Search results for: cislunar transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2809

Search results for: cislunar transfer

2779 Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System

Authors: Jorge L. Nisperuza, Wilson Sandoval, Edward. A. Gil, Johan A. Jimenez

Abstract:

In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost.

Keywords: bi-elliptic Hohmann transfer, exoplanet, extrasolar system, Hohmann transfer, TRAPPIST-1

Procedia PDF Downloads 195
2778 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems

Authors: Masato Sasaki, Masayoshi Yamamoto

Abstract:

The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.

Keywords: wireless power transfer, omni-directional, orthogonal, efficiency

Procedia PDF Downloads 320
2777 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor

Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young

Abstract:

In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.

Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy

Procedia PDF Downloads 417
2776 Mathematical Modeling of Skin Condensers for Domestic Refrigerator

Authors: Nitin Ghule, S. G. Taji

Abstract:

A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.

Keywords: condenser, domestic refrigerator, heat transfer, mathematical model

Procedia PDF Downloads 452
2775 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.

Keywords: nano fluids, heat transfer, flattend tube, transport phenomena

Procedia PDF Downloads 434
2774 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid

Authors: M. Amoura, M. Benmoussa, N. Zeraibi

Abstract:

The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.

Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation

Procedia PDF Downloads 322
2773 Intensification of Heat Transfer in Magnetically Assisted Reactor

Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy

Abstract:

The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.

Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile

Procedia PDF Downloads 196
2772 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: composite column, reinforced concrete beam, steel column, transfer part

Procedia PDF Downloads 432
2771 Enhanced Boiling Heat Transfer Using Wettability Patterned Surfaces

Authors: Dong Il Shim, Geehong Choi, Donghwi Lee, Namkyu Lee, Hyung Hee Cho

Abstract:

Effective cooling technology is required to secure thermal stability in extreme heat generated systems such as integrated electronic devices and power generated systems. Pool boiling heat transfer is one of the powerful cooling mechanisms using phase change phenomena. Critical heat flux (CHF) and heat transfer coefficient (HTC) are main factors to evaluate the performance of boiling heat transfer. CHF is the limitation of boiling heat transfer before film boiling which occurs thermal failure. Surface wettability is an important surface characteristic of boiling heat transfer. A hydrophilic surface has higher CHF through effective working fluid supply to local hot spots. A hydrophobic surface promotes the onset of nucleate boiling (ONB) to enhance HTC. In this study, superbiphilic surfaces, which is combined with superhydrophillic and superhydrophobic, are applied on boiling experiments to maximize boiling performance. We conducted pool boiling heat transfer using DI water at a saturated temperature and recorded bubble dynamics using a high-speed camera with 2000 fps. As a result, superbiphilic patterned surfaces promote ONB and enhance both CHF and HTC. This study demonstrates the enhanced boiling performance using superbiphilic surfaces by effective nucleation and separation of liquid/vapor pathway. We expect that further enhancement of heat transfer could be achieved in future work using optimized patterned surfaces.

Keywords: boiling heat transfer, wettability, critical heat flux, heat transfer coefficient

Procedia PDF Downloads 337
2770 Technology Transfer and FDI: Some Lessons for Tunisia

Authors: Assaad Ghazouani, Hedia Teraoui

Abstract:

The purpose of this article is to try to see if the FDI actually contributes to technology transfer in Tunisia or are there other sources that can guarantee this transfer? The answer to this problem was gradual as we followed an approach using economic theory, the reality of Tunisia and econometric and statistical tools. We examined the relationship between technology transfer and FDI in Tunisia over a period of 40 years from 1970 to 2010. We estimated in two stages: first, a growth equation, then we have learned from this regression residue (proxy technology), secondly, we regressed on European FDI, exports of manufactures, imports of goods from the European Union in addition to other variables to test the robustness of the results and describing the level of infrastructure in the country. It follows from our study that technology transfer does not originate primarily and exclusively in the FDI and the latter is econometrically weakly with technology transfer and spill over effect of FDI does not seem to occur according to our results. However, the relationship between technology transfer and imports is negative and significant. Although this result is cons-intuitive, is recurrent in the literature of panel data. It has also given rise to intense debate on the microeconomic modelling as well as on the empirical applications. Technology transfer through trade or foreign investment has become a catalyst for growth recognized by numerous empirical studies in particular. However, the relationship technology transfer FDI is more complex than it appears. This complexity is due, primarily, but not exclusively to the close link between FDI and the characteristics of the host country. This is essentially the host's responsibility to establish general conditions, transparent and conducive to investment, and to strengthen human and institutional capacity necessary for foreign capital flows that can have real effects on growth.

Keywords: technology transfer, foreign direct investment, economics, finance

Procedia PDF Downloads 322
2769 Heat Transfer and Diffusion Modelling

Authors: R. Whalley

Abstract:

The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided.

