Search results for: active faults
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3769

Search results for: active faults

3739 Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN

Authors: Ali Al-Dahoud, Mohamed Fezari, Thamer Al-Rawashdeh, Ismail Jannoud

Abstract:

Monitoring and detecting faults on a set of Solar panels, using a wireless sensor network (WNS) is our contribution in this paper, This work is part of the project we are working on at Al-Zaytoonah University. The research problem has been exposed by engineers and technicians or operators dealing with PV panels maintenance, in order to monitor and detect faults within solar panels which affect considerably the energy produced by the solar panels. The proposed solution is based on installing WSN nodes with appropriate sensors for more often occurred faults on the 45 solar panels installed on the roof of IT faculty. A simulation has been done on nodes distribution and a study for the design of a node with appropriate sensors taking into account the priorities of the processing faults. Finally, a graphic user interface is designed and adapted to telemonitoring panels using WSN. The primary tests of hardware implementation gave interesting results, the sensors calibration and interference transmission problem have been solved. A friendly GUI using high level language Visial Basic was developed to carry out the monitoring process and to save data on Exel File.

Keywords: Arduino Mega microcnotroller, solar panels, fault-detection, simulation, node design

Procedia PDF Downloads 454
3738 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee

Abstract:

The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 250
3737 Ant-Tracking Attribute: A Model for Understanding Production Response

Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo

Abstract:

Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.

Keywords: seismic, attributes, production, structural

Procedia PDF Downloads 44
3736 Active Learning: Increase Learning through Engagement

Authors: Jihan Albayati, Kim Abdullah

Abstract:

This poster focuses on the significance of active learning strategies and their usage in the ESL classroom. Active learning is a big shift from traditional lecturing to active student engagement which can enhance and enrich student learning; therefore, engaging students is the core of this approach. Students learn more when they participate in the process of learning such as discussions, debates, analysis, synthesis, or any form of activity that requires student involvement. In order to achieve active learning, teachers can use different instructional strategies that are conducive to learning and the selection of these strategies depends on student learning outcomes. Active learning techniques must be carefully designed and integrated into the classroom to increase critical thinking and student participation. This poster provides a concise definition of active learning and its importance, instructional strategies, active learning techniques and their impact on student engagement. Also, it demonstrates the differences between passive and active learners.

Keywords: active learning, learner engagement, student-centered, teaching strategies

Procedia PDF Downloads 467
3735 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion

Authors: Albert Alexander Stonier

Abstract:

Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.

Keywords: solar photovoltaic, power electronics, power quality, PWM

Procedia PDF Downloads 263
3734 Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type.

Keywords: downhole, geophysics, shear wave velocity, case-study

Procedia PDF Downloads 121
3733 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya

Abstract:

The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.

Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella

Procedia PDF Downloads 53
3732 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm

Authors: Soumaya Sallem, Marc Olivas

Abstract:

This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.

Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm

Procedia PDF Downloads 178
3731 Tectonic Inversion Manifestations in the Jebel Rouas-Ruissate (Northeastern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The Rouas-Ruissateis a part of TunisianAtlas system. Analyze of the collected field data allowed us to propose a new interpretation for the main structural features of thisregion. Tectonic inversions along NE-SW trending fault of Zaghouan and holokinetic movements are the main factors controlling the architecture and geometry of the Jebel Rouas-Ruissate. The presence of breccias, Slumps, and synsedimentaryfaults along NW-SE and N-S trending major faults show that they were active during the Mesozoicextensionalepisodes. During Cenozoic inversion period, this structurewas shaped as imbricatefansformed byNE-SW trending thrust faults. The angularunconformitybetweenupperEocene- Oligocene, and Cretaceousdeposits reveals a compressive Eocene tectonic phase (called Pyrenean phase)occurred duringPaleocene-lower Eocene.The Triassicsaltsacted as a decollementlevel in the NE-SW trendingfault propagation fold model of the Rouas-Ruissate.The inversion of fault-slip data along the main regional fault zones reveals a coexistence of strike-slip and reverse fault stress regimes with NW-SE maximum horizontal stress(SHmax) characterizing the Alpine compressive phase (Upper Tortonian).

