Search results for: André Python
307 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 165306 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 96305 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network
Authors: Harshit Mittal, Neeraj Garg
Abstract:
Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network
Procedia PDF Downloads 70304 TessPy – Spatial Tessellation Made Easy
Authors: Jonas Hamann, Siavash Saki, Tobias Hagen
Abstract:
Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies
Procedia PDF Downloads 130303 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 72302 A Developmental Survey of Local Stereo Matching Algorithms
Authors: André Smith, Amr Abdel-Dayem
Abstract:
This paper presents an overview of the history and development of stereo matching algorithms. Details from its inception, up to relatively recent techniques are described, noting challenges that have been surmounted across these past decades. Different components of these are explored, though focus is directed towards the local matching techniques. While global approaches have existed for some time, and demonstrated greater accuracy than their counterparts, they are generally quite slow. Many strides have been made more recently, allowing local methods to catch up in terms of accuracy, without sacrificing the overall performance.Keywords: developmental survey, local stereo matching, rectification, stereo correspondence
Procedia PDF Downloads 296301 A Model for Operating Rooms Scheduling
Authors: Jose Francisco Ferreira Ribeiro, Alexandre Bevilacqua Leoneti, Andre Lucirton Costa
Abstract:
This paper presents a mathematical model in binary variables 0/1 to make the assignment of surgical procedures to the operating rooms in a hospital. The proposed mathematical model is based on the generalized assignment problem, which maximizes the sum of preferences for the use of the operating rooms by doctors, respecting the time available in each room. The corresponding program was written in Visual Basic of Microsoft Excel, and tested to schedule surgeries at St. Lydia Hospital in Ribeirao Preto, Brazil.Keywords: generalized assignment problem, logistics, optimization, scheduling
Procedia PDF Downloads 296300 Strong Microcapsules with Macroporous Polymer Shells
Authors: Eve S. A. Loiseau, Marion Frey, Yves Blickenstorfer, Fabian Niedermair, André R. Studart
Abstract:
Porous microcapsules have a broad range of applications that require a robust shell. We propose a new method to produce macroporous polymer capsules with controlled size, shell thickness, porosity and mechanical properties using co-flow flow-focusing glass capillary devices. The porous structure was investigated through SEM and the permeability through confocal microscopy. Compression tests on single capsules were performed. We obtained microcapsules with tailored permeability from open to close pores structures and able to withstand loads up to 150 g.Keywords: microcapsules, micromechanics, porosity, polymer shells
Procedia PDF Downloads 450299 Fatigue of Multiscale Nanoreinforced Composites: 3D Modelling
Authors: Leon Mishnaevsky Jr., Gaoming Dai
Abstract:
3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro-micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement (localized in the fiber/matrix interface (fiber sizing) and distributed throughout the matrix) on the crack path, damage mechanisms and fatigue behavior is investigated in numerical experiments.Keywords: computational mechanics, fatigue, nanocomposites, composites
Procedia PDF Downloads 609298 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 161297 Graphene-Based Reconfigurable Lens Antenna for 5G/6G and Satellite Networks
Authors: André Lages, Victor Dmitriev, Juliano Bazzo, Gianni Portela
Abstract:
This work evaluates the feasibility of the graphene application to perform as a wideband reconfigurable material for lens antennas in 5G/6G and satellite applications. Based on transformation optics principles, the electromagnetic waves can be efficiently guided by modifying the effective refractive index. Graphene behavior can range between a lossy dielectric and a good conductor due to the variation of its chemical potential bias, thus arising as a promising solution for electromagnetic devices. The graphene properties and a lens antenna comprising multiples layers and periodic arrangements of graphene patches were analyzed using full-wave simulations. A dipole directivity was improved from 7 to 18.5 dBi at 29 GHz. In addition, the realized gain was enhanced 7 dB across a 14 GHz bandwidth within the Ka/5G band.Keywords: 5G/6G, graphene, lens, reconfigurable, satellite
Procedia PDF Downloads 151296 Genomic Evidence for Ancient Human Migrations Along South America's East Coast
Authors: Andre Luiz Campelo dos Santos, Amanda Owings, Henry Socrates Lavalle Sullasi, Omer Gokcumen, Michael DeGiorgio, John Lindo
Abstract:
An increasing body of archaeological and genomic evidence have indicated a complex settlement process of the Americas. Here, four newly sequenced ancient genomes from Northeast Brazil and Uruguay are reported to share strong relationships with previously published samples from Panama and Southeast Brazil. Moreover, an unexpected high genomic affinity with present-day Onge is found in ancient individuals unearthed along the northern portion of South America’s Atlantic coast. These results provide genomic evidence for ancient migrations along South America’s Atlantic coast.Keywords: archaeogenomics, atlantic coast, paleomigrations, South America
Procedia PDF Downloads 246295 Aligning Organizational Culture and Compensation Strategies
