Search results for: chitin binding domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2588

Search results for: chitin binding domain

2558 Quantum Fisher Information of Bound Entangled W-Like States

Authors: Fatih Ozaydin

Abstract:

Quantum Fisher information (QFI) is a multipartite entanglement witness and recently it has been studied extensively with separability and entanglement in the focus. On the other hand, bound entanglement is a special phenomena observed in mixed entangled states. In this work, we study the QFI of W states under a four-dimensional entanglement binding channel. Starting with initally pure W states of several qubits, we find how the QFI decreases as two qubits of the W state is subject to entanglement binding. We also show that as the size of the W state increases, the effect of entanglement binding is decreased.

Keywords: Quantum Fisher information, W states, bound entanglement, entanglement binding

Procedia PDF Downloads 482
2557 A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions

Authors: Wei-Ting Kuo, Feng-Huei Lin

Abstract:

Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery.

Keywords: adhesion force, binding affinity, epidermal growth factor receptor, target molecule

Procedia PDF Downloads 433
2556 Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method

Authors: Lavinia Ruta, Ileana Farcasanu

Abstract:

The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications.

Keywords: YSD, nanobodies, GFP, Saccharomyces cerevisiae

Procedia PDF Downloads 61
2555 Relating Interface Properties with Crack Propagation in Composite Laminates

Authors: Tao Qu, Chandra Prakash, Vikas Tomar

Abstract:

The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.

Keywords: chitin, composites, interfaces, fracture

Procedia PDF Downloads 382
2554 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 253
2553 Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools

Authors: Usha Kiran, M. Z. Abdin

Abstract:

Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses.

Keywords: osmotin, cell signaling modulator, bioinformatic tools, protein

Procedia PDF Downloads 272
2552 Comparison of Frequency-Domain Contention Schemes in Wireless LANs

Authors: Li Feng

Abstract:

In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.

Keywords: 802.11, wireless LANs, frequency-domain contention, T2F

Procedia PDF Downloads 459
2551 Unearthing SRSF1’s Novel Function in Binding and Unfolding of RNA G-Quadruplexes

Authors: Naiduwadura Ivon Upekala De Silva, Nathan Lehman, Talia Fargason, Trenton Paul, Zihan Zhang, Jun Zhang

Abstract:

SRSF1 governs splicing of over 1,500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but with other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.

Keywords: SR, SRSF!, RNA G-quadruplex, unfolding, RNA binding

Procedia PDF Downloads 16
2550 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 374
2549 Cellular RNA-Binding Domains with Distant Homology in Viral Proteomes

Authors: German Hernandez-Alonso, Antonio Lazcano, Arturo Becerra

Abstract:

Until today, viruses remain controversial and poorly understood; about their origin, this problem represents an enigma and one of the great challenges for the contemporary biology. Three main theories have tried to explain the origin of viruses: regressive evolution, escaped host gene, and pre-cellular origin. Under the perspective of the escaped host gene theory, it can be assumed a cellular origin of viral components, like protein RNA-binding domains. These universal distributed RNA-binding domains are related to the RNA metabolism processes, including transcription, processing, and modification of transcripts, translation, RNA degradation and its regulation. In the case of viruses, these domains are present in important viral proteins like helicases, nucleases, polymerases, capsid proteins or regulation factors. Therefore, they are implicated in the replicative cycle and parasitic processes of viruses. That is why it is possible to think that those domains present low levels of divergence due to selective pressures. For these reasons, the main goal for this project is to create a catalogue of the RNA-binding domains found in all the available viral proteomes, using bioinformatics tools in order to analyze its evolutionary process, and thus shed light on the general virus evolution. ProDom database was used to obtain larger than six thousand RNA-binding domain families that belong to the three cellular domains of life and some viral groups. From the sequences of these families, protein profiles were created using HMMER 3.1 tools in order to find distant homologous within greater than four thousand viral proteomes available in GenBank. Once accomplished the analysis, almost three thousand hits were obtained in the viral proteomes. The homologous sequences were found in proteomes of the principal Baltimore viral groups, showing interesting distribution patterns that can contribute to understand the evolution of viruses and their host-virus interactions. Presence of cellular RNA-binding domains within virus proteomes seem to be explained by closed interactions between viruses and their hosts. Recruitment of these domains is advantageous for the viral fitness, allowing viruses to be adapted to the host cellular environment.

