Search results for: solvent thermal method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21916

Search results for: solvent thermal method

16036 UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin

Authors: Duygu Yüksel Deniz, Memet Vezir Kahraman, Serap Erdem Kuruca, Mediha Süleymanoğlu

Abstract:

Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed.

Keywords: cell culture, keratin, nanofibers, UV-reactive electrospinning

Procedia PDF Downloads 454
16035 Synthesis and Performance Study of Co3O4 as a Bi-Functional Next Generation Material

Authors: Shrikaant Kulkarni, Akshata Naik Nimbalkar

Abstract:

In this worki a method protocol has been developed for the synthesis of innovative Co3O4 material by using a method of chemical synthesis followed by calcination. The effect of calcination temperature on the morphology, structure and catalytic performance on material in question is investigated by using characterization tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy and electrochemical techniques. The SEM images reveal that the morphology of the Co3O4 material undergoes a change from the rod to a beadlike shape on calcination at temperature of 700 °C. The XRD image shows that although the morphology of synthesized Co3O4 material exhibits a cubic phase but it differs in crystallinity depending upon morphology. Similarly spherical beadlike Co3O4 material has exhibited better activity than its rodlike counterpart which is reflected from electrochemical findings. Further, its performance in terms of bifunctional nature and hlods a lot much of promise as a excellent electrode material in the next generation batteries and fuel cells.

Keywords: bifunctional, next generation material, Co3O4, XRD

Procedia PDF Downloads 380
16034 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 123
16033 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones

Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu

Abstract:

Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclones

Keywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow

Procedia PDF Downloads 408
16032 Impacts of International Training Program in Pedagogy in Higher Education in the United States on Visiting Scholars in China

Authors: Yuliang Liu, Thomas Lavallee, Mary Weishaar, Gretchen Fricke, Huaibo Xin

Abstract:

The longitudinal study was designed to investigate the impacts of the International Training Program in Pedagogy (ITPP) at a midwestern institution in the United States on the visiting scholars from China from 2012-18. The study used the survey research method and involved 48 visiting scholars from Northwest Normal University in China in those eight ITPP cohorts. The results of both quantitative and qualitative data were critically examined and indicated both types of data sources revealed similar findings. It was found that the ITPP has significantly affected all scholars' instruction in China. International implications resulted from the study.

Keywords: international training program in pedagogy, visiting scholars, survey research method, International implications

Procedia PDF Downloads 212
16031 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization

Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak

Abstract:

Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.

Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization

Procedia PDF Downloads 292
16030 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics

Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong

Abstract:

Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.

Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes

Procedia PDF Downloads 292
16029 A Technical and Economic Feasibility Study of the Use of Concentrating Solar Power (CSP) in Desalination Plants on the Kenyan Coast

Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu

Abstract:

Despite the implementation of a Feed in Tariff (FiT) for solar power plants in Kenya, the uptake and subsequent development of utility scale power plants has been slow. This paper, therefore, proposes a Concentrating Solar Power (CSP) plant configuration that can supply both power to the grid and operate a sea water desalination plant, thus providing an economically viable alternative to Independent Power Producers (IPPs). The largest city on the coast, Mombasa, has a chronic water shortage and authorities are looking to employ desalination plants to supply a deficit of up to 100 million cubic meters of fresh water per day. In this study the desalination plant technology was selected based on an analysis of operational costs in $/m3 of plants that are already running. The output of the proposed CSP plant, Net Present Value (NPV), plant capacity factor, thermal efficiency and quantity of CO2 emission avoided were simulated using Greenius software (Green energy system analysis tool) developed by the institute of solar research at the German Aerospace Center (DLR). Data on solar irradiance were derived from the Solar and Wind Energy Resource Assessment (SWERA) for Kenya.

Keywords: desalination, feed in tariff, independent power producer, solar CSP

Procedia PDF Downloads 285
16028 Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems

Authors: Debjani Chakraborty, Abhijit Chatterjee, Aishwaryaprajna

Abstract:

Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem.

Keywords: geometric programming problem, multivariate optimisation technique, posynomial, spatial interpolation

Procedia PDF Downloads 371
16027 Preparation and Characterization of Recycled Polyethylene Terephthalate/Polypropylene Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector

Authors: Merve Ozer, Tolga Gokkurt, Yasemen Gokkurt, Ezgi Bozbey

Abstract:

In this study, we investigated the recovery of Polyethylene terephthalate/Polypropylene (PET/PP)-containing automotive textile waste from post-product and post-consumer phases in the automotive sector according to the upcycling technique and the methods of formulation and production that would allow these wastes to be substituted as PP/PET alloys instead of original PP raw materials used in plastic edge band production. The laminated structure of the stated wastes makes it impossible to separate the incompatible PP and PET phases in content and thus produce a quality raw material or product as a result of recycling. Within the scope of a two-stage production process, a comprehensive process was examined using block copolymers and maleic grafted copolymers with different features to ensure that these two incompatible phases are compatible. The mechanical, thermal, and morphological properties of the plastic raw materials, which will be referred to as PP/PET blends obtained as a result of the process, were examined in detail and discussed their substitutability instead of the original raw materials.

