Search results for: chromosome aberrations
112 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 104111 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing
Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari
Abstract:
A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.Keywords: bacteria chromosome, bacterial identification, sequence, primer generation
Procedia PDF Downloads 192110 Functional Gene Expression in Human Cells Using Linear Vectors Derived from Bacteriophage N15 Processing
Authors: Kumaran Narayanan, Pei-Sheng Liew
Abstract:
This paper adapts the bacteriophage N15 protelomerase enzyme to assemble linear chromosomes as vectors for gene expression in human cells. Phage N15 has the unique ability to replicate as a linear plasmid with telomeres in E. coli during its prophage stage of life-cycle. The virus-encoded protelomerase enzyme cuts its circular genome and caps its ends to form hairpin telomeres, resulting in a linear human-chromosome-like structure in E. coli. In mammalian cells, however, no enzyme with TelN-like activities has been found. In this work, we show for the first-time transfer of the protelomerase from phage into human and mouse cells and demonstrate recapitulation of its activity in these hosts. The function of this enzyme is assayed by demonstrating cleavage of its target DNA, followed by detecting telomere formation based on its resistance to recBCD enzyme digestion. We show protelomerase expression persists for at least 60 days, which indicates limited silencing of its expression. Next, we show that an intact human β-globin gene delivered on this linear chromosome accurately retains its expression in the human cellular environment for at least 60 hours, demonstrating its stability and potential as a vector. These results demonstrate that the N15 protelomerse is able to function in mammalian cells to cut and heal DNA to create telomeres, which provides a new tool for creating novel structures by DNA resolution in these hosts.Keywords: chromosome, beta-globin, DNA, gene expression, linear vector
Procedia PDF Downloads 192109 A Novel Chicken W Chromosome Specific Tandem Repeat
Authors: Alsu F. Saifitdinova, Alexey S. Komissarov, Svetlana A. Galkina, Elena I. Koshel, Maria M. Kulak, Stephen J. O'Brien, Elena R. Gaginskaya
Abstract:
The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used.Keywords: birds, lampbrush chromosomes, sex chromosomes, tandem repeats
Procedia PDF Downloads 389108 Genotoxic and Cytotoxic Effects of Methidathion Pesticide
Authors: Mohammad Y. Alfaifi
Abstract:
Methidathion (MTD) (Trade name Supracide®) is a non-systemic organophosphorus insecticide used intensively worldwide including Saudi Arabia. However, there is a lack in published studies about it's genotoxicity. In this study we evaluated MTD toxicity in rat bone marrow cells (in vivo) and in lymphocytes (in vitro) using different doses based on LD50. MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells were recorded in rat's bone marrow samples. CA, MI (number of cells undergoing mitosis) necrotic, and apoptotic cells recorded in lymphocytes. Results showed that there was a slight increase in the frequency of micronucleated bone marrow cells. However, no structural chromosomal aberrations were detected in vivo or in vitro. On the other hand, the results showed significant increase in necrotic and apoptotic cells following MTD administration in a dose-dependent manner comparing to positive and negative control groups. In light of these results, MTD can be considered highly cytotoxic and moderate genotoxic, and precaution should be taken when using MTD.Keywords: methidathion, micronucleus, NDI, NDCI, toxicity, chromosomal aberrations
Procedia PDF Downloads 412107 Atomic Force Microscopy Studies of DNA Binding Properties of the Archaeal Mini Chromosome Maintenance Complex
Authors: Amna Abdalla Mohammed Khalid, Pietro Parisse, Silvia Onesti, Loredana Casalis
Abstract:
Basic cellular processes as DNA replication are crucial to cell life. Understanding at the molecular level the mechanisms that govern DNA replication in proliferating cells is fundamental to understand disease connected to genomic instabilities, as a genetic disease and cancer. A key step for DNA replication to take place, is unwinding the DNA double helix and this carried out by proteins called helicases. The archaeal MCM (minichromosome maintenance) complex from Methanothermobacter thermautotrophicus have being studied using Atomic Force Microscopy (AFM), imaging in air and liquid (Physiological environment). The accurate analysis of AFM topographic images allowed to understand the static conformations as well the interaction dynamic of MCM and DNA double helix in the present of ATP.Keywords: DNA, protein-DNA interaction, MCM (mini chromosome manteinance) complex, atomic force microscopy (AFM)
