Search results for: optimized closed polygonal segment method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20684

Search results for: optimized closed polygonal segment method

14894 Development of a Smart Liquid Level Controller

Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo

Abstract:

In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.

Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module

Procedia PDF Downloads 116
14893 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 76
14892 The Results of Reading Test on Movement Staff Notation System

Authors: Sonay Ödemiş

Abstract:

Movement Staff Notation System (MSNS) is a movement transcription, analyzing method, and it's been constantly improved since it was first developed in 2005. This method is based on human anatomy, is being used and applied in the lessons at The Department of Turkish Folk Dances in Istanbul Technical University, nowadays. In this research, it is aimed to discover, how MSNS can help to participants about learning the basic movements of lower extremity. This experiment has six volunteers who were randomly selected. Each volunteer has been graded for their dance backgrounds and all the volunteers have been studied for six weeks. Each week has included different topic and examples such as contacts on foot, jumps, timing, directions and basic symbols of MSNS. Examples have changed from easy to hard. On conclusion, 6 volunteer subjects were tested in final test. The tests were recorded with the camera. In this presentation, it will be explained and detailed the results of the reading test on MSNS. Some of important video records will be watched and interpreted after the test. As a conclusion, all the scores will be interpreted and assessed from different perspectives.

Keywords: dance notation, Turkish dances, reading test, Education

Procedia PDF Downloads 224
14891 Order Fulfilment Strategy in E-Commerce Warehouse Based on Simulation: Business Customers Case

Authors: Aurelija Burinskiene

Abstract:

This paper presents the study for an e-commerce warehouse. The study is aiming to improve order fulfillment activity by identifying the strategy presenting the best performance. A simulation model was proposed to reach the target of this research. This model enables various scenario tests in an e-commerce warehouse, allowing them to find out for the best order fulfillment strategy. By using simulation, model authors investigated customers’ orders representing on-line purchases for one month. Experiments were designed to evaluate various order picking methods applicable to the fulfillment of customers’ orders. The research uses cost components analysis and helps to identify the best possible order picking method improving the overall performance of e-commerce warehouse and fulfillment service to the customers. The results presented show that the application of order batching strategy is the most applicable because it brings distance savings of around 6.7 percentage. This result could be improved by taking an assortment clustering action until 8.34 percentage. So, the recommendations were given to apply the method for future e-commerce warehouse operations.

Keywords: e-commerce, order, fulfilment, strategy, simulation

Procedia PDF Downloads 137
14890 The Impact of E-Commerce in Changing Shopping Lifestyle of Urban Communities in Jakarta

Authors: Juliana Kurniawati, Helen Diana Vida

Abstract:

Visiting mall is one of the Indonesian communities’ lifestyle who live in urban areas. Indonesian people, especially who live in Jakarta, use a shopping mall as one of the favourite places to get pleasure. This mall visitors come from various social classes. They use the shopping mall as a place to identify themselves as urban people. Jakarta has a number of great shopping malls such as Plaza Indonesia, Plaza Senayan, Pondok Indah Mall, etc. The shopping malls become one of the popular places since Jakarta's public sphere such as parks and playgrounds are very limited in number compared to that of shopping malls. In Jakarta, people do not come to a shopping mall only for shopping. Sometimes they go there to look around, meet up with some friends, or watch a movie. We can find everything in the shopping malls. The principle of one-stop shopping becomes an attractive offer for urban people. The items for selling are various, from the cheap goods to the expensive ones. A new era in consumer culture began with the advent of shopping was localized in France in the 19th century. Since the development of the online store and the easier way to access the internet, everyone can shop 24 hours anywhere they want. The emergence of online store indirectly has an impact on the viability of conventional stores. In October 2017, in Indonesia, two outlets branded goods namely Lotus and Debenhams were closed. This may a result of increasingly rampant online stores and shopping style urban society shift. The rising of technology gives some influence on the development of e-commerce in Indonesia. Everyone can access e-commerce. However, those who can do it are the middle up class to high class people. The development of e-commerce in Indonesia is quite fast, we can observe the emergence of various online shopping sites on various social media platforms such as Zalora, Berrybenka, Bukalapak, Lazada, and Tokopedia. E-commerce is increasingly affecting people's lives in line with the development of lifestyle and increasing revenue. This research aims to know the reasons of urban society choosing e-commerce as a medium for grocery shopping, how e-commerce is affecting their shopping styles, as well as why society provides confidence in the online store for shopping. This research uses theories of lifestyle by David Chaney. The subject of this research is urban society who actively shop online on Zalora, the communities based in Jakarta. Zalora site was chosen because the site is selling branded goods. This research is expected to explain in detail about the changing style of the urban community from the shopping mall to digital media by emphasizing the aspect of public confidence towards the online store.

