Search results for: anti-splash device
1909 Plasma Actuator Application to Control Surfaces of a Model Aircraft
Authors: Yuta Moriyama, Etsuo Morishita
Abstract:
Plasma actuator is very effective to recover stall flows over an upper airfoil surface. We first manufacture the actuator, test the stability of the device by trial and error basis and find the conditions for steady operations. We visualize the flow around an airfoil in the smoke tunnel and observe the stall recovery. The plasma actuator is stationary device and has no moving parts, and it might be an ideal device to control a model aircraft. We can use the actuator not only as a stall recovery device but also as a spoiler. We put the actuator near the leading edge of an elevator of a model aircraft as a spoiler, and measure the aerodynamic forces by a three-component balance. We observe the effect of the plasma actuator on the aerodynamic forces and the device effectiveness changes depending on the angle of attack whether it is positive or negative. We also visualize the flow caused by the plasma actuator by a desk-top Schlieren photography which is otherwise very difficult in a low-speed wind tunnel experiment.Keywords: aerodynamics, plasma actuator, model aircraft, wind tunnel
Procedia PDF Downloads 3731908 Spiking Behavior in Memristors with Shared Top Electrode Configuration
Authors: B. Manoj Kumar, C. Malavika, E. S. Kannan
Abstract:
The objective of this study is to investigate the switching behavior of two vertically aligned memristors connected by a shared top electrode, a configuration that significantly deviates from the conventional single oxide layer sandwiched between two electrodes. The device is fabricated by bridging copper electrodes with mechanically exfoliated van der Waals metal (specifically tantalum disulfide and tantalum diselenide). The device demonstrates threshold-switching behavior in its I-V characteristics. When the input voltage signal is ramped with voltages below the threshold, the output current shows spiking behavior, resembling integrated and firing actions without extra circuitry. We also investigated the self-reset behavior of the device. Using a continuous constant voltage bias, we activated the device to the firing state. After removing the bias and reapplying it shortly afterward, the current returned to its initial state. This indicates that the device can spontaneously return to its resting state. The outcome of this investigation offers a fresh perspective on memristor-based device design and an efficient method to construct hardware for neuromorphic computing systems.Keywords: integrated and firing, memristor, spiking behavior, threshold switching
Procedia PDF Downloads 641907 SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp
Authors: Hyun Young Kim, Chung Kwang Lee, Han Hee Cho, Sang Woon Cho, Yong Seo Koo
Abstract:
In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.Keywords: ESD, SCR, holding voltage, stack, power clamp
Procedia PDF Downloads 5561906 A Simple Device for Characterizing High Power Electron Beams for Welding
Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran
Abstract:
Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.Keywords: electron beam welding, beam quality, high power, weld quality indicators
Procedia PDF Downloads 3241905 Device to Alert and Fire Prevention through Temperature Monitoring and Gas Detection
Authors: Dêivisson Alves Anjos, Blenda Fonseca Aires Teles, Queitiane Castro Costa
Abstract:
Fire is one of the biggest dangers for factories, warehouses, mills, among other places, causing unimaginable damage, because besides the material damage also directly affects the lives of workers who are likely to suffer death or very serious consequences. This protection of the lives of these people should be taken seriously, always seeking safety. Thus investment in security and monitoring equipment must be high, so you can prevent or reduce the impacts of a possible fire. Our device, made in PIC micro controller monitors the temperature and the presence of gas in the environment, it sends the data via Bluetooth device to a developed in LabVIEW interface saves these data continuously and alert if the temperature exceeds the allowed or some gas is detected. Currently the device is in operation and can perform several tests, as well as use in different areas for which you need anti-fire protection.Keywords: pic, bluetooth, fire, temperature, gas, LabVIEW
Procedia PDF Downloads 5321904 Design and Construction of a Device to Facilitate the Stretching of a Plantiflexors Muscles in the Therapy of Rehabilitation for Patients with Spastic Hemiplegia
Authors: Nathalia Andrea Calderon Lesmes, Eduardo Barragan Parada, Diego Fernando Villegas Bermudez
Abstract:
Spasticity in the plantiflexor muscles as a product of stroke (CVA-Cerebrovascular accident) restricts the mobility and independence of the affected people. Commonly, physiotherapists are in charge of manually performing the rehabilitation therapy known as Sustained Mechanical Stretching, rotating the affected foot of the patient in the sagittal plane. However, this causes a physical wear on the professional because it is a fatiguing movement. In this article, a mechanical device is developed to implement this rehabilitation therapy more efficiently. The device consists of a worm-crown mechanism that is driven by a crank to gradually rotate a platform in the sagittal plane of the affected foot, in order to achieve dorsiflexion. The device has a range of sagittal rotation up to 150° and has velcro located on the footplate that secures the foot. The design of this device was modeled by using CAD software and was checked structurally with a general purpose finite element software to be sure that the device is safe for human use. As a measurement system, a goniometer is used in the lateral part of the device and load cells are used to measure the force in order to determine the opposing torque exerted by the muscle. Load cells sensitivity is 1.8 ± 0.002 and has a repeatability of 0.03. Validation of the effectiveness of the device is measured by reducing the opposition torque and increasing mobility for a given patient. In this way, with a more efficient therapy, an improvement in the recovery of the patient's mobility and therefore in their quality of life can be achieved.Keywords: biomechanics, mechanical device, plantiflexor muscles, rehabilitation, spastic hemiplegia, sustained mechanical stretching