Keywords: bioinformatics tools, distant homology, RNA-binding domains, viral evolution

Procedia PDF Downloads 387
2548 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 349
2547 Effect of Inhibitor of the Angiotensin Converting Enzyme in the Mediterranean Flour Moth: Structural Parametrs of Cuticule and Ecdysteroid Amounts

Authors: S. Yezli-Touiker, L. Kirane-Amrani, N. Soltani-Mazouni

Abstract:

Ephestia kuehniella Zeller Lepidoptera, Pyralidae commonly called Mediterranean flour moth, is serious cosmopolitan pest of stored grain products, particularly flour Month. This species is also a source of allergen that causes asthma and rhinitis. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on development of E. kuehniella. The compound is diluted in acetone and applied topically to newly emerged pupae (10mg/2ml). Report chitin protein of cuticule and ecdysteroid Amounts were determined in vivo. Results show that the captopril does not affect chitin protein of cuticule but traitment with captopril increase the hormonal production, the quantitative analysis reveals the presence of two peaks one at third and another at fifth day.

Keywords: Ephestia kuehniella, cuticule, hormone, captopril

Procedia PDF Downloads 356
2546 Dimensionless Binding Values in the Evaluation of Paracetamol Tablet Formulation

Authors: Abayomi T. Ogunjimi, Gbenga Alebiowu

Abstract:

Mechanical properties of paracetamol tablets containing Neem (Azadirachta indica) gum were compared with standard Acacia gum BP as binder. Two dimensionless binding quantities BEN and BEC were used in assessing the influence of binder type on two mechanical properties, Tensile Strength (TS) and Brittle Fracture Index (BFI). The two quantities were also used to assess the influence of relative density and binder concentration on TS and BFI as well as compare Binding Efficiencies (BE). The result shows that TS is dependent on relative density, binder type and binder concentration while BFI is dependent on the binder type and binder concentration; and that although, the inclusion of NMG in a paracetamol tablet formulation may not enhance the TS of the tablets produced, however it will decrease the tendency of the tablets to cap or laminate. This work concludes that BEN may be useful in quantitative assessment while BEC may be appropriate for qualitative assessment.

Keywords: binding efficiency, brittle fracture index, dimensionless binding, tensile strength

Procedia PDF Downloads 253
2545 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 150
2544 Domain Switching Characteristics of Lead Zirconate Titanate Piezoelectric Ceramic

Authors: Mitsuhiro Okayasu

Abstract:

To better understand the lattice characteristics of lead zirconate titanate (PZT) ceramics, the lattice orientations and domain-switching characteristics have been directly examined during loading and unloading using various experimental techniques. Upon loading, the PZT ceramics are fractured linear and nonlinearly during the compressive loading process. The strain characteristics of the PZT ceramic were directly affected by both the lattice and domain switching strain. Due to the piezoelectric ceramic, electrical activity of lightning-like behavior occurs in the PZT ceramics, which attributed to the severe domain-switching leading to weak piezoelectric property. The characteristics of domain-switching and reverse switching are detected during the loading and unloading processes. The amount of domain-switching depends on the grain, due to different stress levels. In addition, two patterns of 90˚ domain-switching systems are characterized, namely (i) 90˚ turn about the tetragonal c-axis and (ii) 90˚ rotation of the tetragonal a-axis. In this case, PZT ceramic was loaded by the thermal stress at 80°C. Extent of domain switching is related to the direction of c-axis of the tetragonal structure, e.g., that axis, orientated close to the loading direction, makes severe domain switching. It is considered that there is 90˚ domain switching, but in actual, the angle of domain switching is less than 90˚, e.g., 85.4° ~ 90.0°. In situ TEM observation of the domain switching characteristics of PZT ceramic has been conducted with increasing the sample temperature from 25°C to 300°C, and the domain switching like behavior is directly observed from the lattice image, where the severe domain switching occurs less than 100°C.

