Search results for: logistic costs
2997 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 5132996 Evaluating the Cost of Quality: A Case Study of a South African Foundry Business
Authors: Chipo Mugova, Zuko Mjobo
Abstract:
The aim of this study was to evaluate the cost of quality (COQ) at a local foundry business to identify the contribution of its units and processes to quality costs within the foundry’s operations. The foundry selected for detailed case study is one of major businesses that have been targeted by the government to produce components for building and re-furbishing wagons and trains. The study aimed at identifying areas in the foundry’s processes in which investment needs to be made to reduce quality costs. This is in alignment with government’s vision of promoting local business to support local markets leading to creation of jobs, and hence reduction of unemployment rate in South Africa. The methodology adopted used cost of quality models. Results from the study indicated that internal failure costs were significantly higher than all other cost of quality categories, taking more than 60% of the business’s income.Keywords: appraisal costs, cost of quality, failure costs, local content, prevention costs
Procedia PDF Downloads 3412995 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5422994 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan
Abstract:
Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy
Procedia PDF Downloads 3092993 A Study of Population Growth Models and Future Population of India
Authors: Sheena K. J., Jyoti Badge, Sayed Mohammed Zeeshan
Abstract:
A Comparative Study of Exponential and Logistic Population Growth Models in India India is the second most populous city in the world, just behind China, and is going to be in the first place by next year. The Indian population has remarkably at higher rate than the other countries from the past 20 years. There were many scientists and demographers who has formulated various models of population growth in order to study and predict the future population. Some of the models are Fibonacci population growth model, Exponential growth model, Logistic growth model, Lotka-Volterra model, etc. These models have been effective in the past to an extent in predicting the population. However, it is essential to have a detailed comparative study between the population models to come out with a more accurate one. Having said that, this research study helps to analyze and compare the two population models under consideration - exponential and logistic growth models, thereby identifying the most effective one. Using the census data of 2011, the approximate population for 2016 to 2031 are calculated for 20 Indian states using both the models, compared and recorded the data with the actual population. On comparing the results of both models, it is found that logistic population model is more accurate than the exponential model, and using this model, we can predict the future population in a more effective way. This will give an insight to the researchers about the effective models of population and how effective these population models are in predicting the future population.Keywords: population growth, population models, exponential model, logistic model, fibonacci model, lotka-volterra model, future population prediction, demographers
Procedia PDF Downloads 1242992 The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization
Authors: B. Marasović, S. Pivac, S. V. Vukasović
Abstract:
Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the presence of transaction costs on the Croatian capital market is analyzed. The model applied in the paper is an extension of the standard portfolio mean-variance optimization model in which transaction costs are incurred to rebalance an investment portfolio. This model allows different costs for different securities, and different costs for buying and selling. In order to find efficient portfolio, using this model, first, the solution of quadratic programming problem of similar size to the Markowitz model, and then the solution of a linear programming problem have to be found. Furthermore, in the paper the impact of transaction costs on the efficient frontier is investigated. Moreover, it is shown that global minimum variance portfolio on the efficient frontier always has the same level of the risk regardless of the amount of transaction costs. Although efficient frontier position depends of both transaction costs amount and initial portfolio it can be concluded that extreme right portfolio on the efficient frontier always contains only one stock with the highest expected return and the highest risk.Keywords: Croatian capital market, Markowitz model, fractional quadratic programming, portfolio optimization, transaction costs
Procedia PDF Downloads 3852991 On Estimating the Headcount Index by Using the Logistic Regression Estimator
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz, Francisco J. Blanco-Encomienda
Abstract:
The problem of estimating a proportion has important applications in the field of economics, and in general, in many areas such as social sciences. A common application in economics is the estimation of the headcount index. In this paper, we define the general headcount index as a proportion. Furthermore, we introduce a new quantitative method for estimating the headcount index. In particular, we suggest to use the logistic regression estimator for the problem of estimating the headcount index. Assuming a real data set, results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the traditional estimator of the headcount index.Keywords: poverty line, poor, risk of poverty, Monte Carlo simulations, sample
Procedia PDF Downloads 4222990 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 1382989 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 3672988 Organic Farming Profitability: Evidence from South Korea
Authors: Saem Lee, Thanh Nguyen, Hio-Jung Shin, Thomas Koellner
Abstract:
Land-use management has an influence on the provision of ecosystem service in dynamic, agricultural landscapes. Agricultural land use is important for maintaining the productivity and sustainability of agricultural ecosystems. However, in Korea, intensive farming activities in this highland agricultural zone, the upper stream of Soyang has led to contaminated soil caused by over-use pesticides and fertilizers. This has led to decrease in water and soil quality, which has consequences for ecosystem services and human wellbeing. Conventional farming has still high percentage in this area and there is no special measure to prevent low water quality caused by farming activities. Therefore, the adoption of environmentally friendly farming has been considered one of the alternatives that lead to improved water quality and increase in biomass production. Concurrently, farm households with environmentally friendly farming have occupied still low rates. Therefore, our research involved a farm household survey spanning conventional farming, the farm in transition and organic farming in Soyang watershed. Another purpose of our research was to compare economic advantage of the farmers adopting environmentally friendly farming and non-adaptors and to investigate the different factors by logistic regression analysis with socio-economic and benefit-cost ratio variables. The results found that farmers with environmentally friendly farming tended to be younger than conventional farming and farmer in transition. They are similar in terms of gender which was predominately male. Farmers with environmentally friendly farming were more educated and had less farming experience than conventional farming and farmer in transition. Based on the benefit-cost analysis, total costs that farm in transition farmers spent for one year are about two times as much as the sum of costs in environmentally friendly farming. The benefit of organic farmers was assessed with 2,800 KRW per household per year. In logistic regression, the factors having statistical significance are subsidy and district, residence period and benefit-cost ratio. And district and residence period have the negative impact on the practice of environmentally friendly farming techniques. The results of our research make a valuable contribution to provide important information to describe Korean policy-making for agricultural and water management and to consider potential approaches to policy that would substantiate ways beneficial for sustainable resource management.Keywords: organic farming, logistic regression, profitability, agricultural land-use
Procedia PDF Downloads 4022987 An Information Matrix Goodness-of-Fit Test of the Conditional Logistic Model for Matched Case-Control Studies
Authors: Li-Ching Chen
Abstract:
The case-control design has been widely applied in clinical and epidemiological studies to investigate the association between risk factors and a given disease. The retrospective design can be easily implemented and is more economical over prospective studies. To adjust effects for confounding factors, methods such as stratification at the design stage and may be adopted. When some major confounding factors are difficult to be quantified, a matching design provides an opportunity for researchers to control the confounding effects. The matching effects can be parameterized by the intercepts of logistic models and the conditional logistic regression analysis is then adopted. This study demonstrates an information-matrix-based goodness-of-fit statistic to test the validity of the logistic regression model for matched case-control data. The asymptotic null distribution of this proposed test statistic is inferred. It needs neither to employ a simulation to evaluate its critical values nor to partition covariate space. The asymptotic power of this test statistic is also derived. The performance of the proposed method is assessed through simulation studies. An example of the real data set is applied to illustrate the implementation of the proposed method as well.Keywords: conditional logistic model, goodness-of-fit, information matrix, matched case-control studies
