Search results for: oncoplastic augmentation mastopexy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 184

Search results for: oncoplastic augmentation mastopexy

154 Evaluation of Intraoral Complications of Buccal Mucosa Graft in Augmentation Urethroplasty

Authors: Dahna Alkahtani, Faryal Suraya, Fadah Alanazi

Abstract:

Background: Buccal mucosal graft for urethral augmentation has surpassed other grafting options, and is now considered the standard of choice for substitution Urethroplasty. The graft has gained its popularity due to its excellent short and long-term results, easy harvesting as well as its ability in withstanding wet environments. However, although Buccal mucosal grafts are an excellent option, it is not free of complications, potential intraoral complications are bleeding, pain, swelling, injury to the nerve resulting in numbness, lip deviation or retraction. Objectives: The current study aims to evaluate the intraoral complications of buccal mucosa grafts harvested from one cheek, and used in Augmentation Urethroplasty. Methodology: The study was conducted retrospectively using the medical records of patients who underwent open augmentation urethroplasty with a buccal mucosa graft at King Khalid University Hospital, Saudi Arabia. Data collection of demographics included the type of graft used, presence or absence of strictures and its etiological factors. Pre-operative and post-operative evaluations were carried out on the subjects including the medical history, physical examination, uroflowmetry, retrograde urethrography, voiding cystourethrography and urine cultures were also noted. Further, the quality of life and complications of the procedure including the presence or occurrence of bleeding within 3-days post-procedure, the severity of pain, oral swelling after grafting, length of return to normal daily diet, painful surgical site, intake of painkillers, presence or absence of speech disturbance, numbness in the cheeks and lips were documented. Results: Thirty-two male subjects with ages ranging from 15 years to 72 years were included in the current study. Following the procedure, a hundred percent of the subjects returned to their normal daily diet by the sixth postoperative day. Further, the majority of the patients reported experiencing mild pain accounting for 61.3%, and 90.3% of the subjects reported using painkillers to control the pain. Surgical wound Pain was reportedly more common at the perineal site as 48.4% of the subjects experienced it; on the other hand, 41.9% of the patients experienced pain in the oral mucosa. The presence of speech disorders, as assessed through medical history, was found to be present in 3.2% of patients. The presence of numbness in the cheeks and lips was found in 3.2% of patients. Other complications such as parotid duct injury, delayed wound healing, non-healing wound and suture granuloma were rare as 90.3% of the subjects denied experiencing any of them, there were nonetheless reports of parotid duct injury by 6.5% of the patients, and non-healing wound by the 3.2% of patients. Conclusion: Buccal Mucosa Graft in Augmentation Urethroplasty is an ideal source of allograft, although not entirely painless; it is considerably safe with minimal intra-oral complication and undetectable strain on the patients’ quality of life.

Keywords: augmentation, buccal, graft, oral

Procedia PDF Downloads 179
153 Characterization of Bovine SERPIN- Alpha-1 Antitrypsin (AAT)

Authors: Sharique Ahmed, Khushtar Anwar Salman

Abstract:

Alpha-1-antitrypsin (AAT) is a major plasma serine protease inhibitor (SERPIN). Hereditary AAT deficiency is one of the common diseases in some part of the world. AAT is mainly produced in the liver and functions to protect the lung against proteolytic damage (e.g., from neutrophil elastase) acting as the major inhibitor for neutrophil elastase. α (1)-Antitrypsin (AAT) deficiency is an under recognized genetic condition that affects approximately 1 in 2,000 to 1 in 5,000 individuals and predisposes to liver disease and early-onset emphysema. Not only does α-1-antitrypsin deficiency lead to disabling syndrome of pulmonary emphysema, there are other disorders too which include ANCA (antineutrophilic cytoplasmic antibody) positive Wegener's granulomatosis, diffuse bronchiectasis, necrotizing panniculitis in α-1-antitrypsin phenotype (S), idiopathic pulmonary fibrosis and steroid dependent asthma. Augmentation therapy with alpha-1 antitrypsin (AAT) from human plasma has been available for specific treatment of emphysema due to AAT deficiency. Apart from this several observations have also suggested a role for endogenous suppressors of HIV-1, alpha-1 antitrypsin (AAT) has been identified to be one of those. In view of its varied important role in humans, serum from a mammalian source was chosen for the isolation and purification. Studies were performed on the homogeneous fraction. This study suggests that the buffalo serum α-1-antritrypsin has characteristics close to ovine, dog, horse and more importantly to human α-1-antritrypsin in terms of its hydrodynamic properties such as molecular weight, carbohydrate content, etc. The similarities in the hydrodynamic properties of buffalo serum α-1-antitrypsin with other sources of mammalian α-1-antitrypsin mean that it can be further studied and be a potential source for "augmentation therapy", as well as a source of AAT replacement therapy to raise serum levels above the protective threshold. Other parameters like the amino acid sequence, the effect of denaturants, and the thermolability or thermostability of the inhibitor will be the interesting basis of future studies on buffalo serum alpha-1 antitrypsin (AAT).