Keywords: heat, transfer, diffusion, modelling, computation

Procedia PDF Downloads 554
2768 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood

Procedia PDF Downloads 400
2767 Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri

Abstract:

Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively.

Keywords: computational fluid dynamic, heat flux, heat transfer, natural convection

Procedia PDF Downloads 363
2766 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators

Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane

Abstract:

In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.

Keywords: multi-effect-evaporator, scale deposition, water desalination, heat transfer coefficient

Procedia PDF Downloads 151
2765 Generalized Correlation for the Condensation and Evaporation Heat Transfer Coefficients of Propane (R290), Butane (R600), R134a, and R407c in Porous Horizontal Tubes: Experimental Investigation

Authors: M. Tarawneh

Abstract:

This work is an experimental study on the heat transfer characteristics and pressure drop of different refrigerants during the condensation and evaporation processes in porous media. Four different refrigerants (R134a, R407C, 600a, R290), with different porosities were used to reach a real understanding of the actual heat transfer characteristics and pressure drop when using porous material inside the condenser and evaporator. Steel balls were used as porous media with different porosities (38%, 43%, 48%). The main goal of this project is to enhance the heat transfer coefficient during the condensation and evaporation processes when using different refrigerants and different porosities. Different correlations for the heat transfer coefficient and the pressure drop of the different refrigerants were developed. Also a generalized empirical correlation was developed for the different refrigerants. The experimental and predicted heat transfer coefficients and pressure drops were compared. It was found that, the Absolute standard deviation for the heat transfer coefficient and the pressure drop not exceeded values of 15% and 20%, respectively.

Keywords: condensation, evaporation, porous media, horizontal tubes, heat transfer coefficient, propane, butane

Procedia PDF Downloads 538
2764 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 389
2763 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon

Authors: Badache Messaoud

Abstract:

Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.

Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance

Procedia PDF Downloads 70
2762 Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger

Authors: A.Kouidri, B.Madani

Abstract:

The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3.

Keywords: boiling, metallic foam, heat transfer, plate heat exchanger

Procedia PDF Downloads 475
2761 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members

Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim

Abstract:

In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length

Procedia PDF Downloads 298
2760 Experimental Investigation on the Effect of Adding CuO Nanoparticles to R-600a Refrigerant on Heat Transfer Enhancement of a Horizontal Flattened Tube

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused significant enhancement in heat transfer performance so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%.

Keywords: nano particles, flattend tube, R600a, CuO

Procedia PDF Downloads 326
2759 An Investigation into Enablers and Barriers of Reverse Technology Transfer

Authors: Nirmal Kundu, Chandan Bhar, Visveswaran Pandurangan

Abstract:

Technology is the most valued possession for a country or an organization. The economic development depends not on stock of technology but on the capabilities how the technology is being exploited. The technology transfer is the best way how the developing countries have an access to state-of- the-art technology. Traditional technology transfer is a unidirectional phenomenon where technology is transferred from developed to developing countries. But now there is a change of wind. There is a general agreement that global shift of economic power is under way from west to east. As China and India are making the transition from users to producers, and producers to innovators, this has increasing important implications on economy, technology and policy of global trade. As a result, Reverse technology transfer has become a phenomenon and field of study in technology management. The term “Reverse Technology Transfer” is not well defined. Initially the concept of Reverse technology transfer was associated with the phenomenon of “Brain drain” from developing to developed countries. In the second phase, Reverse Technology Transfer was associated with the transfer of knowledge and technology from subsidiaries to multinationals. Finally, time has come now to extend the concept of reverse technology transfer to two different organizations or countries related or unrelated by traditional technology transfer but the transfer or has essentially received the technology through traditional mode of technology transfer. The objective of this paper is to study; 1) the present status of Reverse technology transfer, 2) the factors which are the enablers and barriers of Reverse technology transfer and 3) how the reverse technology transfer strategy can be integrated in the technology policy of a country which will give the countries an economic boost. The research methodology used in this study is a combination of literature review, case studies and key informant interviews. The literature review includes both published as well as unpublished sources of literature. In case study, attempt has been made to study the records of reverse technology transfer that have been occurred in developing countries. In case of key informant interviews, informal telephonic discussions have been carried out with the key executives of the organizations (industry, university and research institutions) who are actively engaged in the process of technology transfer- traditional as well as reverse. Reverse technology transfer is possible only by creating technological capabilities. Following four important enablers coupled with government active and aggressive action can help to build technology base to reach to the goal of Reverse technology transfer 1) Imitation to innovation, 2) Reverse engineering, 3) Collaborative R & D approach, and 4) Preventing reverse brain drain. The barriers that come in the way are the mindset of over dependence, over subordination and parent–child attitude (not adult attitude). Exploitation of these enablers and overcoming the barriers of reverse technology transfer, the developing countries like India and China can prove that going “reverse” is the best way to move forward and again establish themselves as leader of the future world.

