia PDF Downloads 74
404 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current

Authors: Lei Ren, Michael Hartnett, Stephen Nash

Abstract:

The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.

Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion

Procedia PDF Downloads 573
403 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 399
402 Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes

Authors: F. Pedron, M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

Lead contamination of agricultural land mainly vegetated with perennial ryegrass (Lolium perenne) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H2O, KNO3, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of Lolium perenne showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant.

Keywords: bioavailability, Freundlich-like equation, sequential extraction, soil lead contamination

Procedia PDF Downloads 310
401 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
400 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 109
399 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 487
398 Sequential Padding: A Method to Improve the Impact Resistance in Body Armor Materials

Authors: Ankita Srivastava, Bhupendra S. Butola, Abhijit Majumdar

Abstract:

Application of shear thickening fluid (STF) has been proved to increase the impact resistance performance of the textile structures to further use it as a body armor material. In the present research, STF was applied on Kevlar woven fabric to make the structure lightweight and flexible while improving its impact resistance performance. It was observed that getting a fair amount of add-on of STF on Kevlar fabric is difficult as Kevlar fabric comes with a pre-coating of PTFE which hinders its absorbency. Hence, a method termed as sequential padding is developed in the present study to improve the add-on of STF on Kevlar fabric. Contrary to the conventional process, where Kevlar fabric is treated with STF once using any one pressure, in sequential padding method, the Kevlar fabrics were treated twice in a sequential manner using combination of two pressures together in a sample. 200 GSM Kevlar fabrics were used in the present study. STF was prepared by adding PEG with 70% (w/w) nano-silica concentration. Ethanol was added with the STF at a fixed ratio to reduce viscosity. A high-speed homogenizer was used to make the dispersion. Total nine STF treated Kevlar fabric samples were prepared by using varying combinations and sequences of three levels of padding pressure {0.5, 1.0 and 2.0 bar). The fabrics were dried at 80°C for 40 minutes in a hot air oven to evaporate ethanol. Untreated and STF treated fabrics were tested for add-on%. Impact resistance performance of samples was also tested on dynamic impact tester at a fixed velocity of 6 m/s. Further, to observe the impact resistance performance in actual condition, low velocity ballistic test with 165 m/s velocity was also performed to confirm the results of impact resistance test. It was observed that both add-on% and impact energy absorption of Kevlar fabrics increases significantly with sequential padding process as compared to untreated as well as single stage padding process. It was also determined that impact energy absorption is significantly better in STF treated Kevlar fabrics when 1st padding pressure is higher, and 2nd padding pressure is lower. It is also observed that impact energy absorption of sequentially padded Kevlar fabric shows almost 125% increase in ballistic impact energy absorption (40.62 J) as compared to untreated fabric (18.07 J).The results are owing to the fact that the treatment of fabrics at high pressure during the first padding is responsible for uniform distribution of STF within the fabric structures. While padding with second lower pressure ensures the high add-on of STF for over-all improvement in the impact resistance performance of the fabric. Therefore, it is concluded that sequential padding process may help to improve the impact performance of body armor materials based on STF treated Kevlar fabrics.

Keywords: body armor, impact resistance, Kevlar, shear thickening fluid

Procedia PDF Downloads 240
397 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes

Authors: Yaxian Chen, Yeonhee Park

Abstract:

Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.

Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome

Procedia PDF Downloads 64
396 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir

Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai

Abstract:

Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.

Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor

Procedia PDF Downloads 476
395 A Discovery of the Dual Sequential Pattern of Prime Numbers in P x P: Applications in a Formal Proof of the Twin-Prime Conjecture

Authors: Yingxu Wang

Abstract:

This work presents basic research on the recursive structures and dual sequential patterns of primes for the formal proof of the Twin-Prime Conjecture (TPC). A rigorous methodology of Twin-Prime Decomposition (TPD) is developed in MATLAB to inductively verify potential twins in the dual sequences of primes. The key finding of this basic study confirms that the dual sequences of twin primes are not only symmetric but also infinitive in the unique base 6 cycle, except a limited subset of potential pairs is eliminated by the lack of dual primality. Both theory and experiments have formally proven that the infinity of twin primes stated in TPC holds in the P x P space.