Keywords: PZT, lead zirconate titanate, piezoelectric ceramic, domain switching, material property

Procedia PDF Downloads 203
2543 Molecular Characterization of Functional Domain (LRR) of TLR9 Genes in Malnad Gidda Cattle and Their Comparison to Cross Breed Cattle

Authors: Ananthakrishna L. R., Ramesh D., Kumar Wodeyar, Kotresh A. M., Gururaj P. M.

Abstract:

Malnad Gidda is the indigenous recognized cattle breed of Shivamogga District of Karnataka state, India is known for its disease resistance to many of the infectious diseases. There are 25 LRR (Leucine Rich Repeats) identified in bovine (Bos indicus) TLR9. The amino acid sequence of LRR is deduced to nucleotide sequence in BLASTx bioinformatic online tools. LRR2 to LRR10 are involved in pathogen recognition and binding in human TLR9 which showed a higher degree of nucleotide variations with respect to disease resistance to various pathogens. Hence, primers were designed to amplify the flanking sequences of LRR2 to LRR10, to discover the nucleotide variations if any, in Malnad Gidda breed of Cattle which is associated with disease resistance. The DNA isolated from peripheral blood mononuclear cells of ten Malnad Gidda cattle. A desired and specific amplification product of 0.8 kb was obtained at an annealing temperature of 56.6ᵒC. All the PCR products were sequenced on both sides by gene-specific primers. The sequences were compared with TLR9 sequence of cross breed cattle obtained from NCBI data bank. The sequence analysis between Malnad Gidda and crossbreed cattle revealed no nucleotide variations in the region LRR2 to LRR9 which shows the conserved in pathogen binding domain (LRR) of TLR9.

Keywords: leucine rich repeats, Malnad Gidda, cross breed, TLR9

Procedia PDF Downloads 225
2542 Introduction of PMMA-Tag to VHH for Improving Recovery and Immobilization Rate of VHHS

Authors: Bongmun Kang, Kagnari Yamakawa, Yoshihisa Hagihara, Yuji Ito, Michimasa Kishimoto, Yoichi Kumada

Abstract:

The PMMA-tag was genetically fused with the C-terminal region of VHH molecules. This antibody, VHH, is known as a single-chain domain, which is devoid of light chains. The PMMA-tag, which could affect the isoelectric point (pI) changeable with a charge of amino acid in VHHs were closely related to the solubility of VHH molecules during refolding. The genetic fusion of PMMA-tag to C-terminal region of VHHs significantly affects the recovery of their soluble protein during refolding by 50 mM TAPS at pH 8.5. It could be refolded with a recovery of more than 95% by dialysis at pH 8.5. A marked difference in the antigen-binding activities in the adsorption state was significantly high in VHH-PM compared to the wild type of VHH. There are approximately 8-fold differences in the antigen-binding activities in the adsorption state between VHH-PM and VHH.

Keywords: VHH, PMMA-tag, isoelectric point, pH, Solubility, refolding, immobilization, ELISA

Procedia PDF Downloads 419
2541 Phenotypic and Molecular Heterogeneity Linked to the Magnesium Transporter CNNM2

Authors: Reham Khalaf-Nazzal, Imad Dweikat, Paula Gimenez, Iker Oyenarte, Alfonso Martinez-Cruz, Domonik Muller

Abstract:

Metal cation transport mediator (CNNM) gene family comprises 4 isoforms that are expressed in various human tissues. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a DUF21 transmembrane domain, a ‘Bateman module’ and a C-terminal cNMP-binding domain. Mutations in CNNM2 cause familial dominant hypomagnesaemia. Growing evidence highlights the role of CNNM2 in neurodevelopment. Mutations in CNNM2 have been implicated in epilepsy, intellectual disability, schizophrenia, and others. In the present study, we aim to elucidate the function of CNNM2 in the developing brain. Thus, we present the genetic origin of symptoms in two family cohorts. In the first family, three siblings of a consanguineous Palestinian family in which parents are first cousins, and consanguinity ran over several generations, presented a varying degree of intellectual disability, cone-rod dystrophy, and autism spectrum disorder. Exome sequencing and segregation analysis revealed the presence of homozygous pathogenic mutation in the CNNM2 gene, the parents were heterozygous for that gene mutation. Magnesium blood levels were normal in the three children and their parents in several measurements. They had no symptoms of hypomagnesemia. The CNNM2 mutation in this family was found to locate in the CBS1 domain of the CNNM2 protein. The crystal structure of the mutated CNNM2 protein was not significantly different from the wild-type protein, and the binding of AMP or MgATP was not dramatically affected. This suggests that the CBS1 domain could be involved in pure neurodevelopmental functions independent of its magnesium-handling role, and this mutation could have affected a protein partner binding or other functions in this protein. In the second family, another autosomal dominant CNNM2 mutation was found to run in a large family with multiple individuals over three generations. All affected family members had hypomagnesemia and hypermagnesuria. Oral supplementation of magnesium did not increase the levels of magnesium in serum significantly. Some affected members of this family have defects in fine motor skills such as dyslexia and dyslalia. The detected mutation is located in the N-terminal part, which contains a signal peptide thought to be involved in the sorting and routing of the protein. In this project, we describe heterogenous clinical phenotypes related to CNNM2 mutations and protein functions. In the first family, and up to the authors’ knowledge, we report for the first time the involvement of CNNM2 in retinal photoreceptor development and function. In addition, we report the presence of a neurophenotype independent of magnesium status related to the CNNM2 protein mutation. Taking into account the different modes of inheritance and the different positions of the mutations within CNNM2 and its different structural and functional domains, it is likely that CNNM2 might be involved in a wide spectrum of neuropsychiatric comorbidities with considerable varying phenotypes.

Keywords: magnesium transport, autosomal recessive, autism, neurodevelopment, CBS domain

Procedia PDF Downloads 150
2540 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 377
2539 In-Vivo Association of Multivalent 11 Zinc Fingers Transcriptional Factors CTCF and Boris to YB-1 in Multiforme Glioma-RGBM Cell Line

Authors: Daruliza Kernain, Shaharum Shamsuddin, See Too Wei Cun

Abstract:

CTCF is a unique, highly conserved and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple target sites. It is able to bind to various target sequences to perform different regulatory roles including promoter activation or repression, creating hormone-responsive gene silencing element, and functional block of enhancer-promoter interactions. The binding of CTCF to the essential binding site is through the combination of different ZF domain. On the other hand, BORIS for brother of the regulator of imprinted sites, which expressed only in the testis and certain cancer cell line is homology to CTCF 11 ZF domains. Since both transcriptional factors share the same ZF domains hence there is a possibility for both to bind to the same target sequences. In this study, the interaction of these two proteins to multi-functional Y-box DNA/RNA-binding factor, YB-1 was determined. The protein-protein interaction between CTCF/YB-1 and BORIS/YB-1 were discovered by Co-immuno-precipitation (CO-IP) technique through reciprocal experiment from RGBM total cell lysate. The results showed that both CTCF and BORIS were able to interact with YB-1 in Glioma RGBM cell line. To the best of our knowledge, this is the first findings demonstrating the ability of BORIS and YB-1 to form a complex in vivo.

Keywords: immunoprecipitation, CTCF/BORIS/YB-1, transcription factor, molecular medicine

Procedia PDF Downloads 266
2538 Modelling Ibuprofen with Human Albumin

Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva

Abstract:

The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.

