Search results for: DMSO
29 Integrating Non-Psychoactive Phytocannabinoids and Their Cyclodextrin Inclusion Complexes into the Treatment of Glioblastoma
Authors: Kyriaki Hatziagapiou, Konstantinos Bethanis, Olti Nikola, Elias Christoforides, Eleni Koniari, Eleni Kakouri, George Lambrou, Christina Kanaka-Gantenbein
Abstract:
Glioblastoma multiforme (GBM) remains a serious health challenge, as current therapeutic modalities continue to yield unsatisfactory results, with the average survival rarely exceeding 1-2 years. Natural compounds still provide some of the most promising approaches for discovering new drugs. The non-psychotropic cannabidiol (CBD) deriving from Cannabis sativa L. provides such promise. CBD is endowed with anticancer, antioxidant, and genoprotective properties as established in vitro and in in vivo experiments. CBD’s selectivity towards cancer cells and its safe profile suggest its usage in cancer therapies. However, the bioavailability of oral CBD is low due to poor aqueous solubility, erratic gastrointestinal absorption, and significant first-pass metabolism, hampering its therapeutic potential and resulting in a variable pharmacokinetic profile. In this context, CBD can take great advantage of nanomedicine-based formulation strategies. Cyclodextrins (CDs) are cyclic oligosaccharides used in the pharmaceutical industry to incorporate apolar molecules inside their hydrophobic cavity, increasing their stability, water solubility, and bioavailability or decreasing their side effects. CBD-inclusion complexes with CDs could be a good strategy to improve its properties, like solubility and stability to harness its full therapeutic potential. The current research aims to study the potential cytotoxic effect of CBD and CBD-CDs complexes CBD-RMβCD (randomly methylated β-cyclodextrin) and CBD-HPβCD (hydroxypropyl-b-CD) on the A172 glioblastoma cell line. CBD is diluted in 10% DMSO, and CBD/CDs solutions are prepared by mixing solid CBD, solid CDs, and dH2O. For the biological assays, A172 cells are incubated at a range of concentrations of CBD, CBD-RMβCD and CBD-HPβCD, RMβCD, and HPβCD (0,03125-4 mg/ml) at 24, 48, and 72 hours. Analysis of cell viability after incubation with the compounds is performed with Alamar Blue viability assay. CBD’s dilution to DMSO 10% was inadequate, as crystals are observed; thus cytotoxicity experiments are not assessed. CBD’s solubility is enhanced in the presence of both CDs. CBD/CDs exert significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72, and 96 hours versus cells not exposed); as their concentration and time of exposure increases, the reduction of resazurin to resofurin decreases, indicating a reduction in cell viability. The cytotoxic effect is more pronounced in cells exposed to CBD-HPβCD for all concentrations and time-points. RMβCD and HPβCD at the highest concentration of 4 mg/ml also exerted antitumor action per se since manifesting cell growth inhibition. The results of our study could afford the basis of research regarding the use of natural products and their inclusion complexes as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgments: The research is partly funded by ΙΚΥ (State Scholarships Foundation) – Post-doc Scholarships-Partnership Agreement 2014-2020.Keywords: cannabidiol, cyclodextrins, glioblastoma, hydroxypropyl-b-Cyclodextrin, randomly-methylated-β-cyclodextrin
Procedia PDF Downloads 17928 Synthesis, Structural Characterization and Biological Activity of Bis{(E)-1-[(2,4,6-Tribromophenyl) Diazenyl] Naphthalen-2-Olato} Copper (II) Dimethyl Sulfoxide Monosolvate
Authors: Hassiba Bougueria, Nesrine Benarous, Souheyla Chetioui
Abstract:
Azo dyes are one of the most widely used compounds in organic chemistry, primarily due to their relatively simple preparation methods. They have therefore been widely used, in particular as colorants for textiles, printing inks, cosmetics, and food additives. In addition to their use as dyes, azo compounds have attracted much attention from chemists as their potential applications are important in coordination chemistry, metal-organic frameworks (MOF) structures, COF (covalent-organic frameworks), and catalysis. Moreover, they have found many applications in different fields, such as nonlinear optics, optical storage, photoluminescence, and magnetism. The compound bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate, the CuII atom is tetracoordinate with a square-planar geometry, surrounded by two bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalene-2-olate ligands via two N atoms and two O atoms. The O-Cu-O angles and N-Cu-N are of the order of 177.90(16)° and 177.8(2)°, respectively. The distances Cu-O and Cu- N are 1.892(4) Å and 1.976(4) Å, respectively. The cohesion of the crystal is ensured by hydrogen bonds of the C—H…O type and by π=π staking interactions [centroid–centroid distance = 3.679(4)Å]. The DMSO solvent molecule is disordered at two positions with occupancy rates of 0.70 and 0.30.Keywords: azo dyes, DRX, structural characterization, biological activity
Procedia PDF Downloads 8727 In vitro Effects of Berberine on the Vitality and Oxidative Profile of Bovine Spermatozoa
Authors: Eva Tvrdá, Hana Greifová, Peter Ivanič, Norbert Lukáč
Abstract:
The aim of this study was to evaluate the dose- and time-dependent in vitro effects of berberine (BER), a natural alkaloid with numerous biological properties on bovine spermatozoa during three time periods (0 h, 2 h, 24 h). Bovine semen samples were diluted and cultivated in physiological saline solution containing 0.5% DMSO together with 200, 100, 50, 10, 5, and 1 μmol/L BER. Spermatozoa motility was assessed using the computer assisted semen analyzer. The viability of spermatozoa was assessed by the metabolic (MTT) assay, production of superoxide radicals was quantified using the nitroblue tetrazolium (NBT) test, and chemiluminescence was used to evaluate the generation of reactive oxygen species (ROS). Cell lysates were prepared and the extent of lipid peroxidation (LPO) was evaluated using the TBARS assay. The results of the movement activity showed a significant increase in the motility during long term cultivation in case of concentrations ranging between 1 and 10 μmol/L BER (P < 0.01; P < 0.001; 24 h). At the same time, supplementation of 1, 5 and 10 μmol/L BER led to a significant preservation of the cell viability (P < 0.001; 24 h). BER addition at a range of 1-50 μmol/L also provided a significantly higher protection against superoxide (P < 0.05) and ROS (P < 0.001; P < 0.01) overgeneration as well as LPO (P < 0.01; P<0.05) after a 24 h cultivation. We may suggest that supplementation of BER to bovine spermatozoa, particularly at concentrations ranging between 1 and 50 μmol/L, may offer protection to the motility, viability and oxidative status of the spermatozoa, particularly notable at 24 h.Keywords: berberine, bulls, motility, oxidative profile, spermatozoa, viability
Procedia PDF Downloads 13026 Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell
Authors: Stephen Adeniyi Adefegha, Vitor Mostardeiro, Vera Maria Morsch, Ademir F. Morel, Ivana Beatrice Manica Da Cruz, Sabrina Somacal Maria Rosa Chitolina Schetinger
Abstract:
Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells.Keywords: oxidative stress, BV-2 microglial cell, Moringa stenopetala, cell viability, antioxidant
Procedia PDF Downloads 11025 Purification, Biochemical Characterization and Application of an Extracellular Alkaline Keratinase Produced by Aspergillus sp. DHE7
Authors: Dina Helmy El-Ghonemy, Thanaa Hamed Ali
Abstract:
The aim of this study was to purify and characterize a keratinolytic enzyme produced by Aspergillus sp. DHE7 cultured in basal medium containing chicken feather as substrate. The enzyme was purified through ammonium sulfate saturation of 60%, followed by gel filtration chromatography in Sephadex G-100, with a 16.4-purification fold and recovery yield of 52.2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme is a monomeric enzyme with an apparent molecular mass of 30 kDa — the purified keratinase of Aspergillus sp. DHE7 exhibited activity in a broad range of pH (7- 9) and temperature (40℃-60℃) profiles with an optimal activity at pH eight and 50℃. The keratinolytic activity was inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride and ethylenediaminetetraacetate, while no reduction of activity was detected by the addition of dimethyl sulfoxide (DMSO). Bivalent cations, Ca²⁺ and Mn²⁺, were able to greatly enhance the activity of keratinase by 125.7% and 194.8%, respectively, when used at one mM final concentration. On the other hand, Cu²⁺ and Hg²⁺ inhibited the enzyme activity, which might be indicative of essential vicinal sulfhydryl groups of the enzyme for productive catalysis. Furthermore, the purified keratinase showed significant stability and compatibility against the tested commercial detergents at 37ºC. Therefore, these results suggested that the purified keratinase from Aspergillus sp. DHE7 may have potential use in the detergent industry and should be of interest in the processing of poultry feather waste.Keywords: Aspergillus sp. DHE7, biochemical characterization, keratinase, purification, waste management
Procedia PDF Downloads 12424 The Response of 4-Hydroxybenzoic Acid on Kv1.4 Potassium Channel Subunit Expressed in Xenopus laevis Oocytes
Authors: Fatin H. Mohamad, Jia H. Wong, Muhammad Bilal, Abdul A. Mohamed Yusoff, Jafri M. Abdullah, Jingli Zhang
Abstract:
Kv1.4 is a Shaker-related member of voltage-gated potassium channel which can be associated with cardiac action potential but can also be found in Schaffer collateral and dentate gyrus. It has two inactivation mechanisms; the fast N-type and slow C-type. Kv1.4 produces rapid current inactivation. This A type potential of Kv1.4 makes it as a target in antiepileptic drugs (AEDs) selection. In this study, 4-hydroxybenzoic acid, which can be naturally found in bamboo shoots, were tested on its enhancement effect on potassium current of Kv1.4 channel expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp method. Current obtained were recorded and analyzed with pClamp software whereas statistical analysis were done by student t-test. The ratio of final / peak amplitude is an index of the activity of the Kv1.4 channel. The less the ratio, the greater the function of Kv1.4. The decrease of ratio of which by 1µM 4-hydroxybenzoic acid (n= 7), compared with 0.1% DMSO (vehicle), was mean= 47.62%, SE= 13.76%, P= 0.026 (statistically significant). It indicated more opening of Kv1.4 channels under 4-hydroxybenzoic acid. In conclusion, 4-hydroxybenzoic acid can enhance the function of Kv1.4 potassium channels, which is regarded as one of the mechanisms of antiepileptic treatment.Keywords: antiepileptic, Kv1.4 potassium channel, two-microelectrode voltage clamp, Xenopus laevis oocytes, 4-hydroxybenzoic acid
Procedia PDF Downloads 36123 Anti-Implantation Activity of Kepel (Stelechocarpus burahol) Pulp Ethanol Extract in Female Mice
Authors: Suparmi, Israhnanto Isradji, Dina Fatmawati, Iwang Yusuf
Abstract:
Kepel (Stelechocarpus burahol) is one of the traditional plants originating from Indonesia that can be used to prevent pregnancy, launched urine and kidney inflammation. Kepel pulp has compounds alkaloid, triterpenoid, tannin, saponin, and flavonoid, when used will give the hormonal and cytotoxic effect. This study was aimed at evaluating ethanol extract of kepel in vivo for anti-implantation activities. In this experimental study with post test only control group design, 20 female mice were randomly divided into 4 groups. It was divided into the control, the 0,65 mg dose, 1,3 mg dose, and 3,6 mg dose of kepel pulp extract group. The extract soluted in DMSO’s solution and was given 1 ml per mice. The extract was given 10 days before copulation until 18 days of pregnancy. Then, the number of implantation, presence of fetus, and embrio resorbtion were recorded and used to calculate the percentage anti-implantation effect. The results were tested by One-way ANOVA. The mean number of implantation in group control, 0,65 mg;1,3 mg; and 2,6 mg were 5,60±1,14; 6,20± 1,64; 7,60±1,51; 8,00± 1,58, respectively. One way Annova test showed that there is no significant difference in the number of implantation between the group (p > 0,05). The administration of kepel pulp ethanol extract had no effect on the percentage anti-implantation effect and the number of and embrio resorbtion.Keywords: antiimplantation, fetus, Stelechocarpus burahol, flavonoid
Procedia PDF Downloads 43622 Meniscus Guided Film Coating for Large-Area Perovskite Solar Cells
Authors: Gizachew Belay Adugna, Yu-Tai Tao
Abstract:
Perovskite solar cells (PSCs) have been gaining impressive progress with excellent power conversion efficiency (PCE) of 25.5% in small-area devices. However, the conventional film coating approach is not applicable to large-area module fabrication. Meniscus-guided coating, including blade coating, slot-die coating, and bar coating, is solution processing and promising for large-area and cost-effective film coating to industrial-scale PSCs. Here, we develop simple and scalable solution shearing (SS) and bar coating (BC) methods to coat all layers on large-area (10x10 cm²) substrate in FTO/c-TiO₂/mp-TiO₂/ CH₃NH₃PbI₃/Spiro-OMeTAD/Ag device structure, except the Ag electrode. All solution-sheared PSC exhibited a champion power conversion efficiency of 15.89% in the conational DMF/DMSO solvent. Whereas a very high PCE of 20.30% compared to the controlled spin-coated device (SC, 17.60%) was achieved from the large area sheared perovskite film in a green ACN/MA solvent. Similarly, a remarkable PCE of 18.50% was achieved for a device fabricated from a large-area perovskite film in a simpler and more compatible Bar-coating system. This strategy demonstrates the huge potential for module fabrication and future PSC commercialization.Keywords: Perovskite solar cells, larger area film coating, meniscus-guided film coating, solution-shearing, bar-coating, power conversion efficiency
Procedia PDF Downloads 7421 Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems
Authors: Fatima Zohra Ibn Majdoub Hassani, Ivan Lavandera, Joseph Kreit
Abstract:
This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was found to have a strong stabilizing effect on the ADH from Ralstonia sp. (E. coli/ RasADH). In the case of organic solvents, it was observed that the best conversions into the alcohols were achieved with DMSO and hexane. It was also observed that temperature decreased the ability of the enzyme to convert the substrates into the products and also affected the selectivity. In addition to that, the recycling of DES up to three times gave good conversions and enantiomeric excess results and glycerol showed a positive effect in the stability of various ADHs. Using RasADH, a good conversion and enantiomeric excess into the S-alcohol were obtained. It was found that an enhancement of the temperature disabled the stabilizing effect of glycerol and decreased the stereoselectivity of the enzyme. However, for other ADHs a temperature increase had an opposite positive effect, especially with ADH-T from Thermoanaerobium sp. One of the objectives of this study was to see the effect of cofactors such as NAD(P) on the biocatlysis activities of ADHs.Keywords: alcohol dehydrogenases, DES, gas chromatography, RasADH
Procedia PDF Downloads 19320 Synthesis of New Analogs of IPS-339, and Study of Their Cardiovascular in Dogs
Authors: Elham Zarenezhad, Ali Zarenezhad, Mehdi Mardkhoshnood
Abstract:
We described the synthesis and biological study of O-oxime ethers having a-amino acid residues as new analogs of IPS-339. In this synthesis, the reaction of fluorene O-oxime with epichlorohydrin or epibromohydrin afforded the corresponding O-oxime ether adducts. The N-alkylation of valine amino acid with O-oxime ether adducts led to the synthesis of new analogs of IPS-339. The cardiovascular properties of the compound have been studied. In this regard, six clinically healthy same sex mongrel dogs were examined. The dogs were randomly divided into 3 groups of two members. 1 groups received 2 mg kg-1 body weight of compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) intravenously, whereas group 2 and 3 received only DMSO–water (distil.) and propranolol (Inderal) (2 mg kg-1), respectively. The electrocardiograph (ECG) was recorded with lead II. The recording was run successively by 5 min time interval on each dog before, simultaneously, and after compound infusion. Data after administration were taken from normal sinus beats that were closely related to the arrhythmias whenever they occurred. In general, no detectable arrhythmia was observed in all ECG records regardless of increasing the heart rate that likely caused by stress origin from invasive procedure just after infusion. Compound diminished the heart rate during study especially at 20th minute compared to propranolol as a reference drug. Compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) was the most effective compound with remarkable ability in declining of the heart rate.Keywords: electrocardiograph (ECG), cardiovascular, IPS-339, dogs
Procedia PDF Downloads 34619 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents
Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker
Abstract:
Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial
Procedia PDF Downloads 15418 The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes
Authors: Hasan Afarnegan, Ali Shahraki, Jafar Shahraki
Abstract:
Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes.Keywords: hepatocyte protection, levisticum officinale, oxidative stress, paraquat
Procedia PDF Downloads 22217 Nanoprecipitation with Ultrasonication for Enhancement of Oral Bioavailability of Fursemide: Pharmacokinetics and Pharmacodynamics Study in Rat Model
Authors: Malay K. Das, Bhanu P. Sahu
Abstract:
Furosemide is a weakly acidic diuretic indicated for treatment of edema and hypertension. It has very poor solubility but high permeability through stomach and upper gastrointestinal tract (GIT). Due to its limited solubility it has poor and variable oral bioavailability of 10-90%. The aim of this study was to enhance the oral bioavailability of furosemide by preparation of nanosuspensions. The nanosuspensions were prepared by nanoprecipitation with sonication using DMSO (dimethyl sulfoxide) as a solvent and water as an antisolvent (NA). The prepared nanosuspensions were sterically stabilized with polyvinyl acetate (PVA).These were characterized for particle size, ζ potential, polydispersity index, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) pattern and release behavior. The effect of nanoprecipitation on oral bioavailability of furosemide nanosuspension was studied by in vitro dissolution and in vivo absorption study in rats and compared to pure drug. The stable nanosuspension was obtained with average size range of the precipitated nanoparticles between 150-300 nm and was found to be homogenous showing a narrow polydispersity index of 0.3±0.1. DSC and XRD studies indicated that the crystalline furosemide drug was converted to amorphous form upon precipitation into nanoparticles. The release profiles of nanosuspension formulation showed up to 81.2% release in 4 h. The in vivo studies on rats revealed a significant increase in the oral absorption of furosemide in the nanosuspension compared to pure drug. The AUC0→24 and Cmax values of nanosuspension were approximately 1.38 and 1.68-fold greater than that of pure drug, respectively. Furosemide nanosuspension showed 20.06±0.02 % decrease in systolic blood pressure compared to 13.37±0.02 % in plain furosemide suspension, respectively. The improved oral bioavailability and pharmacodynamics effect of furosemide may be due to the improved dissolution of furosemide in simulated gastric fluid which results in enhanced oral systemic absorption of furosemide from stomach region where it has better permeability.Keywords: furosemide, nanosuspension, bioavailability enhancement, nanoprecipitation, oral drug delivery
Procedia PDF Downloads 57316 The Angiogenic Activity of α-Mangostin in the Development of Zebrafish Embryo In Vivo
Authors: Titis Indah Adi Rahayu
Abstract:
Angiogenesis is the process of generating new capillary from pre-existing blood vessels. VEGFA is a major regulator in angiogenesis that binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR) which regulate pathological and physiological angiogenesis. Disruption of VEGFA and VEGFR2 regulation lead to many diseases. The study of α-Mangostin (derivate of xanthone) as anti-oxidant and anti inflammation has been explored recently and both of them have relation to vasculature however the effect of α-Mangostin in blood vessel formation in healthy tissue in vivo has not been studied. Zebrafish is a powerful model in studying angiogenesis and shared many advantages that is a viable whole animal model for screening small molecules that affect blood vessel formation. Therefore the aim of this study is to evaluate angiogenic activity of α-Mangostin in healthy tissue in vivo in zebrafish embryo in relation of patterning blood vessel. Blood vessel patterning is highly characteristic in the developing of zebrafish embryo and the subintestinal vessel (SIV) can be stained and visualized microscopically as a primary screen for α-Mangostin that effect angiogenesis. The zebrafish embryos are divided into 2 groups. Group one consists of the zebrafish embryos at 1 dpf for 4 days which are tested to α-Mangostin in several concentration 2 µM, 4 µM, 6 µM, 8 µM and 10 µM whereas in group two the zebrafish larva at 4 dpf are exposed to α-Mangostin 1,75 µM, 2,3 µM, 2,9 µM, 3,8 µM dan 5 µM for 2 days. DMSO is served as a control for each group. The level expression of vegfa and vegfr2 are observed quantitatively using real time q-PCR and patterning of SIV are then analized via alkaline phospatase staining. Result shows that the level expression of vegfa and vegfr2 is repressed quantitatively as shown in real time q-PCR in the group of 1-4 days of α-Mangostin exposure where it is increased in the group of 4-6 days of α-Mangostin exposure. The result is then compared to alkaline phospatase staining of SIV using stereo microscope. It indicates that α-Mangostin does not disturb the patterning of SIV formation in zebrafish.Keywords: angiogenesis, Danio rerio, α-Mangostin, SIV, vegfa, vegfr2
Procedia PDF Downloads 34215 Antibacterial and Antioxidant Properties of Total Phenolics from Waste Orange Peels
Authors: Kanika Kalra, Harmeet Kaur, Dinesh Goyal
Abstract:
Total phenolics were extracted from waste orange peels by solvent extraction and alkali hydrolysis method. The most efficient solvents for extracting phenolic compounds from waste biomass were methanol (60%) > dimethyl sulfoxide > ethanol (60%) > distilled water. The extraction yields were significantly impacted by solvents (ethanol, methanol, and dimethyl sulfoxide) due to varying polarity and concentrations. Extraction of phenolics using 60% methanol yielded the highest phenolics (in terms of gallic acid equivalent (GAE) per gram of biomass) in orange peels. Alkali hydrolyzed extract from orange peels contained 7.58±0.33 mg GAE g⁻¹. By using the solvent extraction technique, it was observed that 60% methanol is comparatively the best-suited solvent for extracting polyphenolic compounds and gave the maximum yield of 4.68 ± 0.47 mg GAE g⁻¹ in orange peel extracts. DPPH radical scavenging activity and reducing the power of orange peel extract were checked, where 60% methanolic extract showed the highest antioxidant activity, 85.50±0.009% for DPPH, and dimethyl sulfoxide (DMSO) extract gave the highest yield of 1.75±0.01% for reducing power ability of the orange peels extract. Characterization of the polyphenolic compounds was done by using Fourier transformation infrared (FTIR) spectroscopy. Solvent and alkali hydrolysed extracts were evaluated for antibacterial activity using the agar well diffusion method against Gram-positive Bacillus subtilis MTCC441 and Gram-negative Escherichia coli MTCC729. Methanolic extract at 300µl concentration showed an inhibition zone of around 16.33±0.47 mm against Bacillus subtilis, whereas, for Escherichia coli, it was comparatively less. Broth-based turbidimetric assay revealed the antibacterial effect of different volumes of orange peel extracts against both organisms.Keywords: orange peels, total phenolic content, antioxidant, antibacterial
Procedia PDF Downloads 7314 Optimization of Sucrose Concentration, PH Level and Inoculum Size for Callus Proliferation and Anti-bacterial Potential of Stevia Rebaudiana Bertoni
Authors: Inayat Ur Rahman Arshad
Abstract:
Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non caloric sweet Steviol Glycosides (SGs). The purpose of the study is to optimize sugar concentration, pH level and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes were inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Maximum callus induction 100, 87.5 and 85.33% was resulted in the medium supplemented with 30g/l sucrose, pH maintained at 5.5 and inoculated with 1.25g inoculum respectively. Similarly, the highest fresh weight 65.00, 75.50 and 50.53g/l were noted in medium fortified with 40g/l sucrose, inoculated 1.25g inoculum and 6.0 pH level respectively. However, the callus developed in medium containing 50g/l sucrose found highly antibacterial potent with 27.3 and 26.5mm inhibition zone against P. vulgaris and B. subtilize respectively. Similarly, the callus grown on medium inoculated with 1.00g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72mm inhibition zones respectively. However, in the case of pH levels the medium maintained at 6.5pH showed maximum antibacterial activity against P. vulgaris, B.subtilis and E.coli with 27.9, 25 and 23.72mm respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment the standard antibacterial agent Streptomycin showed the highest inhibition zones from the rest of the callus extract, however the pure DMSO (Dimethyl Sulfoxide) caused no inhibitory zone against any bacteria. From these findings it is concluded that among various levels sucrose at the rate of 40g L-1, pH 6.0 and inoculums 0.75g was found best for most of the growth and quality attributes including fresh weight, dry weight and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudianaKeywords: Steviol Glycosides, Skoog, Murashige, Clavebactor michiganensis
Procedia PDF Downloads 8713 Optimization of Sucrose Concentration, pH Level and Inoculum Size for Callus Proliferation and Anti-Bacterial Potential of Stevia rebaudiana Bertoni
Authors: Inayat Ur Rahman Arshad
Abstract:
Background: Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non-caloric sweet steviol glycosides (SGs). Purpose: The purpose of the study is to optimize sugar concentration, pH level, and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Method: Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes was inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Results: Maximum callus induction 100, 87.5, and 85.33% resulted in the medium supplemented with 30 g/l sucrose, pH maintained at 5.5, and inoculated with 1.25g inoculum, respectively. Similarly, the highest fresh weights 65.00, 75.50, and 50.53 g/l were noted in a medium fortified with 40 g/l sucrose, inoculated 1.25g inoculum, and 6.0 pH level, respectively. However, the callus developed in a medium containing 50 g/l sucrose was found to be highly antibacterial potent with 27.3 and 26.5 mm inhibition zone against P. vulgaris and B. subtilis, respectively. Similarly, the callus grown on a medium inoculated with 1.00 g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72 mm inhibition zone, respectively. However, in the case of pH levels, the medium maintained at 6.5 pH showed maximum antibacterial activity against P. vulgaris, B.subtilis, and E.coli with 27.9, 25, and 23.72 mm, respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment, the standard antibacterial agent Streptomycin showed the highest inhibition zones among the rest of the callus extract; however, the pure dimethyl sulfoxide (DMSO) caused no inhibitory zone against any bacteria. Conclusion: From these findings, it is concluded that among various levels, sucrose @ 40 g L⁻¹, pH 6.0, and inoculums at 0.75 g were found best for most of the growth and quality attributes, including fresh weight, dry weight, and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana.Keywords: Stevia rebaudiana, Steviol Glycosides, callus, Xanthomonas campestris
Procedia PDF Downloads 8212 Search of Сompounds with Antimicrobial and Antifungal Activity in the Series of 1-(2-(1H-Tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas
Authors: O. Antypenko, I. Vasilieva, S. Kovalenko
Abstract:
Investigations for new effective and less toxic antimicrobials agents are always up-to-date. The tetrazole derivatives are quite interesting objects as for synthesis as well as for pharmacological screening. Thus, some derivatives of tetrazole demonstrated antimicrobial activity, namely 5-phenyl-tetrazolo[1,5-c]quinazoline was effective one against Staphylococcus aureus and Esherichia faecalis (MIC = 250 mg/L). Besides, investigation of the 9-bromo(chloro)-5-morpholin(piperidine)-4-yl-tetrazolo[1,5-c]quinazoline’s antimicrobial activity against Esherichia coli and Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus revealed that sensitivity of Gram-positive bacteria to the compounds was higher than that of Gram-negative bacteria. So, our previously synthesized, 31 derivatives of 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas were decided to test for their in vitro antibacterial activity against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Enterobacter aerogenes, Enterococcus faecalis ATCC 29212), Gram-negative bacteria (Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25922, Klebsiella pneumoniae 68) and antifungal properties against Candida albicans ATCC 885653. Agar-diffusion method was used for determination of the preliminary activity compared to well-known reference antimicrobials. All the compounds were dissolved in DMSO at a concentration of 100 μg/disk, using inhibition zone diameter (IZD, mm) as a measure for the antimicrobial activity. The most active turned to be 3 structures, that inhibited several bacterial strains: 1-ethyl-3-(5-fluoro-2-(1H-tetrazol-5-yl)phenyl)urea (1), 1-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-3-(4-(trifluoromethyl)phenyl)urea (2) and 1-(4-chloro-2-(1H-tetrazol-5-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (3). IZM (mm) was 40 (Escherichia coli), 25 (Klebsiella pneumonia) for compound 1; 12 (Pseudomonas aeruginosa), 15 (Staphylococcus aureus), 10 (Enterococcus faecalis) for compound 2; 25 (Staphylococcus aureus), 15 (Enterococcus faecalis) for compound 3. The most sensitive to the activity of the substances were Gram-negative bacteria Pseudomonas aeruginosa. While none of compound effected on Candida albicans. Speaking about, reference drugs: Amikacin (30 µg/disk) showed 27 and Ceftazide (30 µg/disk) 25 against Pseudomonas aeruginosa. That is, unfortunately, higher than studied 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas. Obtained results will be used for further purposeful optimization of the leading compounds in the more effective antimicrobials because of the ever-mounting problem of microorganism’s resistance.Keywords: antimicrobial, antifungal, compounds, 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas
Procedia PDF Downloads 35811 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut
Authors: Jung-En Kuan, Whei-Fen Wu
Abstract:
In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.Keywords: enzyme, esterase, lipotic hydrolase, type IV
Procedia PDF Downloads 13310 Oncology and Phytomedicine in the Advancement of Cancer Therapy for Better Patient Care
Authors: Hailemeleak Regassa
Abstract:
Traditional medicines use medicinal plants as a source of ingredients, and many modern medications are indirectly derived from plants. Consumers in affluent nations are growing disenchanted with contemporary healthcare and looking for alternatives. Oxidative stress is the primary cause of multiple diseases, and exogenous antioxidant supplementation or strengthening the body's endogenous antioxidant defenses are potential ways to counteract the negative effects of oxidative damage. Plants can biosynthesize non-enzymatic antioxidants that can reduce ROS-induced oxidative damage. Aging often aids the propagation and development of carcinogenesis, and older animals and older people exhibit increased vulnerability to tumor promoters. Cancer is a major public health issue, with several anti-cancer medications in clinical use. Potential drugs such as flavopiridol, roscovitine, combretastatin A-4, betulinic acid, and silvestrol are in the clinical or preclinical stages of research. Methodology: Microbial Growth media, Dimethyl sulfoxide (DMSO), methanol, ethyl acetate, and n-hexane were obtained from Himedia Labs, Mumbai, India. plant were collected from the Herbal Garden of Shoolini University campus, Solan, India (Latitude - 30.8644° N and longitude - 77.1184° E). The identity was confirmed by Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India, and documented in Voucher specimens - UHF- Herbarium no. 13784; vide book no. 3818 Receipt No. 086. The plant materials were washed with tap water, and 0.1% mercury chloride for 2 minutes, rinsed with distilled water, air dried, and kept in a hot air oven at 40ºc on blotting paper until all the water evaporated and became well dried for grinding. After drying, the plant materials were grounded using a mixer grinder into fine powder transferred into airtight containers with proper labeling, and stored at 4ºc for future use (Horablaga et al., 2023). The extraction process was done according to Altemimi et al., 2017. The 5g powder was mixed with 15 ml of the respective solvents (n-hexane, ethyl acetate, and methanol), and kept for 4-5 days on the platform shaker. The solvents used are based on their increasing polarity index. Then the extract was centrifuged at 10,000rpm for 5 minutes and filtered using No.1 Whatman filter paper.Keywords: cancer, phytomedicine, medicinal plants, oncology
Procedia PDF Downloads 719 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes
Authors: Sofia Lazareva, Artem Smolentsev
Abstract:
Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state
Procedia PDF Downloads 6768 Combination Therapies Targeting Apoptosis Pathways in Pediatric Acute Myeloid Leukemia (AML)
Authors: Ahlam Ali, Katrina Lappin, Jaine Blayney, Ken Mills