Authors: Giuseppe Maria Russo, Patrícia Amélia Tomei, Antônio Linhares, André Moreira Santos
Abstract:
Alignment between management strategies, policies and practices with organizational cultures holds great potential to meet the challenges of retaining professionals and maintaining their commitment. In this article, authors consider that when it is aligned with company strategy, compensation acts as an incentive for developing common visions within the organizational culture. This article verified the correlation between types of culture and compensation’s strategic components and provided inputs for the definition of strategies aligned with cultural typologies. We conclude that the impact of compensation variables varies according to the type of organizational culture. This result reinforces the theory that different cultures define different organizational strategies. Thus, compensation strategies may explain types of organizational culture.Keywords: compensation, Handy’s cultural typology, organizational culture, rewards
Procedia PDF Downloads 664294 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 22293 The Interdisciplinary Synergy Between Computer Engineering and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization
Procedia PDF Downloads 20292 Synchrony between Genetic Repressilators in Sister Cells in Different Temperatures
Authors: Jerome G. Chandraseelan, Samuel M. D. Oliveira, Antti Häkkinen, Sofia Startceva, Andre S. Ribeiro
Abstract:
We used live E. coli containing synthetic genetic oscillators to study how the degree of synchrony between the genetic circuits of sister cells changes with temperature. We found that both the mean and the variability of the degree of synchrony between the fluorescence signals from sister cells are affected by temperature. Also, while most pairs of sister cells were found to be highly synchronous in each condition, the number of asynchronous pairs increased with increasing temperature, which was found to be due to disruptions in the oscillations. Finally we provide evidence that these disruptions tend to affect multiple generations as opposed to individual cells. These findings provide insight in how to design more robust synthetic circuits and in how cell division can affect their dynamics.Keywords: repressilator, robustness, synchrony, synthetic biology
Procedia PDF Downloads 486291 Educational Robotics with Easy Implementation and Low Cost
Authors: Maria R. A. R. Moreira, Francisco R. O. Da Silva, André O. A. Fontenele, Érick A. Ribeiro
Abstract:
This article deals with the influence of technology in education showing educational robotics as pedagogical method of solution for knowledge building. We are proposing the development and implementation of four robot models that can be used for teaching purposes involving the areas of mechatronics, mechanics, electronics and computing, making it efficient for learning other sciences and theories. One of the main reasons for application of the developed educational kits is its low cost, allowing its applicability to a greater number of educational institutions. The technology will add to education dissemination of knowledge by means of experiments in such a way that the pedagogical robotics promotes understanding, practice, solution and criticism about classroom challenges. We also present the relationship between education, science, technology and society through educational robotics, treated as an incentive to technological careers.Keywords: education, mecatronics, robotics, technology
Procedia PDF Downloads 389290 Integration Network ASI in Lab Automation and Networks Industrial in IFCE
Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro
Abstract:
The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.Keywords: automation, industrial networks, SCADA systems, lab automation
Procedia PDF Downloads 552289 Staphylococcus Aureus Septic Arthritis and Necrotizing Fasciitis in a Patient With Undiagnosed Diabetes Mellitus.
Authors: Pedro Batista, André Vinha, Filipe Castelo, Bárbara Costa, Ricardo Sousa, Raquel Ricardo, André Pinto
Abstract:
Background: Septic arthritis is a diagnosis that must be considered in any patient presenting with acute joint swelling and fever. Among the several risk factors for septic arthritis, such as age, rheumatoid arthritis, recent surgery, or skin infection, diabetes mellitus can sometimes be the main risk factor. Staphylococcus aureus is the most common pathogen isolated in septic arthritis; however, it is uncommon in monomicrobial necrotizing fasciitis. Objectives: A case report of concomitant septic arthritis and necrotizing fasciitis in a patient with undiagnosed diabetes based on clinical history. Study Design & Methods: We report a case of a 58-year-old Portuguese previously healthy man who presented to the emergency department with fever and left knee swelling and pain for two days. The blood work revealed ketonemia of 6.7 mmol/L and glycemia of 496 mg/dL. The vital signs were significant for a temperature of 38.5 ºC and 123 bpm of heart rate. The left knee had edema and inflammatory signs. Computed tomography of the left knee showed diffuse edema of the subcutaneous cellular tissue and soft tissue air bubbles. A diagnosis of septic arthritis and necrotising fasciitis was made. He was taken to the operating room for surgical debridement. The samples collected intraoperatively were sent for microbiological analysis, revealing infection by multi-sensitive Staphylococcus aureus. Given this result, the empiric flucloxacillin (500 mg IV) and clindamycin (1000 mg IV) were maintained for 3 weeks. On the seventh day of hospitalization, there was a significant improvement in subcutaneous and musculoskeletal