Procedia PDF Downloads 308106 An Improved Genetic Algorithm for Traveling Salesman Problem with Precedence Constraint
Authors: M. F. F. Ab Rashid, A. N. Mohd Rose, N. M. Z. Nik Mohamed, W. S. Wan Harun, S. A. Che Ghani
Abstract:
Traveling salesman problem with precedence constraint (TSPPC) is one of the most complex problems in combinatorial optimization. The existing algorithms to solve TSPPC cost large computational time to find the optimal solution. The purpose of this paper is to present an efficient genetic algorithm that guarantees optimal solution with less number of generations and iterations time. Unlike the existing algorithm that generates priority factor as chromosome, the proposed algorithm directly generates sequence of solution as chromosome. As a result, the proposed algorithm is capable of generating optimal solution with smaller number of generations and iteration time compare to existing algorithm.Keywords: traveling salesman problem, sequencing, genetic algorithm, precedence constraint
Procedia PDF Downloads 560105 Cytogenetic Investigation of Patients with Disorder of Sexual Development Using G-Banding Karyotype and Fluorescence In situ Hybridization
Authors: Riksa Parikrama, Bremmy Laksono, Dadang S. H. Effendi
Abstract:
Disorder of sexual development (DSD) covers various conditions with a specific term such as Klinefelter syndrome, Turner syndrome, androgen insensitivity syndrome, and many more. The techniques to accurately diagnose those conditions has developed extensively. However, conventional karyotype and fluorescence in situ hybridization (FISH) are still widely used in many genetic laboratories as the basic method to determine chromosomal condition of DSD patients. Cytogenetic study was conducted on 36 DSD patients in Cell Culture and Cytogenetics Laboratory, Faculty of Medicine Universitas Padjadjaran, Indonesia. Most of the patients referred to the laboratory diagnosed with primary amenorrhea, hypospadias, micropenis, genitalia ambiguity, or congenital adrenal hyperplasia. The study used G-banding technique to acquire complete karyotype and followed by FISH as either confirmation or comparison method. Among 36 patients, G-banding karyotype and FISH results showed that two were diagnosed with 45, X (Turner syndrome); three with 47, XXY (Klinefelter syndrome); five with 46, XX DSD; 22 with 46, XY DSD; and four with 46,XY complete androgen insensitivity syndrome. G-banding karyotype analysis were paired with FISH using X and Y chromosome probe produced similar results. The present analysis showed that FISH is a reliable method to attain a rapid and accurate chromosome analysis result of DSD patients. Nevertheless, conventional karyotype technique is still vital if other condition appeared in DSD patients in order to get more detailed karyotype result which FISH method cannot achieve.Keywords: chromosome, DSD, FISH, karyotype
Procedia PDF Downloads 225104 Hardware for Genetic Algorithm
Authors: Fariborz Ahmadi, Reza Tati
Abstract:
Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones.Keywords: hardware, genetic algorithm, computer science, engineering
Procedia PDF Downloads 506103 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins
Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan
Abstract:
Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.Keywords: cognition, generalized correlation coefficient, GWAS, twins
Procedia PDF Downloads 124102 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm
Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh
Abstract:
this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.Keywords: genetic algorithm, information retrieval, optimal queries, crossover
Procedia PDF Downloads 292101 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level
Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny
Abstract:
In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation
Procedia PDF Downloads 351100 Polymorphism of Candidate Genes for Meat Production in Lori Sheep
Authors: Shahram Nanekarania, Majid Goodarzia
Abstract:
Calpastatin and callipyge have been known as one of the candidate genes in meat quality and quantity. Calpastatin gene has been located to chromosome 5 of sheep and callipyge gene has been localized in the telomeric region on ovine chromosome 18. The objective of this study was identification of calpastatin and callipyge genes polymorphism and analysis of genotype structure in population of Lori sheep kept in Iran. Blood samples were taken from 120 Lori sheep breed and genomic DNA was extracted by salting out method. Polymorphism was identified using the PCR-RFLP technique. The PCR products were digested with MspI and FaqI restriction enzymes for calpastatin gene and callipyge gene, respectively. In this population, three patterns were observed and AA, AB, BB genotype have been identified with the 0.32, 0.63, 0.05 frequencies for calpastatin gene. The results obtained for the callipyge gene revealed that only the wild-type allele A was observed, indicating that only genotype AA was present in the population under consideration.Keywords: polymorphism, calpastatin, callipyge, PCR-RFLP, Lori sheep
Procedia PDF Downloads 61199 Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization
Authors: L. M. Al-Harbi, A. M. Shokry, J. S. M. Sabir, A. Chaudhary, J. Manikandan, K. S. Saini
Abstract:
Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations.Keywords: breast cancer, molecular biology, ecology, environment
Procedia PDF Downloads 37698 Somatic Hybridization of between Citrus and Murraya paniculata Cells Applied by Electro-Fusion
Authors: Hasan Basri Jumin
Abstract:
Protoplasts isolated from embryogenic callus of Citrus sinensis were electrically used with mesophyll protoplasts isolated from seedless Citrus relatives. Hybrid of somatic embryos plantlets was obtained after 7 months of culture. Somatic hybrid plants were regenerated into normal seedlings and successfully transferred to soil after strictly acclimatization in the glass pot. The somatic hybrid plants were obtained by screening on the basis of chromosomes count. The number of chromosome of root tip counting revealed plantlets tetraploids (2n = 4x = 36) and the other were diploids (2n = 2x = 18) morphologically resembling the mesophyll parent. This somatic hybrid will be utilized as a possible pollen parent for improving the Citrus sinensis. A complete protoplast-to-plant system of somatic hybrid was developed for Citrus sinensis and Citrus relatives which could facilitate the transfer of nuclear and cytoplasmic genes from this species into cultivated Citrus through protoplast fusion.Keywords: chromosome, Murraya paniculata, protoplast fusion, somatic hybrid, tetrapoliod
Procedia PDF Downloads 34197 Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines
Authors: Fumio Kasai, Noriko Hirayama, Jorge Pereira, Azusa Ohtani, Masashi Iemura, Malcolm A. Ferguson Smith, Arihiro Kohara
Abstract:
The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control.Keywords: VERO, cell culture passage, chromosome rearrangement, heterogeneous cells
Procedia PDF Downloads 41696 Genoprotective Effect of Lepidium sativum L. Seed Methanolic Extract on Cyclophosphamide-Induced DNA Damage in Mice and Characterization of Its Flavonoidal Content
Authors: Iman A. A. Kassem, Ayman A. Farghaly, Zeinab M. Hassan, Farouk R. Melek, Neveen S. Ghaly
Abstract:
Lipidium sativum L, an annual herb that grows to 50 cm, is known as an important member of family Brassicaceae. Besides its nutritional value, the seeds were widely used in folk medicine for treatment of cough, asthma, and headache. It was also reported to possess hypocholesterolemic, anti-inflammatory, antidiarrheal, antimicrobial and anticancer activities. In this study, the genoprotective properties of L. sativum seed methanolic extract (LSME) were evaluated in vivo. Three groups of mice were given LSME for five consecutive days at the three dose levels 25, 50 and 100 mg/kg b.wt. The three groups were then injected intraperitoneally with cyclophosphamide at a dose of 20 mg/kg b.wt. to induce DNA damage. A group received only cyclophosphamide (20 mg/kg b.wt.) served as control. LSME significantly inhibited the DNA aberrations in mice caused by cyclophosphamide in a dose-dependent manner in the two groups that received LSME at 50 and 100 mg/kg b.wt. dose levels. The chromosomal aberrations' inhibitory indices were calculated as 18 and 31 in mice bone marrow cells and 27 and 48 in mice spermatocytes, respectively. Phytochemical examination carried out by us revealed that flavonoids were the main chemical constituents of LSME. The major flavonoids kaempferol, kaempferol-3-O-rhamnoside, kaempferol-3-O-glucoside, quercetin, and quercetin-3-O-glucoside were isolated and characterized. It was concluded that the genoprotective effect of LSME might be attributed to the presence of flavonoids which are well-known for their antioxidant properties.Keywords: cyclophosphamide, flavonoids, genoprotective effect, Lepidium sativum
Procedia PDF Downloads 15595 Identification of Quantitative Trait Loci Conferring Downy Mildew Resistance in Cucumis sativus
Authors: Pawinee Innark, Hudsaya Punyanitikul, Chanuluk Khanobdee, Chatchawan Jantasuriyarat, Sompid Samipak
Abstract:
One of the most devastating diseases in cucumber is downy mildew caused by the fungus Pseudoperonospora cubensis. To enable the use of marker-assisted breeding for resistance cultivars, sixty six microsatellite markers were used to map (quantitative trait loci) QTLs for DM resistance. Total of 315 F2 population from the cross between DM-resistant inbred line CSL0067 and susceptible CSL0139 were evaluated for downy mildew resistance in cotyledon, first and second true leaf at 7, 10, and 14 day after inoculation. The QTL analysis revealed that the downy mildew resistant genes were controlled by multiple recessive genes. From eight linkage groups (LG 1.1, 1.2, 2, 3, 4, 5.1, 5.2 and 6), fourteen QTL positions were detected on 4 linkage groups (LG 1.1, 2, 5.1 and 6) with the log of odd scores ranged from 3.538 to 9.165. Among them, Cot7_5.1_2 and Cot10_5.1 had major-effect QTL with the R2 values of 10.9 and 12.5%, respectively. The flanking markers for Cot7_5.1_2 were SSR19172 - SSR07531 markers and for Cot10_5.1 were SSR03943 - SSR00772. Besides QTLs on chromosome 1, 5 and 6 that were previously reported, this study also revealed a QTL for DM resistance on chromosome 2 that can be used as a new source in cucumber breeding program.Keywords: cucumber, DNA marker, downy mildew, QTL
Procedia PDF Downloads 24894 Isolation and Expansion of Human Periosteum-Derived Mesenchymal Stem Cells in Defined Serum-Free Culture Medium
Authors: Ainur Mukhambetova, Miras Karzhauov, Vyacheslav Ogay
Abstract:
Introduction: Mesenchymal stem cells (MSCs) have the capacity to be differentiated into several cell lineages and are a promising source for cell therapy and tissue engineering. However, currently most MSCs culturing protocols use media supplemented with fetal bovine serum (FBS), which limits their application in clinic due to the possibility of zoonotic infections, contamination and immunological reactions. Consequently, formulating effective serum free culture medium becomes one of the important problems in contemporary cell biotechnology. Objectives: The aim of this study was to define an optimal serum-free medium for culturing of periosteum derived MSCs. Materials and methods: The MSCs were extracted from human periosteum and transferred to the culture flasks pretreated with CELLstart™. Immunophenotypic characterization, proliferation and in vitro differentiation of cells grown on STEM PRO® MSC SFM were compared to the cells cultured in the standard FBS containing media. Chromosome analysis and flow cytometry were also performed. Results: We have shown that cells were grown on STEM PRO® MSC SFM retained all the morphological, immunophenotypic (CD73, CD90, CD105, vimentin and Stro-1) and cell differentiation characteristics specific to MSCs. Chromosome analysis indicated no anomalies in the chromosome structure. Flow cytometry showed a high expression of cell adhesion molecules CD44 (98,8%), CD90 (97,4%), CD105 (99,1%). In addition, we have shown that cell is grown on STEM PRO® MSC SFM have higher proliferation capacity compared to cell expanded on standard FBS containing the medium. Conclusion: We have shown that STEM PRO® MSC SFM is optimal for culturing periosteum derived human MSCs which subsequently can be safely used in cell therapy.Keywords: cell technologies, periosteum-derived MSCs, regenerative medicine, serum-free medium
Procedia PDF Downloads 29893 Neuroblastoma in Children and the Potential Involvement of Viruses in Its Pathogenesis
Authors: Ugo Rovigatti
Abstract:
Neuroblastoma (NBL) has epitomized for at least 40 years our understanding of cancer cellular and molecular biology and its potential applications to novel therapeutic strategies. This includes the discovery of the very first oncogene aberrations and tumorigenesis suppression by differentiation in the 80s; the potential role of suppressor genes in the 90s; the relevance of immunotherapy in the millennium first, and the discovery of additional mutations by NGS technology in the millennium second decade. Similar discoveries were achieved in the majority of human cancers, and similar therapeutic interventions were obtained subsequently to NBL discoveries. Unfortunately, targeted therapies suggested by specific mutations (such as MYCN amplification –MNA- present in ¼ or 1/5 of cases) have not elicited therapeutic successes in aggressive NBL, where the prognosis is still dismal. The reasons appear to be linked to Tumor Heterogeneity, which is particularly evident in NBL but also a clear hallmark of aggressive human cancers generally. The new avenue of cancer immunotherapy (CIT) provided new hopes for cancer patients, but we still ignore the cellular or molecular targets. CIT is emblematic of high-risk disease (HR-NBL) since