Search results for: multivariate GARCH
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: multivariate GARCH

680 The Moment of the Optimal Average Length of the Multivariate Exponentially Weighted Moving Average Control Chart for Equally Correlated Variables

Authors: Edokpa Idemudia Waziri, Salisu S. Umar

Abstract:

The Hotellng’s T^2 is a well-known statistic for detecting a shift in the mean vector of a multivariate normal distribution. Control charts based on T have been widely used in statistical process control for monitoring a multivariate process. Although it is a powerful tool, the T statistic is deficient when the shift to be detected in the mean vector of a multivariate process is small and consistent. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is one of the control statistics used to overcome the drawback of the Hotellng’s T statistic. In this paper, the probability distribution of the Average Run Length (ARL) of the MEWMA control chart when the quality characteristics exhibit substantial cross correlation and when the process is in-control and out-of-control was derived using the Markov Chain algorithm. The derivation of the probability functions and the moments of the run length distribution were also obtained and they were consistent with some existing results for the in-control and out-of-control situation. By simulation process, the procedure identified a class of ARL for the MEWMA control when the process is in-control and out-of-control. From our study, it was observed that the MEWMA scheme is quite adequate for detecting a small shift and a good way to improve the quality of goods and services in a multivariate situation. It was also observed that as the in-control average run length ARL0¬ or the number of variables (p) increases, the optimum value of the ARL0pt increases asymptotically and as the magnitude of the shift σ increases, the optimal ARLopt decreases. Finally, we use the example from the literature to illustrate our method and demonstrate its efficiency.

Keywords: average run length, markov chain, multivariate exponentially weighted moving average, optimal smoothing parameter

Procedia PDF Downloads 420
679 A Cohort and Empirical Based Multivariate Mortality Model

Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong

Abstract:

This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.

Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management

Procedia PDF Downloads 51
678 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 281
677 Red Meat Price Volatility and Its' Relationship with Crude Oil and Exchange Rate

Authors: Melek Akay

Abstract:

Turkey's agricultural commodity prices are prone to fluctuation but have gradually over time. A considerable amount of literature examines the changes in these prices by dealing with other commodities such as energy. Links between agricultural and energy markets have therefore been extensively investigated. Since red meat prices are becoming increasingly volatile in Turkey, this paper analyses the price volatility of veal, lamb and the relationship between red meat and crude oil, exchange rates by applying the generalize all period unconstraint volatility model, which generalises the GARCH (p, q) model for analysing weekly data covering a period of May 2006 to February 2017. Empirical results show that veal and lamb prices present volatility during the last decade, but particularly between 2009 and 2012. Moreover, oil prices have a significant effect on veal and lamb prices as well as their previous periods. Consequently, our research can lead policy makers to evaluate policy implementation in the appropriate way and reduce the impacts of oil prices by supporting producers.

Keywords: red meat price, volatility, crude oil, exchange rates, GARCH models, Turkey

Procedia PDF Downloads 121
676 A Non-parametric Clustering Approach for Multivariate Geostatistical Data

Authors: Francky Fouedjio

Abstract:

Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.

Keywords: clustering, geostatistics, multivariate data, non-parametric

Procedia PDF Downloads 476
675 Heat Waves Effect on Stock Return and Volatility: Evidence from Stock Market and Selected Industries in Pakistan

Authors: Sayed Kifayat Shah, Tang Zhongjun, Arfa Tanveer

Abstract:

This study explores the significant heatwave effect on stock return and volatility. Using an ARCH/GARCH approach, it examines the relationship between the heatwave of Karachi, Islamabad, and Lahore on the KSE-100 index. It also explores the impact of heatwave on returns of the pharmaceutical and electronics industries. The empirical results confirm that that stock return is positively related to the heat waves of Karachi, negatively related to that of Islamabad, and is not affected by the heatwave of Lahore. Similarly, pharmaceutical and electronics indices are also positively related to heatwaves. These differences in results can be ascribed to the change in the behavior of the residents of that city. The outcomes are useful for understanding an investor's behavior reacting to weather and fluxes in stock price related to heatwave severity levels. The results can support investors in fixing biases in behavior.