Procedia PDF Downloads 2922986 Final Costs of Civil Claims
Authors: Behnam Habibi Dargah
Abstract:
The economics of cost-benefit theory seeks to monitor claims and determine their final price. The cost of litigation is important because it is a measure of the efficiency of the justice system. From an economic point of view, the cost of litigation is considered to be the point of equilibrium of litigation, whereby litigation is regarded as a high-risk investment and is initiated when the costs are less than the probable and expected benefits. Costs are economically separated into private and social costs. Private cost includes material (direct and indirect) and spiritual costs. The social costs of litigation are also subsidized-centric due to the public and governmental nature of litigation and cover both types of bureaucratic bureaucracy and the costs of judicial misconduct. Macroeconomic policy in the economics of justice is the reverse engineering of controlling the social costs of litigation by employing selective litigation and working on the judicial culture to achieve rationality in the monopoly system. Procedures for controlling and managing court costs are also circumscribed to economic patterns in the field. Rational cost allocation model and cost transfer model. The rational allocation model deals with cost-tolerance systems, and the transfer model also considers three models of transferability, including legal, judicial and contractual transferability, which will be described and explored in the present article in a comparative manner.Keywords: cost of litigation, economics of litigation, private cost, social cost, cost of litigation
Procedia PDF Downloads 1292985 Hybrid Model for Measuring the Hedge Strategy in Exchange Risk in Information Technology Industry
Authors: Yi-Hsien Wang, Fu-Ju Yang, Hwa-Rong Shen, Rui-Lin Tseng
Abstract:
The business is notably related to the market risk according to the increase of liberalization of financial markets. Hence, the company usually utilized high financial leverage of derivatives to hedge the risk. When the company choose different hedging instruments to face a variety of exchange rate risk, we employ the Multinomial Logistic-AHP to analyze the impact of various derivatives. Hence, the research summarized the literature on relevant factors affecting managers selected exchange rate hedging instruments, using Multinomial Logistic Model and and further integrate AHP. Using Experts’ Questionnaires can test multi-level selection and hedging effect of different hedging instruments in order to calculate the hedging instruments and the multi-level factors of weights to understand the gap between the empirical results and practical operation. Finally, the Multinomial Logistic-AHP Model will sort the weights to analyze. The research findings can be a basis reference for investors in decision-making.Keywords: exchange rate risk, derivatives, hedge, multinomial logistic-AHP
Procedia PDF Downloads 4422984 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan
Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou
Abstract:
This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve
Procedia PDF Downloads 2912983 Time Truncated Group Acceptance Sampling Plans for Exponentiated Half Logistic Distribution
Authors: Srinivasa Rao Gadde
Abstract:
In this article, we considered a group acceptance sampling plans for exponentiated half logistic distribution when the life-test is truncated at a pre-specified time. It is assumed that the index parameter of the exponentiated half logistic distribution is known. The design parameters such as the number of groups and the acceptance number are obtained by satisfying the producer’s and consumer’s risks at the specified quality levels in terms of medians and 10th percentiles under the assumption that the termination time and the number of items in each group are pre-fixed. Finally, an example is given to illustration the methodology.Keywords: group acceptance sampling plan, operating characteristic, consumer and producer’s risks, truncated life-test
Procedia PDF Downloads 3402982 Evaluation of Batch Splitting in the Context of Load Scattering
Authors: S. Wesebaum, S. Willeke
Abstract:
Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering
Procedia PDF Downloads 3992981 Bilateral Trade Costs Analysis of Policy Barriers for Growth Oriented Strategies in Exports
Authors: Shabana Noureen, Zafar Mahmood
Abstract:
Economies consistently engage in trade across borders and face tariff, non-tariff barriers and other quotas that constitute trade costs. The trade costs imposed by policy barriers on exports are considered an impediment in the export growth rate. This work aims to measure over-year trends in total and bilateral trade costs and their trends in relevance to policy barriers (tariff and non-tariff). The analysis through the micro-founded theoretically based gravity model showed that the total trade costs have a general decreasing trend in the world while in the case of developing countries, the rate by which these trends decline is very low. Bilateral trade cost estimates associated with the policy barriers represent that the non-tariff barriers in a developing country have a major role in sustaining the high trade costs as compared to the tariff barriers. This ultimately leads to a low net declining rate. This work emphasizes that for developing countries the non-tariff barriers are a major factor that renders their exports and to be uncompetitive in the world market.Keywords: trade costs, policy barriers, tariff barriers, non-tariff barriers, trade policies, export growth
Procedia PDF Downloads 2642980 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem
Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis
Abstract:
In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak
Procedia PDF Downloads 3442979 Robustified Asymmetric Logistic Regression Model for Global Fish Stock Assessment
Authors: Osamu Komori, Shinto Eguchi, Hiroshi Okamura, Momoko Ichinokawa
Abstract:
The long time-series data on population assessments are essential for global ecosystem assessment because the temporal change of biomass in such a database reflects the status of global ecosystem properly. However, the available assessment data usually have limited sample sizes and the ratio of populations with low abundance of biomass (collapsed) to those with high abundance (non-collapsed) is highly imbalanced. To allow for the imbalance and uncertainty involved in the ecological data, we propose a binary regression model with mixed effects for inferring ecosystem status through an asymmetric logistic model. In the estimation equation, we observe that the weights for the non-collapsed populations are relatively reduced, which in turn puts more importance on the small number of observations of collapsed populations. Moreover, we extend the asymmetric logistic regression model using propensity score to allow for the sample biases observed in the labeled and unlabeled datasets. It robustified the estimation procedure and improved the model fitting.Keywords: double robust estimation, ecological binary data, mixed effect logistic regression model, propensity score
Procedia PDF Downloads 2662978 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities
Authors: Retius Chifurira
Abstract:
Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities
Procedia PDF Downloads 2002977 A Study of the Costs and Benefits of Smart City Projects Including the Scenario of Public-Private Partnerships
Authors: Patrick T. I. Lam, Wenjing Yang
Abstract:
A smart city project embraces benefits and costs which can be classified under direct and indirect categories. Externalities come into the picture, but they are often difficult to quantify. Despite this barrier, policy makers need to carry out cost-benefit analysis to justify the huge investments needed to make a city smart. The recent trend is towards the engagement of the private sector to utilize their resources and expertise, especially in the Information and Communication Technology (ICT) areas, where innovations blossom. This study focuses on the identification of costs (on a life cycle basis) and benefits associated with smart city project developments based on a comprehensive literature review and case studies, where public-private partnerships would warrant consideration, the related costs and benefits are highlighted. The findings will be useful for policy makers of cities.Keywords: smart city projects, costs and benefits, identification, public-private partnerships
Procedia PDF Downloads 3372976 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 1512975 The Impact of Quality Cost on Revenue Sharing in Supply Chain Management
Authors: Fayza M. Obied-Allah
Abstract:
Customer’ needs, quality, and value creation while reducing costs through supply chain management provides challenges and opportunities for companies and researchers. In the light of these challenges, modern ideas must contribute to counter these challenges and exploit opportunities. Perhaps this paper will be one of these contributions. This paper discusses the impact of the quality cost on revenue sharing as a most important incentive to configure business networks. No doubt that the costs directly affect the size of income generated by a business network, so this paper investigates the impact of quality costs on business networks revenue, and their impact on the decision to participate the revenue among the companies in the supply chain. This paper develops the quality cost approach to align with the modern era, the developed model includes five categories besides the well-known four categories (namely prevention costs, appraisal costs, internal failure costs, and external failure costs), a new category has been developed in this research as a new vision of the relationship between quality costs and innovations of industry. This new category is Recycle Cost. This paper is organized into six sections, Section I shows quality costs overview in the supply chain. Section II discusses revenue sharing between the parties in supply chain. Section III investigates the impact of quality costs in revenue sharing decision between partners in supply chain. The fourth section includes survey study and presents statistical results. Section V discusses the results and shows future opportunities for research. Finally, Section VI summarizes the theoretical and practical results of this paper.Keywords: quality cost, recycle cost, revenue sharing, supply chain management