Keywords: number theory, primes, twin-prime conjecture, dual primes (P x P), twin prime decomposition, formal proof, algorithm

Procedia PDF Downloads 64
394 Statistical Analysis to Select Evacuation Route

Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim

Abstract:

Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.

Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route

Procedia PDF Downloads 504
393 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 189
392 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar

Abstract:

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-Frequency Pulse Width Modulation (FFPWM) and Multilevel Sinusoidal-Modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase Opposition Disposition (APOD), Phase Shifted Carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

Keywords: cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation

Procedia PDF Downloads 536
391 A Standard Operating Procedure (SOP) for Forensic Soil Analysis: Tested Using a Simulated Crime Scene

Authors: Samara A. Testoni, Vander F. Melo, Lorna A. Dawson, Fabio A. S. Salvador

Abstract:

Soil traces are useful as forensic evidence due to their potential to transfer and adhere to different types of surfaces on a range of objects or persons. The great variability expressed by soil physical, chemical, biological and mineralogical properties show soil traces as complex mixtures. Soils are continuous and variable, no two soil samples being indistinguishable, nevertheless, the complexity of soil characteristics can provide powerful evidence for comparative forensic purposes. This work aimed to establish a Standard Operating Procedure (SOP) for forensic soil analysis in Brazil. We carried out a simulated crime scene with double blind sampling to calibrate the sampling procedures. Samples were collected at a range of locations covering a range of soil types found in South of Brazil: Santa Candida and Boa Vista, neighbourhoods from Curitiba (State of Parana) and in Guarani and Guaraituba, neighbourhoods from Colombo (Curitiba Metropolitan Region). A previously validated sequential analyses of chemical, physical and mineralogical analyses was developed in around 2 g of soil. The suggested SOP and the sequential range of analyses were effective in grouping the samples from the same place and from the same parent material together, as well as successfully discriminated samples from different locations and originated from different rocks. In addition, modifications to the sample treatment and analytical protocol can be made depending on the context of the forensic work.

Keywords: clay mineralogy, forensic soils analysis, sequential analyses, kaolinite, gibbsite

Procedia PDF Downloads 254
390 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty

Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos

Abstract:

Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.

Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning

Procedia PDF Downloads 208
389 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.

Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction

Procedia PDF Downloads 572
388 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 314
387 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features

Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili

Abstract:

In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.

Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features

Procedia PDF Downloads 320
386 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 178
385 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 170
384 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture

Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk

Abstract:

Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.

Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization

Procedia PDF Downloads 378
383 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 299
382 Linear Decoding Applied to V5/MT Neuronal Activity on Past Trials Predicts Current Sensory Choices

Authors: Ben Hadj Hassen Sameh, Gaillard Corentin, Andrew Parker, Kristine Krug

Abstract:

Perceptual decisions about sequences of sensory stimuli often show serial dependence. The behavioural choice on one trial is often affected by the choice on previous trials. We investigated whether the neuronal signals in extrastriate visual area V5/MT on preceding trials might influence choice on the current trial and thereby reveal the neuronal mechanisms of sequential choice effects. We analysed data from 30 single neurons recorded from V5/MT in three Rhesus monkeys making sequential choices about the direction of rotation of a three-dimensional cylinder. We focused exclusively on the responses of neurons that showed significant choice-related firing (mean choice probability =0.73) while the monkey viewed perceptually ambiguous stimuli. Application of a wavelet transform to the choice-related firing revealed differences in the frequency band of neuronal activity that depended on whether the previous trial resulted in a correct choice for an unambiguous stimulus that was in the neuron’s preferred direction (low alpha and high beta and gamma) or non-preferred direction (high alpha and low beta and gamma). To probe this in further detail, we applied a regularized linear decoder to predict the choice for an ambiguous trial by referencing the neuronal activity of the preceding unambiguous trial. Neuronal activity on a previous trial provided a significant prediction of the current choice (61% correc, 95%Cl~52%t), even when limiting analysis to preceding trials that were correct and rewarded. These findings provide a potential neuronal signature of sequential choice effects in the primate visual cortex.

Keywords: perception, decision making, attention, decoding, visual system

Procedia PDF Downloads 139