Search results for: evaporative cooling system
18131 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding
Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang
Abstract:
In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding
Procedia PDF Downloads 15018130 Impact of aSolar System Designed to Improve the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
The improvement of the agricultural production and food preservation processes requires the introduction of heating and cooling techniques in greenhouses. To develop these techniques, our work proposes a design of an integrated and autonomous solar system for heating, cooling, and production conservation in greenhouses. The hot air produced by the greenhouse effect during the day will be evacuated to compartments annexed in the greenhouse to dry the surplus agricultural production that is not sold on the market. In this paper, we will give a description of this solar system and the calculation of the fluid’s volume used for heat storage that will be released during the night.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 10618129 Thermal Management of Ground Heat Exchangers Applied in High Power LED
Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen
Abstract:
The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation
Procedia PDF Downloads 57918128 Modeling of a Concentrating Photovoltaic Module with and without Cooling System
Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi
Abstract:
Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement
Procedia PDF Downloads 39818127 Heat Transfer in Direct-Driven Generator for Large-Scaled Wind Turbine
Authors: Dae-Gyun Ahn, Eun-Teak Woo, Yun-Hyun Cho, Seung-Ho Han
Abstract:
For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind generators such as the Axial Flux Permanent Magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5MW. In this study, a newly developed conductive-type cooling system was proposed for the 2.5MW AFPM generator installed on an offshore wind turbine. Through electromagnetic thermal analysis, the efficiency of the heat transfer on the stator surface was investigated. When using the proposed cooling system, the temperatures on the stator surface and on the permanent magnet under conditions of thermal saturation were 76 and 66 C, respectively. (KETEP 20134030200320)Keywords: heat transfer, thermal analysis, axial flux permanent magnet, conductive-type cooling system
Procedia PDF Downloads 44218126 Design of Residential Geothermal Cooling System in Kuwait
Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi
Abstract:
Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy
Procedia PDF Downloads 8518125 Integration of Two Thermodynamic Cycles by Absorption for Simultaneous Production of Fresh Water and Cooling
Authors: Javier Delgado-Gonzaga, Wilfrido Rivera, David Juárez-Romero
Abstract:
Cooling and water purification are processes that have contributed to the economic and social development of the modern world. However, these processes require a significant amount of energy globally. Nowadays, absorption heat pumps have been studied with great interest since they are capable of producing cooling and/or purifying water from low-temperature energy sources such as industrial waste heat or renewable energy. In addition, absorption heat pumps require negligible amounts of electricity for their operation and generally use working fluids that do not represent a risk to the environment. The objective of this work is to evaluate a system that integrates an absorption heat transformer and an absorption cooling system to produce fresh water and cooling from a low-temperature heat source. Both cycles operate with the working pair LiBr-H2O. The integration is possible through the interaction of the LiBr-H2O solution streams between both cycles and also by recycling heat from the absorption heat transformer to the absorption cooling system. Mathematical models were developed to compare the performance of four different configurations. The results showed that the configuration in which the hottest streams of LiBr-H2O solution preheated the coldest streams in the economizers of both cycles was one that achieved the best performance. The interaction of the solution currents and the heat recycling analyzed in this work serves as a record of the possibilities of integration between absorption cycles for cogeneration.Keywords: absorption heat transformer, absorption cooling system, water desalination, integrated system
Procedia PDF Downloads 7818124 Investigation of Night Cooling Event, Experimental Radiator
Authors: Fatemeh Karampour
Abstract:
In the hot climate countries, especially those countries with great desert area, such as Iran, a considerable part of the energy is consumed due to cooling and air conditioning system in a hot season. So it is important to find a renewable energy supply for cooling systems. Although, there are few consistent researches in this field of renewable energy in compare with other fields. This research is presenting a study on performance of a night cooling radiator and working fluid storage for night time operation and day time resting periods. In these experiments, we didn’t expose any heating load but focused only on the possibility of system combination and its potential cooling effect. A very simple radiator has been designed in south of Iran, Shiraz, in order to perform this study. The radiator has been insulated with polystyrene foam and bubbled plastic sheets have been used as top cover. Using a single bubbled plastic sheet, the radiator temperature reached 0°C which is 20°C lower than minimum ambient temperature. Putting a small storage tank in the line increased the radiator’s minimum temperature at night; however, provided some cool fluid source for hot days of Shiraz that easily reaches 40°C. The results have shown very good cooling potential without heating load and acceptable temperature increasing during hot day with a small, short term storage tank. Future studies can make the system more effective and applicable.Keywords: night cooling, experimental set up, cooling radiator, chill storage