Procedia PDF Downloads 4432974 Out of Pocket Costs for Patients with Tuberculosis in Colombia: Evidence from Three Metropolitan Areas
Authors: Jose Hernandez, Lina Martínez, Gustavo Gonzalez, Carlos Lázaro, Diana Castrillon, Jonathan Cardona, Laura Mejía, Yina Sanchez, Luisa Ochoa, Evert Jimenez
Abstract:
Objectives: Economic analyses of tuberculosis control interventions are usually focused on the payer’s perspective. To assess the overall economic impact of the disease, out-of-pocket and indirect costs are also required. This research is aimed to estimate overall economic impact under DOTS-strategy (Directly Observed Therapy Short Course). Methods: A cross-sectional survey of 91 adult tuberculosis patients in treatment for at least two months was conducted from the society perspective. A standardized questionnaire was used in three different cities of Colombia: Medellin (poverty is 17.7%), Monteria (poverty is 36.9%) and Quibdó (poverty is 51.2%). Costs were converted to 2013 USD and categorized into two periods: diagnostics phase and treatment. Results: The median cost during diagnostics was 13$ (±SD 9.5). The median monthly patient out-of-pocket costs during treatment were 32$ (±SD 6.8), equivalent to 17% of patient’s median monthly income, estimated in 186$ (±SD 23). Costs recorded in Medellin were 47$ in Monteria was 18$ and in Quibdó was 13$. Conclusion: Patient costs under DOTS strategy are high even when services are provided free of charge. The creation or strengthening of community-based treatment supervisors could greatly impact costs of tuberculosis and lower drop-outs.Keywords: tuberculosis, costs and cost analysis, health promotion, Colombia
Procedia PDF Downloads 3672973 An Investigation of the Relevant Factors of Unplanned Readmission within 14 Days of Discharge in a Regional Teaching Hospital in South Taiwan
Authors: Xuan Hua Huang, Shu Fen Wu, Yi Ting Huang, Pi Yueh Lee
Abstract:
Background: In Taiwan, the Taiwan healthcare care Indicator Series regards the rate of hospital readmission as an important indicator of healthcare quality. Unplanned readmission not only effects patient’s condition but also increase healthcare utilization rate and healthcare costs. Purpose: The purpose of this study was explored the effects of adult unplanned readmission within 14 days of discharge at a regional teaching hospital in South Taiwan. Methods: The retrospectively review design was used. A total 495 participants of unplanned readmissions and 878 of non-readmissions within 14 days recruited from a regional teaching hospital in Southern Taiwan. The instruments used included the Charlson Comorbidity Index, and demographic characteristics, and disease-related variables. Statistical analyses were performed with SPSS version 22.0. The descriptive statistics were used (means, standard deviations, and percentage) and the inferential statistics were used T-test, Chi-square test and Logistic regression. Results: The unplanned readmissions within 14 days rate was 36%. The majorities were 268 males (54.1%), aged >65 were 318 (64.2%), and mean age was 68.8±14.65 years (23-98years). The mean score for the comorbidities was 3.77±2.73. The top three diagnosed of the readmission were digestive diseases (32.7%), respiratory diseases (15.2%), and genitourinary diseases (10.5%). There were significant relationships among the gender, age, marriage, comorbidity status, and discharge planning services (χ2: 3.816-16.474, p: 0.051~0.000). Logistic regression analysis showed that old age (OR = 1.012, 95% CI: 1.003, 1.021), had the multi-morbidity (OR = 0.712~4.040, 95% CI: 0.559~8.522), had been consult with discharge planning services (OR = 1.696, 95% CI: 1.105, 2.061) have a higher risk of readmission. Conclusions: This study finds that multi-morbidity was independent risk factor for unplanned readmissions at 14 days, recommended that the interventional treatment of the medical team be provided to provide integrated care for multi-morbidity to improve the patient's self-care ability and reduce the 14-day unplanned readmission rate.Keywords: unplanned readmission, comorbidities, Charlson comorbidity index, logistic regression
Procedia PDF Downloads 1472972 Exploring Factors Related to Unplanning Readmission of Elderly Patients in Taiwan
Authors: Hui-Yen Lee, Hsiu-Yun Wei, Guey-Jen Lin, Pi-Yueh Lee Lee