Keywords: mechanical recycling, melt blending, plastic blends, polyethylene, polypropylene, recycling of plastics, terephthalate, twin screw extruders

Procedia PDF Downloads 72
16026 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 140
16025 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 73
16024 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method

Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay

Abstract:

This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.

Keywords: biaxial test, particle shape, monotonic, cyclic

Procedia PDF Downloads 72
16023 Selection and Preparation of High Performance, Natural and Cost-Effective Hydrogel as a Bio-Ink for 3D Bio-Printing and Organ on Chip Applications

Authors: Rawan Ashraf, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab

Abstract:

Background: Three-dimensional (3D) bio-printing has become a versatile and powerful method for generating a variety of biological constructs, including bone or extracellular matrix scaffolds endo- or epithelial, muscle tissue, as well as organoids. Aim of the study: Fabricate a low cost DIY 3D bio-printer to produce 3D bio-printed products such as anti-microbial packaging or multi-organs on chips. We demonstrate the alignment between two types of 3D printer technology (3D Bio-printer and DLP) on Multi-organ-on-a-chip (multi-OoC) devices fabrication. Methods: First, Design and Fabrication of the Syringe Unit for Modification of an Off-the-Shelf 3D Printer, then Preparation of Hydrogel based on natural polymers Sodium Alginate and Gelatin, followed by acquisition of the cell suspension, then modeling the desired 3D structure. Preparation for 3D printing, then Cell-free and cell-laden hydrogels went through the printing process at room temperature under sterile conditions and finally post printing curing process and studying the printed structure regards physical and chemical characteristics. The hard scaffold of the Organ on chip devices was designed and fabricated using the DLP-3D printer, following similar approaches as the Microfluidics system fabrication. Results: The fabricated Bio-Ink was based onHydrogel polymer mix of sodium alginate and gelatin 15% to 0.5%, respectively. Later the 3D printing process was conducted using a higher percentage of alginate-based hydrogels because of it viscosity and the controllable crosslinking, unlike the thermal crosslinking of Gelatin. The hydrogels were colored to simulate the representation of two types of cells. The adaption of the hard scaffold, whether for the Microfluidics system or the hard-tissues, has been acquired by the DLP 3D printers with fabricated natural bioactive essential oils that contain antimicrobial activity, followed by printing in Situ three complex layers of soft-hydrogel as a cell-free Bio-Ink to simulate the real-life tissue engineering process. The final product was a proof of concept for a rapid 3D cell culturing approaches that uses an engineered hard scaffold along with soft-tissues, thus, several applications were offered as products of the current prototype, including the Organ-On-Chip as a successful integration between DLP and 3D bioprinter. Conclusion: Multiple designs for the organ-on-a-chip (multi-OoC) devices have been acquired in our study with main focus on the low cost fabrication of such technology and the potential to revolutionize human health research and development. We describe circumstances in which multi-organ models are useful after briefly examining the requirement for full multi-organ models with a systemic component. Following that, we took a look at the current multi-OoC platforms, such as integrated body-on-a-chip devices and modular techniques that use linked organ-specific modules.

Keywords: 3d bio-printer, hydrogel, multi-organ on chip, bio-inks

Procedia PDF Downloads 174
16022 Mobile Collaboration Learning Technique on Students in Developing Nations

Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama

Abstract:

New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.

Keywords: education, communication, learning, mobile collaboration, technology

Procedia PDF Downloads 221
16021 Loop Heat Pipe Two-Phase Heat Transports: Guidelines for Technology Utilization

Authors: Triem T. Hoang

Abstract:

Loop heat pipes (LHPs) are two-phase capillary-pumped heat transports. An appropriate working fluid is selected for the intended application temperature range. A closed-loop is evacuated to a high vacuum, back-filled partially with the working fluid, and then hermetically sealed under the fluid own pressure. Heat from a heat source conducts through the evaporator casing to vaporize liquid on the outer surface of the wick structure inside the evaporator. The generated vapor is compelled to vent out of the evaporator and into the vapor line for transport to the condenser assembly. There, heat is removed and rejected to a heat sink to condensed vapor back to liquid. The liquid exits the condenser and travels in the liquid line to return to the evaporator to complete the cycle. The circulation of fluid, and thus the heat transport in the LHP, is accomplished entirely by capillary action. The LHP contains no mechanical moving part to wear out or break down and, therefore possesses, reliability and a long life even without maintenance. In this paper, the author not only attempts to introduce the LHP technology in simplistic terms to those who are not familiar with it but also provides necessary technical information to potential users for the proper design and analysis of the LHP system.