Procedia PDF Downloads 1651903 Simulation of Communication and Sensing Device in Automobiles Using VHDL
Authors: Anirudh Bhaikhel
Abstract:
The exclusive objective of this paper is to develop a device which can pass on the interpreted result of the sensed information to the interfaced communicable devices to avoid or minimise accidents. This device may also be used in case of emergencies like kidnapping, robberies, medical emergencies etc. The present era has seen a rapid metamorphosis in the automobile industry with increasing use of technology and speed. The increase in purchasing power of customers and price war of automobile companies has made an easy access to the automobile users. The use of automobiles has increased tremendously in last 4-5 years thus causing traffic congestions and thus making vehicles more prone to accidents. This device can be an effective measure to counteract cases of abduction. Risks of accidents can be decreased tremendously through the notifications received by these alerts. It will help to detect the upcoming emergencies. This paper includes the simulation of the communication and sensing device required in automobiles using VHDL.Keywords: automobiles, communication, component, cyclic redundancy check (CRC), modulo-2 arithmetic, parity bits, receiver, sensors, transmitter, turns, VHDL (VHSIC hardware descriptive language)
Procedia PDF Downloads 2671902 Development of Equivalent Inelastic Springs to Model C-Devices
Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda
Abstract:
'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests
Procedia PDF Downloads 1511901 Hyperchaos-Based Video Encryption for Device-To-Device Communications
Authors: Samir Benzegane, Said Sadoudi, Mustapha Djeddou
Abstract:
In this paper, we present a software development of video streaming encryption for Device-to-Device (D2D) communications by using Hyperchaos-based Random Number Generator (HRNG) implemented in C#. The software implements and uses the proposed HRNG to generate key stream for encrypting and decrypting real-time video data. The used HRNG consists of Hyperchaos Lorenz system which produces four signal outputs taken as encryption keys. The generated keys are characterized by high quality randomness which is confirmed by passing standard NIST statistical tests. Security analysis of the proposed encryption scheme confirms its robustness against different attacks.Keywords: hyperchaos Lorenz system, hyperchaos-based random number generator, D2D communications, C#
Procedia PDF Downloads 3711900 Detecting and Disabling Digital Cameras Using D3CIP Algorithm Based on Image Processing
Authors: S. Vignesh, K. S. Rangasamy
Abstract:
The paper deals with the device capable of detecting and disabling digital cameras. The system locates the camera and then neutralizes it. Every digital camera has an image sensor known as a CCD, which is retro-reflective and sends light back directly to its original source at the same angle. The device shines infrared LED light, which is invisible to the human eye, at a distance of about 20 feet. It then collects video of these reflections with a camcorder. Then the video of the reflections is transferred to a computer connected to the device, where it is sent through image processing algorithms that pick out infrared light bouncing back. Once the camera is detected, the device would project an invisible infrared laser into the camera's lens, thereby overexposing the photo and rendering it useless. Low levels of infrared laser neutralize digital cameras but are neither a health danger to humans nor a physical damage to cameras. We also discuss the simplified design of the above device that can used in theatres to prevent piracy. The domains being covered here are optics and image processing.Keywords: CCD, optics, image processing, D3CIP
Procedia PDF Downloads 3571899 Design of a Compact Herriott Cell for Heat Flux Measurement Applications
Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz
Abstract:
In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.Keywords: heat flux, Herriott cell, optical beam deflection, thermal conductivity
Procedia PDF Downloads 6561898 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation
Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad
Abstract:
For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control
Procedia PDF Downloads 4791897 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.Keywords: MEMS/NEMS devices, paired wire actuators and sensors, dynamical response, fatigue and fracture characterization, Ampere’s force law
Procedia PDF Downloads 3981896 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 911895 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device
Authors: Won Jun Jo, Man Young Kim
Abstract:
To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics
Procedia PDF Downloads 2931894 A Memristive Device with Intrinsic Rectification Behavior and Performace of Crossbar Arrays
Authors: Yansong Gao, Damith C.Ranasinghe, Siad F. Al-Sarawi, Omid Kavehei, Derek Abbott
Abstract:
Passive crossbar arrays is in principle the simplest functional electrical circuit, together with memristive device in cross-point, holding great promise in future high-density, non-volatile memories. However, the greatest problem of crossbar array is the sneak path current. In this paper, we investigate one type of memristive device with intrinsic rectification behavior to address the sneak path currents. Firstly, a SPICE behavior model written in Verilog-A language of the memristive device is presented to fit experimental data published in literature. Next, systematic performance simulations including read margin and power consumption of crossbar array, which uses the self-rectifying memristive device as storage element at cross-point, with respect to different crossbar sizes, interconnect resistance, ratio of HRS/LRS (High Resistance State/ Low Resistance State), rectification ratio and different read schemes are conducted. Subsequently, Trade-offs among reading margin, power consumption, and reading schemes are analyzed to provide guidelines for circuit design. Finally, performance comparison between the memristive device with/without intrinsic rectification behavior is given to show the worthiness of this intrinsic rectification behavior.Keywords: memristive device, memristor, crossbar, RRAM, read margin, power consumption
Procedia PDF Downloads 4361893 Ocular Delivery of Charged Drugs Using Iontophoresis
Authors: Abraham J. Domb
Abstract:
Nearly every eye disorder and treatment of post operated eyes evolve around ocular drug delivery. Most ocular diseases are treated with repeated topical applications administered as eye drops. Various attempts have been made to improve drug bioavailability by increasing both the retention of the drug in the pre-corneal area and the penetration of the drug through the cornea. However, currently marketed products are associated with vision blurring, irritability, patient discomfort, toxicity, low drug bioavailability, manufacturing difficulties and inadequate aqueous stability. It has been suggested to use iontophoresis for the non-invasive delivery of drugs. The iontophoretic device is composed of a control panel, two electrodes, a cylindrical well for the insertion of a disposable hydrogel, and a disposable hydrogel pellet. The drug-loaded hydrogel is attached to a cylindrical well at the edge of the electrode of the device and placed onto the eye. The device applies a variable electrical current that can vary from 0.1 mA to 1.5 mA for pre-set periods from 10 seconds to 300 seconds. The iontophoretic device developed in the lab was found to be effective in the delivery of the drugs: gentamicin, water-soluble steroids, and various anticancer agents. When testing in rabbits for safety, the device was considered to be non-toxic and effective.Keywords: iontophoresis, eye disorder, drug delivery, hydrogel
Procedia PDF Downloads 791892 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 1141891 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices
Authors: Roisul H. Galib, Prabhakar R. Bandaru
Abstract:
In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance
Procedia PDF Downloads 1541890 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels
Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das
Abstract:
A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear
Procedia PDF Downloads 1291889 Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples
Authors: Myung Ho Lee, Hee Seung Lim, Young Jae Maeng, Chang Hoon Lee
Abstract:
This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system.Keywords: automatic sequential extraction device, Pu isotopes, Am isotopes, alpha spectrometer, radioactive waste samples, ICP-MS system
Procedia PDF Downloads 741888 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing
Authors: Seyong Oh, Jin-Hong Park
Abstract:
Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing
Procedia PDF Downloads 1731887 An Approach on the Design of a Solar Cell Characterization Device
Authors: Christoph Mayer, Dominik Holzmann
Abstract:
This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.Keywords: solar cell, photovoltaics, PV, characterization
Procedia PDF Downloads 4211886 Blood Clot Emulsification via Ultrasonic Thrombolysis Device
Authors: Sun Tao, Lou Liang, Tan Xing Haw Marvin, Gu Yuandong Alex
Abstract:
Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment.Keywords: microfabrication, blood clot, ultrasonic thrombolysis device, ultrasonic device
Procedia PDF Downloads 4491885 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis
Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang
Abstract:
Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries
Procedia PDF Downloads 1441884 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 5901883 Semiconductor Device of Tapered Waveguide for Broadband Optical Communications
Authors: Keita Iwai, Isao Tomita
Abstract:
To expand the optical spectrum for use in broadband optical communications, we study the properties of a semiconductor waveguide device with a tapered structure including its third-order optical nonlinearity. Spectral-broadened output by the tapered structure has the potential to create a compact, built-in device for optical communications. Here we deal with a compound semiconductor waveguide, the material of which is the same as that of laser diodes used in the communication systems, i.e., InₓGa₁₋ₓAsᵧP₁₋ᵧ, which has large optical nonlinearity. We confirm that our structure widens the output spectrum sufficiently by controlling its taper form factor while utilizing the large nonlinear refraction of InₓGa₁₋ₓAsᵧP₁₋ᵧ. We also examine the taper effect for nonlinear optical loss.Keywords: InₓGa₁₋ₓAsᵧP₁₋ᵧ, waveguide, nonlinear refraction, spectral spreading, taper device
Procedia PDF Downloads 1511882 Open Channel Flow Measurement of Water by Using Width Contraction
Authors: Arun Goel, D. V. S. Verma, Sanjeev Sangwan
Abstract:
The present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on a sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1, and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence.Keywords: flowrate, flowmeter, open channels, submergence
Procedia PDF Downloads 4321881 SCR-Based Advanced ESD Protection Device for Low Voltage Application
Authors: Bo Bae Song, Byung Seok Lee, Hyun young Kim, Chung Kwang Lee, Yong Seo Koo
Abstract:
This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3, and D4).Keywords: ESD, SCR, holding voltage, latch-up
Procedia PDF Downloads 5741880 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 291