Keywords: α-1-antitrypsin, augmentation therapy , hydrodynamic properties, serine protease inhibitor

Procedia PDF Downloads 489
152 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites

Authors: Pankhuri Bansal, Sanjeev Kumar

Abstract:

We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.

Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting

Procedia PDF Downloads 43
151 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 101
150 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 20
149 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 184
148 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 125
147 Combination of Lamotrigine and Duloxetine: A Potential Approach for the Treatment of Acute Bipolar Depression

Authors: Kedar S. Prabhavalkar, Nimmy Baby Poovanpallil

Abstract:

Lamotrigine is approved for maintenance treatment of bipolar I disorder. However, its role in the treatment of acute bipolar depression is not well clear. Its efficacy in the treatment of major depressive disorders including refractory unipolar depression suggested the use of lamotrigine as an augmentation drug for acute bipolar depression. The present study aims to evaluate and perform a comparative analysis of the therapeutic effects of lamotrigine, an epileptic mood stabilizer, when used alone and in combination with duloxetine in treating acute bipolar depression at different doses of lamotrigine. Male swiss albino mice were used. For evaluation of efficacy of combination, immobility period was analyzed 30 min after the treatment from forced swim and tail suspension tests. Further amount of sucrose consumed in sucrose preference test was estimated. The combination of duloxetine and lamotrigine showed potentiation of antidepressant activity in acute models. Decrease in immobility time and increase in the amount of sucrose consumption in stressed mice were higher in combined group compared to lamotrigine monotherapy group. Brain monoamine levels were also attenuated more with combination compared to monotherapy. Results of the present study suggest potential role of lamotrigine and duloxetine combination in the treatment of acute bipolar depression.

Keywords: lamotrigine, duloxetine, acute bipolar depression, augmentation

Procedia PDF Downloads 507
146 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
145 Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts

Authors: Ratheesh Radhakrishnan, P. C. Sreekumar, K. Krishnamoorthy

Abstract:

Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000Keywords: enhancement, heat transfer coefficient, friction factor, twisted tape, nanofluid

Procedia PDF Downloads 350
144 WILCKO-PERIO, Periodontally Accelerated Orthodontics

Authors: Kruttika Bhuse

Abstract:

Aim: Synergism between periodontists and orthodontists (periodontal accelerated osteogenic orthodontics- PAOO) creates crucial opportunities to enhance clinical outcomes of combined therapies regarding both disciplines and has made adult orthodontics a reality. Thus, understanding the biomechanics of bone remodelling may increase the clinical applications of corticotomy facilitated orthodontics with or without alveolar augmentation. Wilckodontics can be an attractive treatment option and be a “win-win” situation for both the dental surgeon and patient by reducing the orthodontic treatment time in adults. Materials and methods: In this review, data related to the clinical aspects, steps of procedure, biomechanics of bone, indications and contraindications and final outcome of wilckodontic shall be discussed. 50 supporting articles from various international journals and 70 clinical cases were reviewed to get a better understanding to design this wilckodontic - meta analysis. Various journals like the Journal Of Clinical And Diagnostic Research, Journal Of Indian Society Of Periodontology, Journal Of Periodontology, Pubmed, Boston Orthodontic University Journal, Good Practice Orthodontics Volume 2, have been referred to attain valuable information on wilckodontics which was then compiled in this single review study. Result: As a promising adjuvant technique based on the transient nature of demineralization-remineralisation process in healthy tissues, wilckodontics consists of regional acceleratory phenomenon by alveolar corticotomy and bone grafting of labial and palatal/lingual surfaces, followed by orthodontic force. The surgical wounding of alveolar bone potentiates tissue reorganization and healing by a way of transient burst of localized hard and soft tissue remodelling.This phenomenon causes bone healing to occur 10-50 times faster than normal bone turnover. Conclusion: This meta analysis helps understanding that the biomechanics of bone remodelling may increase the clinical applications of corticotomy facilitated orthodontics with or without alveolar augmentation. The main benefits being reduced orthodontic treatment time, increased bone volume and post-orthodontic stability.