Abstract:
Background: Unplanned hospital readmissions increase healthcare costs and have been considered a marker of poor healthcare performance. The elderly face a higher risk of unplanned readmission due to elderly-specific characteristics such as deteriorating body functions and the relatively high incidence of complications after treatment of acute diseases. Purpose: The aim of this study was exploring the factors that relate to the unplanned readmission of elderly within 14 days of discharge at our hospital in southern Taiwan. Methods: We retrospectively reviewed the medical records of patients aged ≥65 years who had been re-admitted between January 2018 and December 2018.The Charlson Comorbidity score was calculated using previous used method. Related factors that affected the rate of unplanned readmission within 14 days of discharge were screened and analyzed using the chi-squared test and logistic regression analysis. Results: This study enrolled 829 subjects aged more than 65 years. The numbers of unplanned readmission patients within 14 days were 318 cases, while those did not belong to the unplanned readmission were 511 cases. In 2018, the rate of elderly patients in unplanned 14 days readmissions was 38.4%. The majority patients were females (166 cases, 52.2%), with an average age of 77.6 ± 7.90 years (65-98). The average value of Charlson Comorbidity score was 4.42±2.76. Using logistic regression analysis, we found that the gastric or peptic ulcer (OR=1.917 , P< 0.002), diabetes (OR= 0.722, P< 0.043), hemiplegia (OR= 2.292, P< 0.015), metastatic solid tumor (OR= 2.204, P< 0.025), hypertension (OR= 0.696, P< 0.044), and skin ulcer/cellulitis (OR= 2.747, P< 0.022) have significantly higher risk of 14-day readmissions. Conclusion: The results of the present study may assist the healthcare teams to understand the factors that may affect unplanned readmission in the elderly. We recommend that these teams give efficient approach in their medical practice, provide timely health education for elderly, and integrative healthcare for chronic diseases in order to reduce unplanned readmissions.Keywords: unplanning readmission, elderly, Charlson comorbidity score, logistic regression analysis
Procedia PDF Downloads 1302971 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 1112970 Survival Chances and Costs after Heart Attacks: An Instrumental Variable Approach
Authors: Alice Sanwald, Thomas Schober
Abstract:
We analyze mortality and follow-up costs of heart attack patients using administrative data from Austria (2002-2011). As treatment intensity in a hospital largely depends on whether it has a catheterization laboratory, we focus on the effects of patients' initial admission to these specialized hospitals. To account for the nonrandom selection of patients into hospitals, we exploit individuals' place of residence as a source of exogenous variation in an instrumental variable framework. We find that the initial admission to specialized hospitals increases patients' survival chances substantially. The effect on 3-year mortality is -9.5 percentage points. A separation of the sample into subgroups shows the strongest effects in relative terms for patients below the age of 65. We do not find significant effects on longterm inpatient costs and find only marginal increases in outpatient costs.Keywords: acute myocardial infarction, mortality, costs, instrumental variables, heart attack
Procedia PDF Downloads 4362969 On Increase and Development Prospects of Competitiveness of Georgia’s Transport-Logistical System on the Contemporary Stage
Authors: Ketevan Goletiani
Abstract:
MMultimodal transport is Europe-Asia’s rational decision of the XXI century. Success prerequisite of this form of cargo carriage is not technologic decision, but the comprehensive attitude towards it. Integration of the transport industry must refer to both technical and organizational-economic fields. Support of the multimodal’s must be the priority of the transport policy in different organizations of Europe and Asia. The method of approach to the transport as a unified system has been changed to a certain extent in the market conditions. Nowadays the competition between the different kinds of transport is not to be considered as a competition of one kind of transport towards another one, but is to be considered as a stimulator of the transport development. Basically, transport logistic, as the recent methodology and organization of the rationally flow of cargos at the specialized logistic centres during their procession provides effective rise of such flow of cargos, decreases non-operating expenses and gives the opportunity to the transport companies to come along with the time, to meet market clients’ requirements. It is apparent that the advanced transport-forwarding and logistic firms are being analized.Keywords: transport systems, multimodal transport, competition, transport logistics
Procedia PDF Downloads 4372968 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 222