Keywords: tunisia, imbricate fans, triassic decollement level, fault propagation fold

Procedia PDF Downloads 138
3730 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors

Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui

Abstract:

Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.

Keywords: data-driven method, process control, anomaly detection, dimensionality reduction

Procedia PDF Downloads 278
3729 Flux-Linkage Performance of DFIG Under Different Types of Faults and Locations

Authors: Mohamed Moustafa Mahmoud Sedky

Abstract:

The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations.

Keywords: double fed induction motor, wind energy, flux linkage, short circuit

Procedia PDF Downloads 499
3728 Seismotectonics of Southern Haiti: A Faulting Model for the 12 January 2010 M7 Earthquake

Authors: Newdeskarl Saint Fleur, Nathalie Feuillet, Raphaël Grandin, Éric Jacques, Jennifer Weil-Accardo, Yann Klinger

Abstract:

The prevailing consensus is that the 2010 Mw7.0 Haiti earthquake left the Enriquillo–Plantain Garden strike-slip Fault (EPGF) unruptured but broke unmapped blind north-dipping thrusts. Using high-resolution topography, aerial images, bathymetry and geology we identified previously unrecognized south-dipping NW-SE-striking active thrusts in southern Haiti. One of them, Lamentin thrust (LT), cuts across the crowded city of Carrefour, extends offshore into Port-au-Prince Bay and connects at depth with the EPGF. We propose that both faults broke in 2010. The rupture likely initiated on the thrust and propagated further along the EPGF due to unclamping. This scenario is consistent with geodetic, seismological and field data. The 2010 earthquake increased the stress toward failure on the unruptured segments of the EPGF and on neighboring thrusts, significantly increasing the seismic hazard in the Port-au-Prince urban area. The numerous active thrusts recognized in that area must be considered for future evaluation of the seismic hazard.

Keywords: active faulting, enriquillo-plantain garden fault, Haiti earthquake, seismic hazard

Procedia PDF Downloads 1218
3727 Geological Structure as the Main Factor in Landslide Deployment in Purworejo District Central Java Province Indonesia

Authors: Hilman Agil Satria, Rezky Naufan Hendrawan

Abstract:

Indonesia is vulnerable to geological hazard because of its location in subduction zone and have tropical climate. Landslide is one of the most happened geological hazard in Indonesia, based on Indonesia Geospasial data, at least 194 landslides recorded in 2013. In fact, research location is placed as the third city that most happened landslide in Indonesia. Landslide caused damage of many houses and wrecked the road. The purpose of this research is to make a landslide zone therefore can be used as one of mitigation consideration. The location is in Bruno, Porworejo district Central Java Province Indonesia at 109.903 – 109.99 and -7.59 – -7.50 with 10 Km x 10 Km wide. Based on geological mapping result, the research location consist of Late Miocene sandstone and claystone, and Pleistocene volcanic breccia and tuff. Those landslide happened in the lithology that close with fault zone. This location has so many geological structures: joints, faults and folds. There are 3 thrust faults, 1 normal faults, 4 strike slip faults and 6 folds. This geological structure movement is interpreted as the main factor that has triggered landslide in this location. This research use field data as well as samples of rock, joint, slicken side and landslide location which is combined with DEM SRTM to analyze geomorphology. As the final result of combined data will be presented as geological map, geological structure map and landslide zone map. From this research we can assume that there is correlation between geological structure and landslide locations.

Keywords: geological structure, landslide, Porworejo, Indonesia

Procedia PDF Downloads 277
3726 Analysis of Flux-Linkage Performance of DFIG by Using Simulink under Different Types of Faults and Locations

Authors: Mohamed Moustafa Mahmoud Sedky

Abstract:

The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations.