Keywords: barriers of reverse technology transfer, enablers of reverse technology transfer, knowledge transfer, reverse technology transfer, technology transfer

Procedia PDF Downloads 399
2758 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds

Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed

Abstract:

The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.

Keywords: acoustic streaming, enhancing heat transfer, laminar flow, metal foam, ultrasound

Procedia PDF Downloads 138
2757 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance

Authors: Ahmad Abubakar Sadiq, Nwohu Ndubuka Mark, Jacob Tsado, Ahmad Adam Asharaf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba

Abstract:

Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.

Keywords: performance, transmission system, real power efficiency, available transfer capability

Procedia PDF Downloads 650
2756 Heat Transfer Performance for Turbulent Flow through a Tube Using Baffles

Authors: Amina Benabderrahmane, Abdelylah Benazza, Samir Laouedj

Abstract:

Three dimensional numerical investigation of heat transfer enhancement inside a non-uniformly heated parabolic trough solar collector fitted with baffles under turbulent flow was studied in the current paper. Molten salt is used as heat transfer fluid and simulations are carried out in ANSYS computational fluid dynamics (CFD). The present data was validating by the empirical correlations available in the literatures and good agreement was obtained. The Nusselt number and friction factor values for using baffles are considerably higher than that for smooth pipe. The emplacement and the distance between two consecutive baffles have an effect non-negligible on heat transfer characteristics; the results demonstrate that the temperature gradient reduces with the inclusion of inserts.

Keywords: Baffles, heat transfer enhancement, molten salt, Monte Carlo ray trace technique, numerical investigation

Procedia PDF Downloads 301
2755 Heat Transfer Investigation in a Dimple Plate Heat Exchanger Using Ionic Liquid and Ionanofluid

Authors: Divya P. Soman, S. Karthika, P. Kalaichelvi, T. K. Radhakrishnan

Abstract:

Heat transfer characteristics of ionic liquid solution as cold fluid in plate heat exchanger with dimple plate geometry was studied. The ionic liquid solution used in this study was 1-butyl-3-methylimidazolium bromide in water. The present experimental study is to understand the heat transfer behavior of different 1-butyl-3-methylimidazolium bromide concentrations (0.1 and 0.2% w/w) in water. In addition, the heat transfer activity of ionanofluid as cold fluid was investigated. The ionanofluid was prepared by dispersing 0.3% w/w Al2O3 in the ionic liquid solution as base fluid. Experiments were also conducted to determine thermophysical properties of ionanofluid. The empirical correlations as a function of temperature were developed to predict the thermophysical properties. Finally, the heat transfer performance of ionic liquid solution, ionanofluid, nanofluid and water were compared. The impact of hot fluid’s (water) Reynolds number on overall heat transfer coefficient and Nusselt number of cold fluids were analyzed. The nanofluid and ionanofluid were found to possess better heat transfer behavior than water and ionic liquid solution. Heat transfer augmentation was observed for ionanofluid when compared with the base fluid (0.1% w/w ionic liquid solution).

Keywords: ionic liquid, nanofluid, ionanofluid, dimple plate heat exchanger, Nusselt number, overall heat transfer coefficient

Procedia PDF Downloads 135
2754 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger

Authors: Eyuphan Manay

Abstract:

In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.

Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger

Procedia PDF Downloads 203
2753 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.

Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences

Procedia PDF Downloads 464
2752 A Survey on Positive Real and Strictly Positive Real Scalar Transfer Functions

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive real and strictly positive real transfer functions are important concepts in the control theory. In this paper, the results of researches in these areas are summarized. Definitions together with their graphical interpretations are mentioned. The equivalent conditions in the frequency domain and state space representations are reviewed. Their equivalent electrical networks are explained. Also, a comprehensive discussion about a difference between behavior of real part of positive real and strictly positive real transfer functions in high frequencies is presented. Furthermore, several illustrative examples are given.

Keywords: real rational transfer functions, positive realness property, strictly positive realness property, equivalent conditions

Procedia PDF Downloads 387
2751 Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence

Authors: Yasser Rammah, Wolf-Christian Mueller

Abstract:

Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence.

Keywords: magnetohydrodynamic (MHD) turbulence, transfer density function, locality function, direct numerical simulation (DNS)

Procedia PDF Downloads 385
2750 Mass Transfer Studies of Carbon Dioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

In this work, absorption studies are done by conducting experiments of 99.9 (v/v%) pure CO₂ with various concentrations of sodium hydroxide solutions in a T-junction glass circular milli-channel. The gas gets absorbed in the aqueous phase resulting in the shrinking of slugs. This phenomenon is used to develop a lumped parameter model. Using this model, the chemical dissolution dynamics and the mass transfer characteristics of the CO₂-NaOH system is analysed. The liquid side mass transfer coefficient is determined with the help of the experimental data.

Keywords: absorption, dissolution dynamics, lumped parameter model, milli-channel, mass transfer coefficient

Procedia PDF Downloads 284