Keywords: ibuprofen, human serum albumin, density functional theory, binding energies

Procedia PDF Downloads 347
2537 Functional Characteristics of Chemosensory Proteins in the Sawyer Beetle Monochamus alternatus Hope

Authors: Saqib Ali, Man-Qun Wang

Abstract:

The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is a major pest of pines and it is also the key vector of the exotic pinewood nematode in China. In the present study, we cloned, expressed, and purified a chemosensory protein (CSP) in M. alternatus. We surveyed its expression in various developmental stages of male and female adult tissues and determined its binding affinities for different pine volatiles using a competitive binding fluorescence assay. A CSP known as CSP5 in M. alternatus was obtained from an antennal cDNA library and expressed in Escherichia coli. Quantitative reverse transcription polymerase chain reaction results indicated that the CSP5 gene was mainly expressed in male and female antennae. Competitive binding assays were performed to test the binding affinity of recombinant CSP5 to 13 odour molecules of pine volatiles. The results showed that CSP5 showed very strong binding abilities to myrcene, (+)-β-pinene, and (−)-isolongifolene, whereas the volatiles 2-methoxy-4-vinylphenol, p-cymene, and (+)-limonene oxide have relatively weak binding affinity at pH 5.0. Three volatiles myrcene, (+)-β-pinene, and (−)-isolongifolene may play crucial roles in CSP5 binding with ligands, but this needs further study for confirmation. The sensitivity of insect to host plant volatiles can effectively be used to control and monitor the population through mass trapping as part of integrated pest management programs.

Keywords: olfactory-specific protein, volatiles, competitive binding assay, expression characteristics, qPCR

Procedia PDF Downloads 129
2536 Measurements of Chitin by Ochratoxigenic Fungi and Its Relationship to Ochratoxin a Production

Authors: Jamal Elzwai, Kofi Aidoo, Alan Candlish

Abstract:

Production of OTA was detected after 24hr by Aspergillus ochraceus isolate whereas at 36hr for A. carbonarius isolate and Penicillium verrucosum IMI 285522 and 60hr for A. ochraceus CBS 588.68. Highest OTA level was produced by A. carbonarius isolate followed by A. ochraceus CBS 588.68, Penicillium verrucosum IMI 285522 and finally A. ochraceus isolate. Glucosamine content of barley sample before fermentation was found to be negligible and remained almost constant during the incubation time. Glucosamine content started to increase at 12 hours after incubation with A. ochraceus isolate, A. carbonarius isolate and A. ochraceus CBS 588.68, and after 12 hours with P. verrucosum IMI 285522. Highest glucosamine content, as a result of increase in fungal biomass, was produced by A. ochraceus CBS 588.68 followed by A. ochraceus isolate, A. carbonarius isolate, and finally by P. verrucosum IMI 285522. It appears that there is a correlation between OTA synthesis and glucosamine content with A. ochraceus isolate, A. carbonarius isolate and A. ochraceus CBS 588.68 but not with P. verrucosum IMI 285522.

Keywords: chitin, barley, Ochratoxin A, Aspergiluus ochraceus, A. carbonarius, Penicillium verrucosum

Procedia PDF Downloads 430
2535 Host Cell Membrane Lipid Rafts Are Required for Influenza A Virus Adsorption to Host Cell Surface

Authors: Dileep K. Verma, Sunil K. Lal

Abstract:

Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Previous studies suggest that influenza hemagglutinin is essential for viral attachment to host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Studies also reported selective nature of Influenza virus to utilize rafts micro-domain for efficient virus assembly and budding. However, the detailed mechanism of Influenza A Virus (IAV) binding to host cell membrane and entry inside the host remains elusive. In the present study, we investigated if host membrane lipid rafts play any significant role in early life cycle events of influenza A virus. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol and Methyl-β-Cyclodextrin was used to remove membrane cholesterol. We observed co-localization of Influenza A Virus to lipid rafts by visualization of known lipid raft marker GM1 on host cell membrane. Co-localization suggest direct involvement of these micro-domain in initiation of IAV life cycle. We found significant reduction in influenza A virus adsorption in raft disrupted target host cells indicating poor binding and attachment in absence of coherent membrane rafts. Taken together, the results of present study provide evidence for critical involvement of host lipid rafts and its constituents in adsorption process of Influenza A Virus and suggests crucial involvement in other early events of IAV life cycle. The present study opens a new domain to study influenza virus-host interaction and to combat flu at the very early steps of viral life cycle.

Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1

Procedia PDF Downloads 297
2534 Conformational Switch of hRAGE upon Self-Association

Authors: Ikhlas Ahmed, Jamillah Zamoon

Abstract:

The human receptor for advanced glycation end product is a plasma membrane receptor with an intrinsically disordered region. The protein consists of three extracellular domains, a single membrane spanning transmembrane domain, and a cytosolic domain which is intrinsically disordered and responsible for signaling. The disordered nature of the cytosolic domain allows it to be dynamic in solution. This receptor self-associates to higher forms. The association is triggered by ligand, metal or by the extracellular domain. Fluorescence spectroscopy technique is used to test the self-association of the different concentrations of the cytosolic domain. This work has concluded that the cytosolic domain of this receptor also self-associates. Moreover, the self-association does not require ligand or metal.

Keywords: fluorescence spectroscopy, hRAGE, IDP, Self-association

Procedia PDF Downloads 361
2533 Diplomatic Assurances in International Law

Authors: William Thomas Worster

Abstract:

Diplomatic assurances issued by states declaring that they will not mistreat individuals returned to them occupy a strange middle ground between being legal and non-legal obligations. States assert that they are non-binding, yet at other times that they are binding. However, this assertion may not be the end of the discussion. The International Court of Justice and other tribunals have concluded that similar instruments were binding, states have disagreed that certain similar instruments were binding, and the Vienna Convention on the Law of Treaties and its travaux prépératoires do not appear to contemplate non-binding instruments. This paper is a case study of diplomatic assurances but, by necessity, touches on the delicate question of whether certain texts are treaties, promises, or non-binding political statements. International law, and law in general, requires a binary approach to obligation. All communications must be binding or not, even if the fit is not precise. Through this study, we will find that some of the obligations in certain assurances can be understood as legal and some not. We will attempt to state the current methodology for determining which obligations are legal under the law of treaties and law on binding unilateral promises. The paper begins with some background of the legal environment of diplomatic assurances and their use in cases of expulsion. The paper then turns to discuss the legal nature of diplomatic assurances, proceeding to address various possibilities for legal value as treaties and as binding unilateral statements. This paper will not examine the legal value of diplomatic assurances solely under customary international law other than the way in which customary international law might further refine the treaty definition. In order to identify whether any assurances are contained in legal acts, this study identifies a pool of relevant assurances and qualitatively analyzes whether any of those are contained in treaties or binding unilateral statements. To the author’s best knowledge, this study is the first large-scale, qualitative qualitative analysis of assurances as a group of instruments that accounts for their heterogenous nature. It is also the first study to identify the indicators of whether an instrument is a treaty or promise.

Keywords: diplomatic assurances, deportation, extradition, expulsion, non-refoulement, torture, persecution, death penalty, human rights, memorandum of understanding, promises, secret, monitoring, compliance, enforcement

Procedia PDF Downloads 85
2532 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 560
2531 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 174
2530 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing

Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss

Abstract:

Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.

Keywords: IRE-mRNA, IRP1, binding, ionic strength

Procedia PDF Downloads 126
2529 Investigation of Mutagenicity and DNA Binding Properties of Metal-Free and Metallophthalocyanines Containing α-Napththolbenzein Groups on the Peripheral Positions

Authors: Meltem Betül Sağlam, Halil İbrahim Güler, Aykut Sağlam

Abstract:

In this work, phthalocyanine compounds containing α-naphtholbenzeinunits have been synthesized. Mutagenicity and DNA binding properties of the compounds were investigated by Salmonella/Microsome Assay and spectrophotometer. According to the results of the preliminary range finding tests, the compounds gave no toxic effect to all tester strain S. typhimurium TA98 and TA100 at doses of 500, 1100, 350, 500 and 750 µg/plate in the presence and absence of S9, respectively. This study showed that all compounds exhibited efficient DNA-binding activity. In conclusion, these non-toxic compounds may be used as effective DNA dyes for molecular biology studies.

Keywords: dye, mutagenicity, phthalocyanine, toxicity

Procedia PDF Downloads 231