Keywords: double fed induction motor, wind energy, flux linkage, short circuit

Procedia PDF Downloads 574
3725 A Study on Holosen-Pleistosen Sedimentology of Morphotectonic Structure and Seismicity of Gökova Bay

Authors: Ebru Aktepe Erkoç, Atilla Uluğ

Abstract:

In this research which has been prepared to show the relationship between Gökova Bay’s morphotectonic structure and seismicity, it is clear that there are many active faults in the region. The existence of a thick sedimentary accumulation since Late Quaternary times is obvious as a result of the geophysical workings in the region and the interpretation of seismic data which has been planning to be taken from the Bay. In the regions which have been tectonically active according to the interpretation of the taken data, the existence of the successive earthquakes in the last few years is remarkable. By analyzing large earthquakes affecting the areas remaining inside the sediments in West Anatolian Collapse System, this paper aims to reveal the fault systems constituting earthquakes with the information obtained from this study and to determine seismicity of the present residential areas right next to them. It is also aimed to anticipate the measures to be taken against possible earthquake hazards, to identify these areas posing a risk in terms of residential and urban planning and to determine at least partly the characteristics of the basin.

Keywords: Gökova Bay, sedimentation, seismic, West Anatolian

Procedia PDF Downloads 248
3724 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory

Authors: E. K. A. Ogunshile

Abstract:

This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.

Keywords: conformance testing, finite state machine, software testing, x-machine

Procedia PDF Downloads 254
3723 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data

Authors: M. Lghoul, N. El Goumi, M. Guernouche

Abstract:

In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.

Keywords: magnetic, gravity, structural trend, depth to basement

Procedia PDF Downloads 116
3722 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 42
3721 Review of Cable Fault Locating Methods and Usage of VLF for Real Cases of High Resistance Fault Locating

Authors: Saadat Ali, Rashid Abdulla Ahmed Alshehhi

Abstract:

Cable faults are always probable and common during or after commissioning, causing significant delays and disrupting power distribution or transmission network, which is intolerable for the utilities&service providers being their reliability and business continuity measures. Therefore, the adoption of rapid localization & rectification methodology is the main concern for them. This paper explores the present techniques available for high voltage cable localization & rectification and which is preferable with regards to easier, faster, and also less harmful to cables. It also provides insight experience of high resistance fault locating by utilization of the Very Low Frequency (VLF) method.

Keywords: faults, VLF, real cases, cables

Procedia PDF Downloads 87
3720 Combating and Preventing Unemployment in Sweden

Authors: Beata Wentura-Dudek

Abstract:

In Sweden the needs of the labor market are regularly monitored. Test results and forecasts translate directly into the education system in this country, which is largely a state system. Sweden is one of the first countries in Europe that has used active labor market policies. It is realized that there is an active unemployment which includes a wide range of activities that can be divided into three groups: Active forms of influencing the creation of new jobs, active forms that affect the labor supply and active forms for people with disabilities. Most of the funding is allocated there for subsidized employment and training. Research conducted in Sweden shows that active forms of counteracting unemployment focused on the long-term unemployed can significantly raise the level of employment in this group.

Keywords: Sweden, research conducted in Sweden, labour market, labour market policies, unemployment, active forms of influencing the creation of new jobs, active forms of counteracting unemployment, employment, subsidized employment education

Procedia PDF Downloads 273
3719 Modeling of Power Network by ATP-Draw for Lightning Stroke Studies

Authors: John Morales, Armando Guzman

Abstract:

Protection relay algorithms play a crucial role in Electric Power System stability, where, it is clear that lightning strokes produce the mayor percentage of faults and outages of Transmission Lines (TLs) and Distribution Feeders (DFs). In this context, it is imperative to develop novel protection relay algorithms. However, in order to get this aim, Electric Power Systems (EPS) network have to be simulated as real as possible, especially the lightning phenomena, and EPS elements that affect their behavior like direct and indirect lightning, insulator string, overhead line, soil ionization and other. However, researchers have proposed new protection relay algorithms considering common faults, which are not produced by lightning strokes, omitting these imperative phenomena for the transmission line protection relays behavior. Based on the above said, this paper presents the possibilities of using the Alternative Transient Program ATP-Draw for the modeling and simulation of some models to make lightning stroke studies, especially for protection relays, which are developed through Transient Analysis of Control Systems (TACS) and MODELS language corresponding to the ATP-Draw.

Keywords: back-flashover, faults, flashover, lightning stroke, modeling of lightning, outages, protection relays

Procedia PDF Downloads 296
3718 Seismotectonics and Seismology the North of Algeria

Authors: Djeddi Mabrouk

Abstract:

The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).

Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth

Procedia PDF Downloads 386
3717 Tectogenesis Around Kalaat Es Senan, Northwest of Tunisia: Structural, Geophysical and Gravimetric Study

Authors: Amira Rjiba, Mohamed Ghanmi, Tahar Aifa, Achref Boulares

Abstract:

This study, involving the interpretation of geological outcrops data (structures, and lithostratigraphiec colones) and subsurface structures (seismic and gravimetric data) help us to identify and precise (i) the lithology of the sedimentary formations between the Aptian and the recent formations, (ii) to differentiate the sedimentary formations it from the salt-bearing Triassic (iii) and to specify the major structures though the tectonics effects having affected the region during its geological evolution. By placing our study area placed in the context of Tunisia, located on the southern margin of the Tethys show us through tectonic traces and structural analysis conducted, that this area was submitted during the Triassic perio at an active rifting triggered extensional tectonic events and extensive respectively in the Cretaceous and Paleogene. Lithostratigraphic correlations between outcrops and seismic data sets on those of six oil wells conducted in the region have allowed us to better understand the structural complexity and the role of different tectonic faults having contributed to the current configuration, and marked by the current rifts. Indeed, three directions of NW-SE faults, NNW-SSE to NS and NE-SW to EW had a major role in the genesis of folds and open ditches collapse of NW-SE direction. These results were complemented by seismic reflection data to clarify the geometry of the southern and western areas of Kalaa Khasba ditch. The eight selected seismic lines for this study allowed to characterize the main structures, with isochronous maps, contour and isovitesse of Serdj horizon that presents the main reservoir in the region. The line L2, keyed by the well 6, helped highlight the NW-SE compression that has resulted in persistent discrepancies widely identifiable in its lithostratigraphic column. The gravity survey has confirmed the extension of most of the accidents deep subsurface whose activity seems to go far. Gravimetry also reinforced seismic interpretation confirming, at the L2 well, that both SW and NE flank of the moat are two opposite faults and trace the boundaries of NNW-SSE direction graben whose sedimentation of Mio-Pliocene age and Quaternary.

Keywords: graben, graben collapse, gravity, Kalat Es Senan, seismic, tectogenesis

Procedia PDF Downloads 351
3716 The Result of Using Board Game for Enhancing the Active Citizen of the Undergraduate Students

Authors: Chananporn Areekul

Abstract:

The purpose of this study was to study the experimental result of using board games for enhancing the active citizen of the undergraduate students. The research methodology of this study was the quasi experimental research. The sample was 30 undergraduate students that were chosen by the purposive sampling. The instruments were board games for enhancing the active citizen and the questionnaire for measuring the active citizen levels. The result of the mean difference test was found that there were statistically significant differences at the .05 level (t = 2.028, p = 0.047) between before and after using board game for enhancing the active citizen of undergraduate students.

Keywords: active citizen, board game, learning innovation, undergraduate students

Procedia PDF Downloads 110
3715 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 328
3714 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean

Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui

Abstract:

The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.

Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion

Procedia PDF Downloads 114
3713 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction

Authors: Somia Bouzid, Messaoud Ramdani

Abstract:

The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.

Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network

Procedia PDF Downloads 370
3712 Current-Based Multiple Faults Detection in Electrical Motors

Authors: Moftah BinHasan

Abstract:

Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.

Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity

Procedia PDF Downloads 445
3711 Defects Estimation of Embedded Systems Components by a Bond Graph Approach

Authors: I. Gahlouz, A. Chellil

Abstract:

The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.

Keywords: estimation, bond graph, controllability, observability

Procedia PDF Downloads 397
3710 Synchronization of a Perturbed Satellite Attitude Motion using Active Sliding Mode Controller

Authors: Djaouida Sadaoui

Abstract:

In this paper, the design procedure of the active sliding mode controller which is a combination of the active controller and the sliding mode controller is given first and then the problem of synchronization of two satellites systems is discussed for the proposed method. Finally, numerical results are presented to evaluate the robustness and effectiveness of the proposed control strategy.

Keywords: active control, sliding mode control, synchronization, satellite attitude

Procedia PDF Downloads 474