the mentioned GD2 passive immunotherapy is still providing better survival. We recently critically reviewed and evaluated the literature depicting the genomic landscapes of HR-NBL, coming to the qualified conclusion that among hundreds of affected genes, potential targets, or chromosomal sites, none correlated with anti-GD2 sensitivity. A better explanation is provided by the Micro-Foci inducing Virus (MFV) model, which predicts that neuroblasts infection with the MFV, an RNA virus isolated from a cancer-cluster (space-time association) of HR-NBL cases, elicits the appearance of MNA and additional genomic aberrations with mechanisms resembling chromothripsis. Neuroblasts infected with low titers of MFV amplified MYCN up to 100 folds and became highly transformed and malignant, thus causing neuroblastoma in young rat pups of strains SD and Fisher-344 and larger tumor masses in nu/nu mice. An association was discovered with GD2 since this glycosphingolipid is also the receptor for the family of MFV virus (dsRNA viruses). It is concluded that a dsRNA virus, MFV, appears to provide better explicatory mechanisms for the genesis of i) specific genomic aberrations such as MNA; ii) extensive tumor heterogeneity and chromothripsis; iii) the effects of passive immunotherapy with anti-GD2 monoclonals and that this and similar models should be further investigated in both pediatric and adult cancers.Keywords: neuroblastoma, MYCN, amplification, viruses, GD2
Procedia PDF Downloads 10092 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape
Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca
Abstract:
ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)
Procedia PDF Downloads 11091 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients
Authors: Archana S., Usha Rani G., Anand Balakrishnan, Sanjana R., Solomon F., Vijayalakshmi J.
Abstract:
Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)
Procedia PDF Downloads 5490 Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization
Authors: Jose Manuel Rodriguez-Dominguez, Rodrigo Barba-Gonzalez, Ernesto Tapia-Campos
Abstract:
Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work.Keywords: Amaryllidaceae, cytogenetics, ornamental, ploidy level
Procedia PDF Downloads 19489 Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives
Authors: Lakshmi Rao Kandukuri, Mamata Deenadayal, Suma Prasad, Bipin Sethi, Srinadh Buragadda, Lalji Singh
Abstract:
Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases.Keywords: India, chromosome abnormalities, genetic disorders, cytogenetic study
Procedia PDF Downloads 31588 Protest Poetry in South Africa: A Study of Oswald Mbuyiseni Mtshali’s Sounds of a Cowhide Drum
Authors: Ogbu Harry Omilonye
Abstract:
This paper examines protest as a literary mechanism against the unpopular political policy of the white minority regime in South Africa. It examines some of Mtshali’s poems as examples of protest poetry, showing how he deploys his artistic acumen in the popular struggle of the oppressed South Africans against the aberrations and obnoxious apartheid policy.Keywords: protest poetry, poems, minority, oppression
Procedia PDF Downloads 56487 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: chromosomes, cropping, genetic algorithm, genes
Procedia PDF Downloads 42786 Cytoxicity Studies of Sachets Beverages Using Allium Cepa Test
Authors: Ja’Afar Umar, Naziru Salisu
Abstract:
The consumption of powdered or industrialized juices has increased globally due to the fast pace of city life. These foods, with their attractive color, odor, and taste, are easily diluted in water and can lead to obesity, diabetes, hypertension, and cardiovascular problems. In a study, 80 purple varieties of onion bulbs were used to evaluate the cytotoxicity of the Tiara and Bevi mix beverage powder. The viability of the bulbs was tested using the A. cepa toxicity test. The bulbs were divided into five groups, and the root growth was recorded. The mixture was then squashed in a 45% acetic acid solution and examined for chromosomal abnormalities. The chromosomal abnormalities were classified as bridges, c-mitoses, vagrants, fragments, stickiness, bi-nuclei, and multi-polar. The study found that the highest number of dividing cells was in the negative control group, followed by the group treated with BM beverage. The highest number of aberrant cells was in the group treated with TR beverage, followed by BM 5%. Stickiness of cells was observed in both BM and TR 5% beverage concentrations. No lagging chromosome was present in the negative control group. The highest mitotic index was in the negative control group, and bridge fragrance was observed in the groups treated with different beverages. This study highlights the importance of Allium cepa L. in genotoxic substance testing, revealing chromosomal and mitotic abnormalities in root tip cells. The study also reveals that at 5% concentrations, root growth decreases, indicating potential genetic abnormalities in Allium cepa's genetic material.Keywords: cytotoxicity, Allium cepa, Beverages, Chromosome