Keywords: periodontal osteogenic accelerated orthodontics, alveolar corticotomy, bone augmentation, win-win situation

Procedia PDF Downloads 391
143 Topical Negative Pressure for Autologous Fat Grafting in Breast Augmentation

Authors: Mohamed Eftal Bin Mohamed Ebrahim, Alexander Varey

Abstract:

Aim: Topical negative pressure has been shown to enhance angiogenesis during wound healing, both for open and closed wounds. Since angiogenesis is a key requirement for successful fat grafting, there may be a role for topical negative pressure as a means of enhancing the take rate during autologous fat grafting to breasts. Here we present a systematic review of the literature on this topic. Methods: Ovid and Embase were utilized, with searches ranging between 1960 – 2019. Terms (“Liposculpting” OR “Fat grafting” OR “Lipofilling” OR “Lipograft” OR “Fat transfer”) AND (“Negative Pressure” OR “Brava” OR “Kiwi”) AND (“Breast”) were merged as keywords. Inclusion criteria were females, autologous fat graft to breast with topical negative pressure prior to the procedure. Studies were excluded if there was no primary endpoint or non-original article. Results: Upon reviewing 219 articles, 2 met inclusion criteria. A total of 565 and 46 breasts in each article were treated respectively using the negative pressure device BRAVA®, with each cohort having different pre-and post-operative pressure settings. Khouri et al. cohort had higher graft survival (79%) compared to Del Vecchio et al. cohort (64%); however, the latter had fewer complications compared to Khouri’s cohort, e.g., fat necrosis, pneumothorax and infection. Conclusion: There is limited evidence regarding the use of topical negative pressure for fat grafting to the breasts. However, in the two studies published, the reported rates of success are high, suggesting there may be a benefit. Consequently, a randomized controlled trial on this area is required.

Keywords: fat grafting, lipograft, negative pressure, breast, breast augmentation, brava

Procedia PDF Downloads 192
142 Gender Differences in Walking Capacity and Cardiovascular Regulation in Patients with Peripheral Arterial Disease

Authors: Gabriel Cucato, Marilia Correia, Wagner Domingues, Aline Palmeira, Paulo Longano, Nelson Wolosker, Raphael Ritti-Dias

Abstract:

Women with peripheral arterial disease (PAD) present lower walking capacity in comparison with men. However, whether cardiovascular regulation is also different between genders is unknown. Thus, the aim of this study was to compare walking capacity and cardiovascular regulation between men and women with PAD. A total of 23 women (66±7 yrs) and 31 men (64±9 yrs) were recruited. Patients performed a 6-minute test and the onset claudication distance and total walking distance were measured. Additionally, cardiovascular regulation was assessed by arterial stiffness (pulse wave velocity and augmentation index) and heart rate variability (frequency domain). Independent T test or Mann-Whitney U test were performed. In comparison with men, women present lower onset claudication distance (108±66m vs. 143±50m; P=0.032) and total walking distance (286±83m vs. 361±91 m, P=0.007). Regarding cardiovascular regulation, there were no differences in heart rate variability SDNN (72±160ms vs. 32±22ms, P=0.587); RMSSD (75±209 vs. 25±22ms, P=0.726); pNN50 (11±17ms vs. 8±14ms, P=0.836) in women and men, respectively. Moreover, there were no difference in augmentation index (39±10% vs. 34±11%, P=0.103); pulse pressure (59±17mmHg vs. 56±19mmHg, P=0.593) and pulse wave velocity (8.6±2.6m\s vs. 9.0±2.7m/s, P=0.580). In conclusion, women have impaired walking capacity compared to men. However, sex differences were not observed on cardiovascular regulation in patients with PAD.