Keywords: two-phase heat transfer, loop heat pipe, capillary pumped technology, thermal-fluid modeling

Procedia PDF Downloads 140
16020 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus

Authors: Majid Forghani, Michael Khachay

Abstract:

In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.

Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition

Procedia PDF Downloads 157
16019 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: adaptive methods, LSE, MSE, prediction of financial Markets

Procedia PDF Downloads 336
16018 Curriculum for the Manufacturing and Engineering Course Programs in Industries

Authors: Muhammad Yasir Latif

Abstract:

Industrial Engineering and Management (IEM) is a continuous, adaptable, and dynamic branch of engineering. The purpose of this study is to use a knowledge-based course classification method to investigate four IEM educational programs in Europe. Furthermore, the relative weight of each sector was determined using the credit value of the courses. IEM-specific locations and pooled areas were the two related kinds of areas that were used. The results show that, among the four program curricula, Production Management is the specific area with the largest weight, while the specialism field of IEM has a similar weight. This method has proved to be useful for curriculum analysis. The results show that one characteristic of IEM curriculum programs is diversity in the knowledge domains related to IEM specialism. The research also highlights the importance of an organized structure for defining IEM applications, allowing benchmarking efforts, and promoting communication between academics and the IEM community.

Keywords: industrial engineering and management, knowledge areas, curriculum analysis, community

Procedia PDF Downloads 21
16017 The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey

Authors: M. Kubilay Önal

Abstract:

The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones.

Keywords: apricot, phenological characters, pomological characters, weight-ranking method

Procedia PDF Downloads 281
16016 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces

Authors: S. Matour, M. Mahdavinejad, R. Fayaz

Abstract:

Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.

Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance

Procedia PDF Downloads 205
16015 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades

Authors: E. Tandis, E. Assareh

Abstract:

Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employed

Keywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine

Procedia PDF Downloads 316
16014 Forward Stable Computation of Roots of Real Polynomials with Only Real Distinct Roots

Authors: Nevena Jakovčević Stor, Ivan Slapničar

Abstract:

Any polynomial can be expressed as a characteristic polynomial of a complex symmetric arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen as real. By using accurate forward stable algorithm for computing eigen values of real symmetric arrowhead matrices we derive a forward stable algorithm for computation of roots of such polynomials in O(n^2 ) operations. The algorithm computes each root to almost full accuracy. In some cases, the algorithm invokes extended precision routines, but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials. Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method.

Keywords: roots of polynomials, eigenvalue decomposition, arrowhead matrix, high relative accuracy

Procedia PDF Downloads 418
16013 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 111
16012 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 147
16011 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates

Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat

Abstract:

In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.

Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio

Procedia PDF Downloads 405
16010 Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile

Authors: Zulfikar Dinar Wahidayat Putra

Abstract:

Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city.

Keywords: arid area, sustainable water system, urban harvest approach, self-sufficiency

Procedia PDF Downloads 266
16009 Analytical Design of IMC-PID Controller for Ideal Decoupling Embedded in Multivariable Smith Predictor Control System

Authors: Le Hieu Giang, Truong Nguyen Luan Vu, Le Linh

Abstract:

In this paper, the analytical tuning rules of IMC-PID controller are presented for the multivariable Smith predictor that involved the ideal decoupling. Accordingly, the decoupler is first introduced into the multivariable Smith predictor control system by a well-known approach of ideal decoupling, which is compactly extended for general nxn multivariable processes and the multivariable Smith predictor controller is then obtained in terms of the multiple single-loop Smith predictor controllers. The tuning rules of PID controller in series with filter are found by using Maclaurin approximation. Many multivariable industrial processes are employed to demonstrate the simplicity and effectiveness of the presented method. The simulation results show the superior performances of presented method in compared with the other methods.

Keywords: ideal decoupler, IMC-PID controller, multivariable smith predictor, Padé approximation

Procedia PDF Downloads 419
16008 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 189
16007 Automatic Calibration of Agent-Based Models Using Deep Neural Networks

Authors: Sima Najafzadehkhoei, George Vega Yon

Abstract:

This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.

Keywords: ABM, calibration, CNN, LSTM, epidemiology

Procedia PDF Downloads 25