Procedia PDF Downloads 1585 Normalized Compression Distance Based Scene Alteration Analysis of a Video
Authors: Lakshay Kharbanda, Aabhas Chauhan
Abstract:
In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error
Procedia PDF Downloads 34084 Mechanisms and Regulation of the Bi-directional Motility of Mitotic Kinesin Nano-motors
Authors: Larisa Gheber
Abstract:
Mitosis is an essential process by which duplicated genetic information is transmitted from mother to daughter cells. Incorrect chromosome segregation during mitosis can lead to genetic diseases, chromosome instability and cancer. This process is mediated by a dynamic microtubule-based intracellular structure, the mitotic spindle. One of the major factors that govern the mitotic spindle dynamics are the kinesin-5 biological nano motors that were believed to move unidirectionally on the microtubule filaments, using ATP hydrolysis, thus performing essential functions in mitotic spindle dynamics. Surprisingly, several reports from our and other laboratories have demonstrated that some kinesin-5 motors are bi-directional: they move in minus-end direction on the microtubules as single-molecules and can switch directionality under a number of conditions. These findings broke a twenty-five-years old dogma regarding kinesin directionality (1, 2). The mechanism of this bi-directional motility and its physiological significance remain unclear. To address this unresolved problem, we apply an interdisciplinary approach combining live cell imaging, biophysical single molecule, and structural experiments to examine the activity of these motors and their mutated variants in vivo and in vitro. Our data shows that factors such as protein phosphorylation (3, 4), motor clustering on the microtubules (5, 6) and structural elements (7, 8) regulate the bi-directional motility of kinesin motors. We also show, using Cryo-EM, that bi-directional kinesin motors obtain non-canonical microtubule binding, which is essential to their special motile properties and intracellular functions. We will discuss the implication of these findings to mechanism bi-directional motility and physiological roles in mitosis.Keywords: mitosis, cancer, kinesin, microtubules, biochemistry, biophysics
Procedia PDF Downloads 8183 Frequency of BCR-ABL Fusion Transcript Types with Chronic Myeloid Leukemia by Multiplex Polymerase Chain Reaction in Srinagarind Hospital, Khon Kaen Thailand
Authors: Kanokon Chaicom, Chitima Sirijerachai, Kanchana Chansung, Pinsuda Klangsang, Boonpeng Palaeng, Prajuab Chaimanee, Pimjai Ananta
Abstract:
Chronic myeloid leukemia (CML) is characterized by the consistent involvement of the Philadelphia chromosome (Ph), which is derived from a reciprocal translocation between chromosome 9 and 22, the main product of the t(9;22) (q34;q11) translocation, is found in the leukemic clone of at least 95% of CML patients. There are two major forms of the BCR/ABL fusion gene, involving ABL exon 2, but including different exons of BCR gene. The transcripts b2a2 (e13a2) or b3a2 (e14a2) code for a p210 protein. Another fusion gene leads to the expression of an e1a2 transcript, which codes for a p190 protein. Other less common fusion genes are b3a3 or b2a3, which codes for a p203 protein and e19a2 (c3a2) transcript, which codes for a p230 protein. Its frequency varies in different populations. In this study, we aimed to report the frequency of BCR-ABL fusion transcript types with CML by multiplex PCR (polymerase chain reaction) in Srinagarind Hospital, Khon Kaen, Thailand. Multiplex PCR for BCR-ABL was performed on 58 patients, to detect different types of BCR-ABL transcripts of the t (9; 22). All patients examined were positive for some type of BCR/ABL rearrangement. The majority of the patients (93.10%) expressed one of the p210 BCR-ABL transcripts, b3a2 and b2a2 transcripts were detected in 53.45% and 39.65% respectively. The expression of an e1a2 transcript showed 3.75%. Co-expression of p210/p230 was detected in 3.45%. Co-expression of p210/p190 was not detected. Multiplex PCR is useful, saves time and reliable in the detection of BCR-ABL transcript types. The frequency of one or other rearrangement in CML varies in different population.Keywords: chronic myeloid leukemia, BCR-ABL fusion transcript types, multiplex PCR, frequency of BCR-ABL fusion
Procedia PDF Downloads 244