Abstract:
Leukaemia is the most frequently (30%) occurring type of paediatric cancer. Of these, approximately 80% are acute lymphoblastic leukaemia (ALL) with acute myeloid leukaemia (AML) cases making up the remaining 20% alongside other leukaemias. Unfortunately, children with AML do not have promising prognosis with only 60% surviving 5 years or longer. It has been highlighted recently the need for age-specific therapies for AML patients, with paediatric AML cases having a different mutational landscape compared with AML diagnosed in adult patients. Drug Repurposing is a recognized strategy in drug discovery and development where an already approved drug is used for diseases other than originally indicated. We aim to identify novel combination therapies with the promise of providing alternative more effective and less toxic induction therapy options. Our in-silico analysis highlighted ‘cell death and survival’ as an aberrant, potentially targetable pathway in paediatric AML patients. On this basis, 83 apoptotic inducing compounds were screened. A preliminary single agent screen was also performed to eliminate potentially toxic chemicals, then drugs were constructed into a pooled library with 10 drugs per well over 160 wells, with 45 possible pairs and 120 triples in each well. Seven cell lines were used during this study to represent the clonality of AML in paediatric patients (Kasumi-1, CMK, CMS, MV11-14, PL21, THP1, MOLM-13). Cytotoxicity was assessed up to 72 hours using CellTox™ Green reagent. Fluorescence readings were normalized to a DMSO control. Z-Score was assigned to each well based on the mean and standard deviation of all the data. Combinations with a Z-Score <2 were eliminated and the remaining wells were taken forward for further analysis. A well was considered ‘successful’ if each drug individually demonstrated a Z-Score <2, while the combination exhibited a Z-Score >2. Each of the ten compounds in one well (155) had minimal or no effect as single agents on cell viability however, a combination of two or more of the compounds resulted in a substantial increase in cell death, therefore the ten compounds were de-convoluted to identify a possible synergistic pair/triple combinations. The screen identified two possible ‘novel’ drug pairing, with BCL2 inhibitor ABT-737, combined with either a CDK inhibitor Purvalanol A, or AKT/ PI3K inhibitor LY294002. (ABT-737- 100 nM+ Purvalanol A- 1 µM) (ABT-737- 100 nM+ LY294002- 2 µM). Three possible triple combinations were identified (LY2409881+Akti-1/2+Purvalanol A, SU9516+Akti-1/2+Purvalanol A, and ABT-737+LY2409881+Purvalanol A), which will be taken forward for examining their efficacy at varying concentrations and dosing schedules, across multiple paediatric AML cell lines for optimisation of maximum synergy. We believe that our combination screening approach has potential for future use with a larger cohort of drugs including FDA approved compounds and patient material.Keywords: AML, drug repurposing, ABT-737, apoptosis
Procedia PDF Downloads 2037 Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts
Authors: Narayana Bhat, Majda Khalil, Hamad Al-Mansour, Anitha Manuvel, Vimla Yeddu
Abstract:
The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation.Keywords: medicinal plants, secondary metabolites, phytochemical screening, bioprospecting, radical scavenging
Procedia PDF Downloads 1776 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters
Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng
Abstract:
Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum
Procedia PDF Downloads 1625 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark
Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li
Abstract:
Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy
Procedia PDF Downloads 3564 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)
Authors: Anupalli Roja Rani, Pavithra Dasari
Abstract:
Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.
Procedia PDF Downloads 1123 Chemical Study and Cytotoxic Activity of Extracts from Erythroxylum Genus against HeLa Cells
Authors: Richele P. Severino, Maria M. F. Alchaar, Lorena R. F. De Sousa, Patrik S. Vital, Ana G. Silva, Rosy I. M. A. Ribeiro
Abstract:
Recognized as a global biodiversity hotspot, the Cerrado (Brazil) presents an extreme abundance of endemic species and it is considered to be one of the biologically richest tropical savanna regions in the world. Erythroxylum genus is found in Cerrado and chemically is characterized by the presence of tropane alkaloids, among them cocaine, a natural alkaloid produced by Erythroxylum coca Lam., which was used as a local anesthetic in small surgeries. However, cocaine gained notoriety due to its psychoactive activity in the Central Nervous System (CNS), becoming one of the major problems of public health today. Some species of Erythroxylum are referred to in the literature as having pharmacological potential, which provide alkaloids, terpenoids, and flavonoids. E. vacciniifolium Mart., commonly known as 'catuaba', is used as a central nervous system stimulant and has aphrodisiac properties and E. pelleterianum A. St.-Hil. in the treatment of stomach pains. Already E. myrsinites Mart. and E. suberosum A. St.