Keywords: ARCH/GARCH model, heat wave, KSE-100 index, stock market return

Procedia PDF Downloads 154
674 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 345
673 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 201
672 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health

Authors: Irfan Ahmad Afip

Abstract:

This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.

Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression

Procedia PDF Downloads 113
671 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 128
670 Day of the Week Patterns and the Financial Trends' Role: Evidence from the Greek Stock Market during the Euro Era

Authors: Nikolaos Konstantopoulos, Aristeidis Samitas, Vasileiou Evangelos

Abstract:

The purpose of this study is to examine if the financial trends influence not only the stock markets’ returns, but also their anomalies. We choose to study the day of the week effect (DOW) for the Greek stock market during the Euro period (2002-12), because during the specific period there are not significant structural changes and there are long term financial trends. Moreover, in order to avoid possible methodological counterarguments that usually arise in the literature, we apply several linear (OLS) and nonlinear (GARCH family) models to our sample until we reach to the conclusion that the TGARCH model fits better to our sample than any other. Our results suggest that in the Greek stock market there is a long term predisposition for positive/negative returns depending on the weekday. However, the statistical significance is influenced from the financial trend. This influence may be the reason why there are conflict findings in the literature through the time. Finally, we combine the DOW’s empirical findings from 1985-2012 and we may assume that in the Greek case there is a tendency for long lived turn of the week effect.

Keywords: day of the week effect, GARCH family models, Athens stock exchange, economic growth, crisis

Procedia PDF Downloads 409
669 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 13
668 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization

Procedia PDF Downloads 255
667 Multivariate Dependent Frequency-Severity Modeling of Insurance Claims: A Vine Copula Approach

Authors: Islem Kedidi, Rihab Bedoui Bensalem, Faysal Manssouri

Abstract:

In traditional models of insurance data, the number and size of claims are assumed to be independent. Relaxing the independence assumption, this article explores the Vine copula to model dependence structure between multivariate frequency and average severity of insurance claim. To illustrate this approach, we use the Wisconsin local government property insurance fund which offers several insurance protections for motor vehicles, property and contractor’s equipment claims. Results show that the C-vine copula can better characterize the multivariate dependence structure between frequency and severity. Furthermore, we find significant dependencies especially between frequency and average severity among different coverage types.

Keywords: dependency modeling, government insurance, insurance claims, vine copula

Procedia PDF Downloads 206
666 Financial Centers and BRICS Stock Markets: The Effect of the Recent Crises

Authors: Marco Barassi, Nicola Spagnolo

Abstract:

This paper uses a DCC-GARCH model framework to examine mean and volatility spillovers (i.e. causality in mean and variance) dynamics between financial centers and the stock market indexes of the BRICS countries. In addition, tests for changes in the transmission mechanism are carried out by first testing for structural breaks and then setting a dummy variable to control for the 2008 financial crises. We use weekly data for nine countries, four financial centers (Germany, Japan, UK and USA) and the five BRICS countries (Brazil, Russia, India, China and South Africa). Furthermore, we control for monetary policy using domestic interest rates (90-day Treasury Bill interest rate) over the period 03/1/1990 - 04/2/2014, for a total of 1204 observations. Results show that the 2008 financial crises changed the causality dynamics for most of the countries considered. The same pattern can also be observed in conditional correlation showing a shift upward following the turbulence associated to the 2008 crises. The magnitude of these effects suggests a leading role played by the financial centers in effecting Brazil and South Africa, whereas Russia, India and China show a higher degree of resilience.