tissues. After two weeks of hospitalization, there was no purulent content and partial closure of the wounds was possible. After 3 weeks, he was switched to oral antibiotics (flucloxacillin 500 mg). A week later, a urinary infection by Pseudomonas aeruginosa was diagnosed and ciprofloxacin 500 mg was administered for 7 days without complications. After 30 days of hospital admission, the patient was discharged home and recovered. Results: The final diagnosis of concomitant septic arthritis and necrotizing fasciitis was made based on the imaging findings, surgical exploration and microbiological tests results. Conclusions: Early antibiotic administration and surgical debridement are key in the management of septic arthritis and necrotizing fasciitis. Furthermore, risk factors control (euglycemic blood glucose levels) must always be taken into account given the crucial role in the patient's recovery.Keywords: septic arthritis, Necrotizing fasciitis, diabetes, Staphylococcus Aureus
Procedia PDF Downloads 318288 Modelling Spatial Dynamics of Terrorism
Authors: André Python
Abstract:
To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling
Procedia PDF Downloads 351287 A Correlational Study between Parentification and Memory Retention among Parentified Female Adolescents: A Neurocognitive Perspective on Parentification
Authors: Mary Dorothy Roxas, Jeian Mae Dungca, Reginald Agor, Beatriz Figueroa, Lennon Andre Patricio, Honey Joy Cabahug
Abstract:
Parentification occurs when children are expected to provide instrumental or emotional caregiving within the family. It was found that parentification has the latter effect on adolescents’ cognitive and emotional vulnerability. Attachment theory helps clarify the process of parentification as it involves the relationship between the child and the parent. Carandang theory of “taga-salo” helps explain parentification in the Philippines setting. The present study examined the potential risk of parentification on adolescent’s memory retention by hypothesizing that there is a correlation between the two. The research was conducted with 249 female adolescents ages 12-24, residing in Valenzuela City. Results indicated that there is a significant inverse correlation between parentification and memory retention.Keywords: memory retention, neurocognitive, parentification, stress
Procedia PDF Downloads 692286 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach
Authors: Theertha Chandroth
Abstract:
This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.Keywords: XML, JSON, data comparison, integration testing, Python, SQL
Procedia PDF Downloads 145285 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 22284 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams
Authors: Shael Brown, Reza Farivar
Abstract:
Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.Keywords: machine learning, persistence diagrams, R, statistical inference
Procedia PDF Downloads 90283 Incorporating Chinese Calligraphic Concept in 3D Space
Authors: Woon Lam Ng.
Abstract:
This paper explores the basic structures of Chinese calligraphy brushwork, its textures, its characteristic forms, and how its strength can be incorporated into 3d animation. It investigates how these structures could create visual simplification and suggest movement. The conceptual difference between realistic rendering and the Chinese calligraphic concept of simplification is discussed. With the help of the Python programmable environment in Maya, the concept of Chinese calligraphy in 3d space and its idea of visual simplification and abstraction were explored. The work demonstrates how the Chinese calligraphic brushwork could suggest the dynamics of motion in 3d space. Some limitations of the Maya emitting process are also discussed. Possible further explorations through additional mathematical adjustments to the selected Maya shader are also suggested to enhance the presentation.Keywords: calligraphy, brushwork, dynamics, movements
Procedia PDF Downloads 261282 pscmsForecasting: A Python Web Service for Time Series Forecasting
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.Keywords: time series, forecasting, web service, open source
Procedia PDF Downloads 88281 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 133280 Towards a Competitive South African Tooling Industry
Authors: Mncedisi Trinity Dewa, Andre Francois Van Der Merwe, Stephen Matope
Abstract:
Tool, Die and Mould-making (TDM) firms have been known to play a pivotal role in the growth and development of the manufacturing sectors in most economies. Their output contributes significantly to the quality, cost and delivery speed of final manufactured parts. Unfortunately, the South African Tool, Die and Mould-making manufacturers have not been competing on the local or global market in a significant way. This reality has hampered the productivity and growth of the sector thus attracting intervention. The paper explores the shortcomings South African toolmakers have to overcome to restore their competitive position globally. Results from a global benchmarking survey on the tooling sector are used to establish a roadmap of what South African toolmakers can do to become a productive, World Class force on the global market.Keywords: competitive performance objectives, toolmakers, world-class manufacturing, lead times
Procedia PDF Downloads 522279 Models Development of Graphical Human Interface Using Fuzzy Logic
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory.Keywords: software development models, software quality, supervision software, fuzzy logic
Procedia PDF Downloads 375278 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 373