Keywords: exercise, intermittent claudication, cardiovascular load, arterial stiffness

Procedia PDF Downloads 393
141 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 93
140 Factors Affecting Employee Decision Making in an AI Environment

Authors: Yogesh C. Sharma, A. Seetharaman

Abstract:

The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.

Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety

Procedia PDF Downloads 108
139 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
138 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects

Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim

Abstract:

Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.

Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation

Procedia PDF Downloads 42
137 A Systematic Review of Efficacy and Safety of Radiofrequency Ablation in Patients with Spinal Metastases

Authors: Pascale Brasseur, Binu Gurung, Nicholas Halfpenny, James Eaton

Abstract:

Development of minimally invasive treatments in recent years provides a potential alternative to invasive surgical interventions which are of limited value to patients with spinal metastases due to short life expectancy. A systematic review was conducted to explore the efficacy and safety of radiofrequency ablation (RFA), a minimally invasive treatment in patients with spinal metastases. EMBASE, Medline and CENTRAL were searched from database inception to March 2017 for randomised controlled trials (RCTs) and non-randomised studies. Conference proceedings for ASCO and ESMO published in 2015 and 2016 were also searched. Fourteen studies were included: three prospective interventional studies, four prospective case series and seven retrospective case series. No RCTs or studies comparing RFA with another treatment were identified. RFA was followed by cement augmentation in all patients in seven studies and some patients (40-96%) in the remaining seven studies. Efficacy was assessed as pain relief in 13/14 studies with the use of a numerical rating scale (NRS) or a visual analogue scale (VAS) at various time points. Ten of the 13 studies reported a significant decrease in pain outcome, post-RFA compared to baseline. NRS scores improved significantly at 1 week (5.9 to 3.5, p < 0.0001; 8 to 4.3, p < 0.02 and 8 to 3.9, p < 0.0001) and this improvement was maintained at 1 month post-RFA compared to baseline (5.9 to 2.6, p < 0.0001; 8 to 2.9, p < 0.0003; 8 to 2.9, p < 0.0001). Similarly, VAS scores decreased significantly at 1 week (7.5 to 2.7, p=0.00005; 7.51 to 1.73, p < 0.0001; 7.82 to 2.82, p < 0.001) and this pattern was maintained at 1 month post-RFA compared to baseline (7.51 to 2.25, p < 0.0001; 7.82 to 3.3; p < 0.001). A significant pain relief was achieved regardless of whether patients had cement augmentation in two studies assessing the impact of RFA with or without cement augmentation on VAS pain scores. In these two studies, a significant decrease in pain scores was reported for patients receiving RFA alone and RFA+cement at 1 week (4.3 to 1.7. p=0.0004 and 6.6 to 1.7, p=0.003 respectively) and 15-36 months (7.9 to 4, p=0.008 and 7.6 to 3.5, p=0.005 respectively) after therapy. Few minor complications were reported and these included neural damage, radicular pain, vertebroplasty leakage and lower limb pain/numbness. In conclusion, the efficacy and safety of RFA were consistently positive between prospective and retrospective studies with reductions in pain and few procedural complications. However, the lack of control groups in the identified studies indicates the possibility of selection bias inherent in single arm studies. Controlled trials exploring efficacy and safety of RFA in patients with spinal metastases are warranted to provide robust evidence. The identified studies provide an initial foundation for such future trials.

Keywords: pain relief, radiofrequency ablation, spinal metastases, systematic review

Procedia PDF Downloads 173
136 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks

Authors: Muneeb Ullah, Daishihan, Xiadong Young

Abstract:

Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.

Keywords: classification, deep learning, medical images, CXR, GAN.

Procedia PDF Downloads 96
135 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
134 The Influence of the Institutional Environment in Increasing Wealth: The Case of Women Business Operators in a Rural Setting

Authors: S. Archsana, Vajira Balasuriya

Abstract:

In Trincomalee of Sri Lanka, a post-conflict area, resettlement projects and policy initiatives are taking place to improve the wealth of the rural communities through promoting economic activities by way of encouraging the rural women to opt to commence and operate Micro and Small Scale (MSS) businesses. This study attempts to identify the manner in which the institutional environment could facilitate these MSS businesses owned and operated by women in the rural environment. The respondents of this study are the beneficiaries of the Divi Neguma Development Training Program (DNDTP); a project designed to aid women owned MSS businesses, in Trincomalee district. 96 women business operators, who had obtained financing facilities from the DNDTP, are taken as the sample based on fixed interval random sampling method. The study reveals that primary challenges encountered by 82% of the women business operators are lack of initial capital followed by 71% initial market finding and 35% access to technology. The low level of education and language barriers are the constraints in accessing support agencies/service providers. Institutional support; specifically management and marketing services, have a significant relationship with wealth augmentation. Institutional support at the setting-up stage of businesses are thin whereas terms and conditions of the finance facilities are perceived as ‘too challenging’. Although diversification enhances wealth of the rural women business operators, assistance from the institutional framework to prepare financial reports that are required for business expansion is skinny. The study further reveals that institutional support is very much weak in terms of providing access to new technology and identifying new market networks. A mechanism that could facilitate the institutional framework to support the rural women business operators to access new technology and untapped market segments, and assistance in preparation of legal and financial documentation is recommended.

Keywords: business facilitation, institutional support, rural women business operators, wealth augmentation

Procedia PDF Downloads 437
133 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake

Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic

Abstract:

Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.

Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake

Procedia PDF Downloads 132
132 The Voiceless Dental- Alveolar Common Augment in Arabic and Other Semitic Languages, a Morphophonemic Comparison

Authors: Tarek Soliman Mostafa Soliman Al-Nana'i

Abstract:

There are non-steady voiced augments in the Semitic languages, and in the morphological and structural augmentation, two sounds were augments in all Semitic languages at the level of the spoken language and two letters at the level of the written language, which are the hamza and the ta’. This research studies only the second of them; Therefore, we defined it as “The Voiceless Dental- alveolar common augment” (VDACA) to distinguish it from the glottal sound “Hamza”, first, middle, or last, in a noun or in a verb, in Arabic and its equivalent in the Semitic languages. What is meant by “VDACA” is the ta’ that is in addition to the root of the word at the morphological level: the word “voiceless” takes out the voiced sounds that we studied before, and the “dental- alveolar common augment” takes out the laryngeal sound of them, which is the “Hamza”: and the word “common” brings out the uncommon voiceless sounds, which are sīn, shīn, and hā’. The study is limited to the ta' alone among the Arabic sounds, and this title faced a problem in identifying it with the ta'. Because the designation of the ta is not the same in most Semitic languages. Hebrew, for example, has “tav” and is pronounced with the voiced fa (v), which is not in Arabic. It is called different names in other Semitic languages, such as “taw” or “tAu” in old Syriac. And so on. This goes hand in hand with the insistence on distance from the written level and the reference to the phonetic aspect in this study that is closely and closely linked to the morphological level. Therefore, the study is “morphophonemic”. What is meant by Semitic languages in this study are the following: Akkadian, Ugaritic, Hebrew, Syriac, Mandaean, Ge'ez, and Amharic. The problem of the study is the agreement or difference between these languages in the position of that augment, first, middle, or last. And in determining the distinguishing characteristics of each language from the other. As for the study methodology, it is determined by the comparative approach in Semitic languages, which is based on the descriptive approach for each language. The study is divided into an introduction, four sections, and a conclusion: Introduction: It included the subject of the study, its importance, motives, problem, methodology, and division. The first section: VDACA as a non-common phoneme. The second: VDACA as a common phoneme. The third: VDACA as a functional morpheme. The fourth section: Commentary and conclusion with the most important results. The positions of VDACA in Arabic and other Semitic languages, and in nouns and verbs, were limited to first, middle, and last. The research identified the individual addition, which is common with other augments, and the research proved that this augmentation is constant in all Semitic languages, but there are characteristics that distinguish each language from the other.

Keywords: voiceless -, dental- alveolar, augment, Arabic - semitic languages

Procedia PDF Downloads 73
131 MHD Mixed Convection in a Vertical Porous Channel

Authors: Brahim Fersadou, Henda Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: heat sources, magnetic field, mixed convection, porous channel

Procedia PDF Downloads 377
130 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties

Authors: Alia Abdul Ghaffar, Tom Richardson

Abstract:

A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive control, unlike a fixed gain control, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture results in an enhanced tracking performance in the presence of parametric uncertainties.