Keywords: financial crises, DCC-GARCH model, volatility spillovers, economics

Procedia PDF Downloads 355
665 Modelling Impacts of Global Financial Crises on Stock Volatility of Nigeria Banks

Authors: Maruf Ariyo Raheem, Patrick Oseloka Ezepue

Abstract:

This research aimed at determining most appropriate heteroskedastic model to predicting volatility of 10 major Nigerian banks: Access, United Bank for Africa (UBA), Guaranty Trust, Skye, Diamond, Fidelity, Sterling, Union, ETI and Zenith banks using daily closing stock prices of each of the banks from 2004 to 2014. The models employed include ARCH (1), GARCH (1, 1), EGARCH (1, 1) and TARCH (1, 1). The results show that all the banks returns are highly leptokurtic, significantly skewed and thus non-normal across the four periods except for Fidelity bank during financial crises; findings similar to those of other global markets. There is also strong evidence for the presence of heteroscedasticity, and that volatility persistence during crisis is higher than before the crisis across the 10 banks, with that of UBA taking the lead, about 11 times higher during the crisis. Findings further revealed that Asymmetric GARCH models became dominant especially during financial crises and post crises when the second reforms were introduced into the banking industry by the Central Bank of Nigeria (CBN). Generally, one could say that Nigerian banks returns are volatility persistent during and after the crises, and characterised by leverage effects of negative and positive shocks during these periods

Keywords: global financial crisis, leverage effect, persistence, volatility clustering

Procedia PDF Downloads 522
664 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 206
663 Determinants of International Volatility Passthroughs of Agricultural Commodities: A Panel Analysis of Developing Countries

Authors: Tetsuji Tanaka, Jin Guo

Abstract:

The extant literature has not succeeded in uncovering the common determinants of price volatility transmissions of agricultural commodities from international to local markets, and further, has rarely investigated the role of self-sufficiency measures in the context of national food security. We analyzed various factors to determine the degree of price volatility transmissions of wheat, rice, and maize between world and domestic markets using GARCH models with dynamic conditional correlation (DCC) specifications and panel-feasible generalized least square models. We found that the grain autarky system has the potential to diminish volatility pass-throughs for three grain commodities. Furthermore, it was discovered that the substitutive commodity consumption behavior between maize and wheat buffers the volatility transmissions of both, but rice does not function as a transmission-relieving element, either for the volatilities of wheat or maize. The effectiveness of grain consumption substitution to insulate the pass-throughs from global markets is greater than that of cereal self-sufficiency. These implications are extremely beneficial for developing governments to protect their domestic food markets from uncertainty in foreign countries and as such, improves food security.

Keywords: food security, GARCH, grain self-sufficiency, volatility transmission

Procedia PDF Downloads 153
662 Measuring Financial Asset Return and Volatility Spillovers, with Application to Sovereign Bond, Equity, Foreign Exchange and Commodity Markets

Authors: Petra Palic, Maruska Vizek

Abstract:

We provide an in-depth analysis of interdependence of asset returns and volatilities in developed and developing countries. The analysis is split into three parts. In the first part, we use multivariate GARCH model in order to provide stylized facts on cross-market volatility spillovers. In the second part, we use a generalized vector autoregressive methodology developed by Diebold and Yilmaz (2009) in order to estimate separate measures of return spillovers and volatility spillovers among sovereign bond, equity, foreign exchange and commodity markets. In particular, our analysis is focused on cross-market return, and volatility spillovers in 19 developed and developing countries. In order to estimate named spillovers, we use daily data from 2008 to 2017. In the third part of the analysis, we use a generalized vector autoregressive framework in order to estimate total and directional volatility spillovers. We use the same daily data span for one developed and one developing country in order to characterize daily volatility spillovers across stock, bond, foreign exchange and commodities markets.

Keywords: cross-market spillovers, sovereign bond markets, equity markets, value at risk (VAR)

Procedia PDF Downloads 259
661 Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques

Authors: Luigi Delle Rose, Oliver Fischer, Ahmed Hammad

Abstract:

In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01.

Keywords: beyond the standard model, large hadron electron collider, multivariate analysis, scalar singlet

Procedia PDF Downloads 135
660 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 207
659 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach

Authors: Godwin Chigozie Okpara

Abstract:

This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.

Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models

Procedia PDF Downloads 442
658 Discrimination Between Bacillus and Alicyclobacillus Isolates in Apple Juice by Fourier Transform Infrared Spectroscopy and Multivariate Analysis

Authors: Murada Alholy, Mengshi Lin, Omar Alhaj, Mahmoud Abugoush

Abstract:

Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between four Alicyclobacillus strains and four Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm-1 reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (e.g. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA)) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these two genera.

Keywords: alicyclobacillus, bacillus, FT-IR, spectroscopy, PCA

Procedia PDF Downloads 486
657 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 96
656 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

Authors: Lina Wu, Wenyi Lu, Ye Li

Abstract:

Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.

Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients

Procedia PDF Downloads 361
655 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 148
654 Financial Markets Integration between Morocco and France: Implications on International Portfolio Diversification

Authors: Abdelmounaim Lahrech, Hajar Bousfiha

Abstract:

This paper examines equity market integration between Morocco and France and its consequent implications on international portfolio diversification. In the absence of stock market linkages, Morocco can act as a diversification destination to European investors, allowing higher returns at a comparable level of risk in developed markets. In contrast, this attractiveness is limited if both financial markets show significant linkage. The research empirically measures financial market’s integration in by capturing the conditional correlation between the two markets using the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model. Then, the research uses the Dynamic Conditional Correlation (DCC) model of Engle (2002) to track the correlations. The research findings show that there is no important increase over the years in the correlation between the Moroccan and the French equity markets, even though France is considered Morocco’s first trading partner. Failing to prove evidence of the stock index linkage between the two countries, the volatility series of each market were assumed to change over time separately. Yet, the study reveals that despite the important historical and economic linkages between Morocco and France, there is no evidence that equity markets follow. The small correlations and their stationarity over time show that over the 10 years studied, correlations were fluctuating around a stable mean with no significant change at their level. Different explanations can be attributed to the absence of market linkage between the two equity markets.

Keywords: equity market linkage, DCC GARCH, international portfolio diversification, Morocco, France

Procedia PDF Downloads 440
653 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration

Authors: Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.

Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters

Procedia PDF Downloads 538
652 Integrating the Athena Vortex Lattice Code into a Multivariate Design Synthesis Optimisation Platform in JAVA

Authors: Paul Okonkwo, Howard Smith

Abstract:

This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.

Keywords: aerodynamics, automation, optimisation, AVL, JNI

Procedia PDF Downloads 581
651 World Agricultural Commodities Prices Dynamics and Volatilities Impacts on Commodities Importation and Food Security in West African Economic and Monetary Union Countries

Authors: Baoubadi Atozou, Koffi Akakpo

Abstract:

Since the decade 2000, the use of foodstuffs such as corn, wheat, and soybeans in biofuel production has been growing sharply in the United States, Canada, and Europe. Thus, prices for these agricultural products are rising in the world market. These cereals are the most important source of calorific energy for West African Economic and Monetary Union (WAEMU) countries members’ population. These countries are highly dependent on imports of most of these products. Thereby, rising prices can have an important impact on import levels and consequently on food security in these countries. This study aims to analyze the interrelationship between the prices of these commodities and their volatilities, and their effects on imports of these agricultural products by each WAEMU ’country member. The Autoregressive Distributed Lag (ARDL) model, the GARCH Multivariate model, and the Granger Causality Test are used in this investigation. The results show that import levels are highly and significantly sensitive to price changes as well as their volatility. In the short term as well as in the long term, there is a significant relationship between the prices of these products. There is a positive relationship in general between price volatility. And these volatilities have negative effects on the level of imports. The market characteristics affect food security in these countries, especially access to food for vulnerable and low-income populations. The policies makers must adopt viable strategies to increase agricultural production and limit their dependence on imports.

Keywords: price volatility, import of agricultural products, food safety, WAEMU

Procedia PDF Downloads 190