Procedia PDF Downloads 15218123 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China
Authors: Ruobing Liang, Jili Zhang, Chao Zhou
Abstract:
A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis
Procedia PDF Downloads 42218122 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System
Authors: Seung-Ho Yoo, Jong-Ryeul Sohn
Abstract:
An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote
Procedia PDF Downloads 51618121 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers
Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes
Abstract:
Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.Keywords: algae, biocide, biofouling, seawater cooling tower
Procedia PDF Downloads 23918120 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System
Authors: Ali Ates, Sadık Ata, Kevser Dincer
Abstract:
In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat
Procedia PDF Downloads 35318119 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study
Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti
Abstract:
This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss
Procedia PDF Downloads 6518118 Analysis of a Multiejector Cooling System in a Truck at Different Loads
Authors: Leonardo E. Pacheco, Carlos A. Díaz
Abstract:
An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy
Procedia PDF Downloads 26018117 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams
Authors: Jiin-Yuh Jang, Yu-Feng Gan
Abstract:
In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.Keywords: controlled cooling, H-Beam, optimization, thermal stress
Procedia PDF Downloads 37018116 Wearable System for Prolonged Cooling and Dehumidifying of PPE in Hot Environments
Abstract:
While personal protective equipment (PPE) prevents the healthcare personnel from exposing to harmful surroundings, it creates a barrier to the dissipation of body heat and perspiration, leading to severe heat stress during prolonged exposure, especially in hot environments. It has been found that most of the existed personal cooling strategies have limitations in achieving effective cooling performance with long duration and lightweight. This work aimed to develop a lightweight (<1.0 kg) and less expensive wearable air cooling and dehumidifying system (WCDS) that can be applied underneath the protective clothing and provide 50W mean cooling power for more than 5 hours at 35°C environmental temperature without compromising the protection of PPE. For the WCDS, blowers will be used to activate an internal air circulation inside the clothing microclimate, which doesn't interfere with the protection of PPE. An air cooling and dehumidifying chamber (ACMR) with a specific design will be developed to reduce the air temperature and humidity inside the protective clothing. Then the cooled and dried air will be supplied to upper chest and back areas through a branching tubing system for personal cooling. A detachable ice cooling unit will be applied from the outside of the PPE to extract heat from the clothing microclimate. This combination allows for convenient replacement of the cooling unit to refresh the cooling effect, which can realize a continuous cooling function without taking off the PPE or adding too much weight. A preliminary thermal manikin test showed that the WCDS was able to reduce the microclimate temperature inside the PPE averagely by about 8°C for 60 minutes when the environmental temperature was 28.0 °C and 33.5 °C, respectively. Replacing the ice cooling unit every hour can maintain this cooling effect, while the longest operation duration is determined by the battery of the blowers, which can last for about 6 hours. This unique design is especially helpful for the PPE users, such as health care workers in infectious and hot environments when continuous cooling and dehumidifying are needed, but the change of protective clothing may increase the risk of infection. The new WCDS will not only improve the thermal comfort of PPE users but can also extend their safe working duration.Keywords: personal thermal management, heat stress, ppe, health care workers, wearable device
Procedia PDF Downloads 7918115 Sympathetic Cooling of Antiprotons with Molecular Anions
Authors: Sebastian Gerber, Julian Fesel, Christian Zimmer, Pauline Yzombard, Daniel Comparat, Michael Doser
Abstract:
Molecular anions play a central role in a wide range of fields: from atmospheric and interstellar science, anionic superhalogens to the chemistry of highly correlated systems. However, up to now the synthesis of negative ions in a controlled manner at ultracold temperatures, relevant for the processes in which they are involved, is currently limited to a few Kelvin by supersonic beam expansion followed by resistive, buffer gas or electron cooling in cryogenic environments. We present a realistic scheme for laser cooling of C2- molecules to sub-Kelvin temperatures, which has so far only been achieved for a few neutral diatomic molecules. The generation of a pulsed source of C2- and subsequent laser cooling techniques of C2- molecules confined in a Penning trap are reviewed. Further, laser cooling of one anionic species would allow to sympathetically cool other molecular anions, electrons and antiprotons that are confined in the same trapping potential. In this presentation the status of the experiment and the feasibility of C2- sympathetic Doppler laser cooling, photo-detachment cooling and AC-Stark Sisyphus cooling will be reviewed.Keywords: antiprotons, anions, cooling of ions and molecules, Doppler cooling, photo-detachment, penning trap, Sisyphus cooling, sympathetic cooling
Procedia PDF Downloads 38018114 The Effect of Window Position and Ceiling Height on Cooling Load in Architectural Studio
Authors: Seyedehzahra Mirrahimi
Abstract:
This paper investigates the effect of variations in window and ceiling heights on cooling inside an architectural training studio with a full-width window. For architectural training, students use the studio more often than they use ordinary classrooms. Therefore, studio dimensions and size, and the window position, directly influence the cooling load. Energy for cooling is one of the most expensive costs in the studio because of the high activity levels of students during the warm season. The methodology of analysis involves measuring energy changes in the Energy PlusKeywords: cooling energy, Energy Plus, studio classroom, window position
Procedia PDF Downloads 29018113 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment
Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit
Abstract:
Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings
Procedia PDF Downloads 14918112 Hydrothermal Energy Application Technology Using Dam Deep Water
Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong
Abstract:
Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.Keywords: hydrothermal energy, HVAC, internet data center, free-cooling
Procedia PDF Downloads 8118111 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient
Authors: J. Hrabovský, M. Chabičovský, J. Horský
Abstract:
Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling
Procedia PDF Downloads 40818110 Preliminary Study of Desiccant Cooling System under Algerian Climates
Abstract:
The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.Keywords: dehumidification, efficiency, humidity, Trnsys
Procedia PDF Downloads 44018109 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates
Authors: Zina Ghiloufi, Tahar Khir
Abstract:
A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)
Procedia PDF Downloads 23518108 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates
Authors: Naci Kalkan, Ihsan Dagtekin
Abstract:
This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney
Procedia PDF Downloads 57418107 Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City
Authors: Rasaq Adekunle Olabomi
Abstract:
More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges.Keywords: cooling load, absorption cooling system, coefficient of performance, radiant floor, cost saving, emission reduction
Procedia PDF Downloads 2418106 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis
Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone
Abstract:
The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21◦C and 25◦C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.Keywords: dehumidification, nodal calculation, radiant cooling panel, system sizing
Procedia PDF Downloads 17518105 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use
Authors: Naci Kalkan, Ihsan Dagtekin
Abstract:
Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.Keywords: passive solar systems, heating, cooling, thermal comfort, ventilation systems
Procedia PDF Downloads 29918104 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger
Procedia PDF Downloads 30018103 Fluid Flow and Heat Transfer Characteristics Investigation in Spray Cooling Systems Using Nanofluids
Authors: Lee Derk Huan, Nur Irmawati
Abstract:
This paper aims to investigate the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.Keywords: numerical investigation, spray cooling, heat transfer, nanofluids
Procedia PDF Downloads 46518102 Designing an Automatic Mechanical System to Prevent Cancers Caused by Drinks
Authors: Ghasem Yazadani, Hamidreza Ahmadi, Masoud Ahmadi, Sajad Rezazadeh
Abstract:
In this paper with designing and proposing a compound of a heating and cooling system has been tried to show effect of this system on preventing esophagus cancer that can be caused by hot and cold drinks such as tea, coffee and ice water. This system has been simulated mechanically by fluent software and also has been validated by experimental way and a comprehensive result has been presented. Both of solution ways show that this system can reduce or increase temperature of drink to safe very dramatically and it can be a huge step toward consuming drinks safely and also it can be efficient about time issues. The system consists of a temperature sensor and an electronic controller that has a computer program to act automatically this task. Also this system has been presented after many different simulations and has been tried to find the best one in the point view of velocity of heating and cooling.Keywords: fluent, heat transfer, controller, esophagus cancer
Procedia PDF Downloads 385