Keywords: UAV, quadrotor, robotic arm augmentation, model reference adaptive control, LQR control

Procedia PDF Downloads 472
129 A Minimally Invasive Approach Using Bio-Miniatures Implant System for Full Arch Rehabilitation

Authors: Omid Allan

Abstract:

The advent of ultra-narrow diameter implants initially offered an alternative to wider conventional implants. However, their design limitations have restricted their applicability primarily to overdentures and cement-retained fixed prostheses, often with unpredictable long-term outcomes. The introduction of the new Miniature Implants has revolutionized the field of implant dentistry, leading to a more streamlined approach. The utilization of Miniature Implants has emerged as a promising alternative to the traditional approach that entails the traumatic sequential bone drilling procedures and the use of conventional implants for full and partial arch restorations. The innovative "BioMiniatures Implant System serves as a groundbreaking bridge connecting mini implants with standard implant systems. This system allows practitioners to harness the advantages of ultra-small implants, enabling minimally invasive insertion and facilitating the application of fixed screw-retained prostheses, which were only available to conventional wider implant systems. This approach streamlines full and partial arch rehabilitation with minimal or even no bone drilling, significantly reducing surgical risks and complications for clinicians while minimizing patient morbidity. The ultra-narrow diameter and self-advancing features of these implants eliminate the need for invasive and technically complex procedures such as bone augmentation and guided bone regeneration (GBR), particularly in cases involving thin alveolar ridges. Furthermore, the absence of a microcap between the implant and abutment eliminates the potential for micro-leakage and micro-pumping effects, effectively mitigating the risk of marginal bone loss and future peri-implantitis. The cumulative experience of restoring over 50 full and partial arch edentulous cases with this system has yielded an outstanding success rate exceeding 97%. The long-term success with a stable marginal bone level in the study firmly establishes these implants as a dependable alternative to conventional implants, especially for full arch rehabilitation cases. Full arch rehabilitation with these implants holds the promise of providing a simplified solution for edentulous patients who typically present with atrophic narrow alveolar ridges, eliminating the need for extensive GBR and bone augmentation to restore their dentition with fixed prostheses.

Keywords: mini-implant, biominiatures, miniature implants, minimally invasive dentistry, full arch rehabilitation

Procedia PDF Downloads 74
128 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 9
127 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Authors: N. Targui, H. Kahalerras

Abstract:

The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy-Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.

Keywords: double pipe heat exchanger, nanofluids, nanoparticles, porous baffles

Procedia PDF Downloads 243
126 Proposal of a Virtual Reality Dynamism Augmentation Method for Sports Spectating

Authors: Hertzog Clara, Sakurai Sho, Hirota Koichi, Nojima Takuya

Abstract:

It is common to see graphics appearing on television while watching a sports game to provide information, but it is less common to see graphics specifically aiming to boost spectators’ dynamism perception. It is even less common to see such graphics designed especially for virtual reality (VR). However, it appears that even with simple dynamic graphics, it would be possible to improve VR sports spectators’ experience. So, in this research, we explain how graphics can be used in VR to improve the dynamism of a broadcasted sports game and we provide a simple example. This example consists in a white halo displayed around the video and blinking according to the game speed. We hope to increase people’s awareness about VR sports spectating and the possibilities this display offers through dynamic graphics.

Keywords: broadcasting, graphics, sports spectating, virtual reality

Procedia PDF Downloads 90
125 Degradation of the Mechanical Properties of the Polypropylene Talc Nanocomposite in Chemical Environment

Authors: Ahmed Ouadah Bouakkaz, Mohamed Elmeguenni, Bel Abbes Bachir Bouiadjra, Mohamed Belhouari, Abdulmohsen Albedah

Abstract:

In this study, the effect of the chemical environment on the mechanical properties of the polypropylene-talc composite was analyzed. The talc proportion was varied in order to highlight the combined effects of time of immersion in the chemical environment 'benzene' and talc concentration on the mechanical properties of the composite. Tensile test was carried out to evaluate the mechanical properties of PP-talc composite and to analyze the effect of the immersion time on the variation of these properties. The obtained results show that increasing the time of immersion has a very negative effect on the mechanical strength of the PP-talc composite, but this effect can be significantly reduced by the augmentation of the talc proportion.

Keywords: polypropylene (PP), talc, nanocomposite, degradation

Procedia PDF Downloads 385