-Hil. are used in the tannery industry. Species of Erythroxylum are also used in folk medicine for various diseases, against diabetes, antiviral, fungicidal, cytotoxicity, among others. The Cerrado is recognized as the richer savannah in the world in biodiversity but little explored from the chemical view. In our on-going study of the chemistry of Erythroxylum genus, we have investigated four specimens collected in central Cerrado of Brazil: E. campestre (EC), E. deciduum (ED), E. suberosum (ES) and E. tortuosum (ET). The cytotoxic activity of extracts was evaluated using HeLa cells, in vitro assays. The chemical investigation was performed preparing the extracts using n-hexane (H), dichloromethane (D), ethyl acetate (E) and methanol (M). The cells were treated with increasing concentrations of extracts (50, 75 and 100 μg/mL) diluted in DMSO (1%) and DMEM (0.5% FBS and 1% P/S). The IC₅₀ values were determined measured spectrophotometrically at 570 nm, after incubation of HeLa cell line for 48 hours using the MTT (SIGMA M5655), and calculated by nonlinear regression analysis using GraphPad Prism software. All the assays were done in triplicate and repeated at least two times. The cytotoxic assays showed some promising results with IC₅₀ values less than 100 μg/mL (ETD = 38.5 μg/mL; ETM = 92.3 μg/mL; ESM = 67.8 μg/mL; ECD = 24.0 μg/mL; ECM = 32.9; EDA = 44.2 μg/mL). The chemical profile study of ethyl acetate (E) and methanolic (M) extracts of E. tortuosum leaves was performed by LC-MS, and the structures of the compounds were determined by analysis of ¹H, HSQC and HMBC spectra, and confirmed by comparison with the literature data. The investigation led to six substances: α-amyrin, β-amyrin, campesterol, stigmastan-3,5-diene, β-sitosterol and 7,4’-di-O-methylquercetin-3-O-β-rutinoside, with flavonoid the major compound of extracts. By alkaline extraction of the methanolic extract, it was possible to identify three alkaloids: tropacocaine, cocaine and 6-methoxy-8-methyl-8-azabicyclo[3.2.1]octan-3-ol. The results obtained are important for the chemical knowledge of the Cerrado biodiversity and brought a contribution to the chemistry of Erythroxylum genus.Keywords: cytotoxicity, Erythroxylum, chemical profile, secondary metabolites
Procedia PDF Downloads 1442 The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model
Authors: Ponchang Apollos Wuyep, Alice Njolke Mafe, Longchi Satkat Zacheaus, Dogun Ojochogu, Dabot Ayuba Yakubu
Abstract:
Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections.Keywords: Terminalia mantaly, Aspergillus fumigatus, cytotoxic, Drosophila melanogaster, antifungal
Procedia PDF Downloads 851 Effects of Delphinidin on Lipid Metabolism in HepG2 Cells and Diet-Induced Obese Mice
Authors: Marcela Parra-Vargas, Ana Sandoval-Rodriguez, Roberto Rodriguez-Echevarria, Jose Dominguez-Rosales, Juan Armendariz-Borunda
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is characterized by an excess of hepatic lipids, and it is to author’s best knowledge, the most prevalent chronic liver disorder. Anthocyanin-rich food consumption is linked to health benefits in metabolic disorders associated with obesity and NAFLD, although the precise functional role of anthocyanidin delphinidin (Dp) has yet to be established. The aim of this study was to investigate the effect of the Dp in NAFLD metabolic alterations by evaluating prevention or amelioration of hepatic lipid accumulation, as well as molecular mechanisms in two experimental obesity-related models of NALFD. In vitro: HepG2 cells were incubated with sodium palmitate (PA, 1 mM) to induce lipotoxic damage, and concomitantly treated with Dp (180 uM) for 24 h. Subsequently, total lipid accumulation was measured by colorimetric staining with Oil Red O, and total intrahepatic triglycerides were determined by an enzymatic assay. To assess molecular mechanisms, cells were pre-treated with PA for 24 h and then exposed to Dp for 1 h. In vivo: four-week-old male C57BL/6Nhsd mice were allocated in two main groups. Mice were fed with standard diet (control) or high-fat and high-carbohydrate diet (45% fat, HFD) for 16 wk to induce NAFLD. Then HFD was divided into subgroups: one treated orally with Dp (15 mg/kg bw, HFD-Dp) every day for 4 wk, while HFD group treated with vehicle (DMSO). Weight and fasting glucose were recorded weekly, while dietary ingestion was measured daily. Insulin tolerance test was performed at the end of treatment. Liver histology was evaluated with H&E and Masson’s trichrome stain. RT-PCR was used to evaluate gene expression and Western Blot to determine levels of protein in both experimental models. Parametric data were analyzed with one-way ANOVA and Tukey’s post-hoc test. Kruskal-Wallis and Mann-Whitney U test for non-parametric data, and P < 0.5 were considered significant. Dp prevented hepatic lipid accumulation by PA in HepG2 hepatocytes. Furthermore, Dp down-regulated gene expression of SREBP1c, FAS, and CPT1a without modifying AMPK phosphorylation levels. In vivo, Dp oral administration did not ameliorate lipid metabolic alterations raised by HFD. Adiposity, dietary ingestion, fasting glucose, and insulin sensitivity after Dp treatment remained similar to HFD group. Histological analysis showed hepatic damage in HFD groups and no differences between HFD and HFD-Dp groups were found. Hepatic gene expression of ACC and FAS were not altered by HFD. SREBP1c was similar in both HFD and HFD-Dp groups. No significant changes were observed in SREBP1c, ACC, and FAS adipose tissue gene expression by HFD or Dp treatment. Additionally, immunoblotting analysis revealed no changes in pathway SIRT1-LKB-AMPK and PPAR alpha by both HFD groups compared to control. In conclusion, the antioxidant Dp may provoke beneficial effects in the prevention of hepatic lipid accumulation. Nevertheless, the oral dose administrated in mice that simulated the total intake of anthocyanins consumed daily by humans has no effect as a treatment on hepatic lipid metabolic alterations and histological abnormalities associated with exposure to chronic HFD. A healthy lifestyle with regular intake of antioxidants such as anthocyanins may prevent metabolic alterations in NAFLD.Keywords: anthocyanins, antioxidants, delphinidin, non-alcoholic fatty liver disease, obesity
Procedia PDF Downloads 202