Keywords: e-commerce, shopping, lifestyle, changing

Procedia PDF Downloads 283
14889 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: direct search, DFIG, equivalent circuit parameters, optimization

Procedia PDF Downloads 241
14888 The Influence of E-Learning on Teachers and Students Educational Interactions in Tehran City

Authors: Hadi Manjiri, Mahdyeh Bakhshi, Ali Jafari, Maryam Salati

Abstract:

This study investigates the influence of e-learning on teacher-student instructional interactions through the mediating role of computer literacy among elementary school teachers in Tehran. The research method is a survey that was conducted among elementary school students in Tehran. A sample size of 338 was determined based on Morgan's table. A stratified random sampling method was used to select 228 women and 110 men for the study. Bagherpour et al.'s computer literacy questionnaire, Elahi et al.'s e-learning questionnaire, and Lourdusamy and Khine's questionnaire on teacher-student instructional interactions were used to measure the variables. The data were analyzed using SPSS and LISREL software. It was found that e-learning affects teacher-student instructional interactions, mediated by teachers' computer literacy. In addition, the results suggest that e-learning predicts a 0.66 change in teacher-student instructional interactions, while computer literacy predicts a 0.56 change in instructional interactions between teachers and students.

Keywords: e-learning, instructional interactions, computer literacy, students

Procedia PDF Downloads 103
14887 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India

Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal

Abstract:

The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.

Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface

Procedia PDF Downloads 239
14886 Economic and Environmental Benefits of the Best Available Technique Application in a Food Processing Plant

Authors: Frantisek Bozek, Pavel Budinsky, Ignac Hoza, Alexandr Bozek, Magdalena Naplavova

Abstract:

A cleaner production project was implemented in a bakery. The project is based on the substitution of the best available technique for an obsolete leaven production technology. The new technology enables production of durable, high-quality leavens. Moreover, 25% of flour as the original raw material can be replaced by pastry from the previous day production which has not been sold. That pastry was previously disposed in a waste incineration plant. Besides the environmental benefits resulting from less waste, lower consumption of energy, reduction of sewage waters quantity and floury dustiness there are also significant economic benefits. Payback period of investment was calculated with help of static method of financial analysis about 2.6 years, using dynamic method 3.5 years and an internal rate of return more than 29%. The supposed annual average profit after taxation in the second year of operation was incompliance with the real profit.

Keywords: bakery, best available technology, cleaner production, costs, economic benefit, efficiency, energy, environmental benefit, investment, savings

Procedia PDF Downloads 349
14885 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 124
14884 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.

Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance

Procedia PDF Downloads 382
14883 Filled Polymer Composite

Authors: Adishirin Mammadov

Abstract:

Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.

Keywords: polyethylene, polymer, composites, filler, reology

Procedia PDF Downloads 39
14882 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops

Authors: Vijay Shankar

Abstract:

In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.

Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity

Procedia PDF Downloads 315
14881 Designing Short-Term Study Abroad Programs for Graduate Students: The Case of Morocco

Authors: Elaine Crable, Amit Sen

Abstract:

Short-term study abroad programs have become a mainstay of MBA programs. The benefits of international business experiences, along with its exposure to global cultures, are well documented. However, developing a rewarding study, abroad program at the graduate level can be challenging for Faculty, especially when devising such a program for a group of part-time MBA students who come with a wide range of experiences and demographic characteristics. Each student has individual expectations for the study abroad experience. This study provides suggestions and considerations for Faculty that are planning to design a short-term study abroad program, especially for part-time MBA students. Insights are based on a recent experience leading a group of twenty-one students on a ten-day program to Morocco. The trip was designed and facilitated by two faculty members and a local Moroccan facilitator. This experience led to a number of insights and recommendations. First, the choice of location is critical. The choice of Morocco was very deliberate, owing to its multi-faceted cultural landscape and international business interest. It is an Islamic State with close ties to Europe both culturally and geographically and Morocco is a multi-lingual country with some combination of three languages spoken by most – English, Arabic, and French. Second, collaboration with a local ‘academic’ partner allowed the level of instruction to be both rigorous and significantly more engaging. Third, allowing students to participate in the planning of the trip enabled the trip participants to collaborate, negotiate, and share their own experiences and strengths. The pre-trip engagement was structured by creating four sub-groups, each responsible for an assigned city. Each student sub-group had to provide a historical background of the assigned city, plan the itinerary including sites to visit, cuisine to experience, industries to explore, markets to visit, plus provide a budget for that city’s expenses. The pre-planning segment of the course was critical for the success of the program as students were able to contribute to the design of the program through collaboration and negotiation with their peers. Fourth, each student sub-group was assigned industry to study within Morocco. The student sub-group prepared a presentation and a group paper with their analysis of the chosen industries. The pre-planning activities created strong bonds among the trip participants, which was evident when faced with on-ground challenges, especially when it was necessary to quickly evacuate due to a surprise USA COVID evacuation notice. The entire group supported each other when quickly making their way back to the United States. Unfortunately, the trip was cut short by two days due to this emergency exit, but the feedback regarding the program was very positive all around. While the program design put pressure on the Faculty leads regarding planning and coordination upfront, the outcome in terms of student engagement, student learning, collaboration and negotiation were all favorable and worth the effort. Finally, an added value, the cost of the program for the student was significantly lower compared to running a program with a professional provider.

Keywords: business education, experiential learning, international education, study abroad

Procedia PDF Downloads 158
14880 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 346
14879 The Role of Organizational Culture, Organizational Commitment, and Styles of Transformational Leadership towards Employee Performance

Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari

Abstract:

This study aims to examine and analyze the influence of organizational culture, organizational commitment, and transformational leadership style on employee performance. This study used descriptive survey method with quantitative approach, and questionnaires as a tool used for basic data collection. The sampling technique used is proportionate stratified random sampling technique; all respondents in this study were 70 respondents. The analytical method used in this research is multiple linear regressions. The result of determination coefficient of 52.3% indicates that organizational culture, organizational commitment, and transformational leadership style simultaneously have a significant influence on the performance of employees, while the remaining 47.7% is explained by other factors outside the research variables. Partially, organization culture has strong and positive influence on employee performance, organizational commitment has a moderate and positive effect on employee performance, while the transformational leadership style has a strong and positive influence on employee performance and this is also the variable that has the most impact on employee performance.

Keywords: organizational culture, organizational commitment, transformational leadership style, employee performance

Procedia PDF Downloads 206
14878 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: optimization, estimation, synchronous, machine, crow search

Procedia PDF Downloads 123
14877 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 430
14876 The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System

Authors: Vladimir Stojanović, Marko D. Petković

Abstract:

The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method.

Keywords: Reddy-Bickford beam, D-decomposition method, principle of argument, critical velocity

Procedia PDF Downloads 294
14875 Blind Super-Resolution Reconstruction Based on PSF Estimation

Authors: Osama A. Omer, Amal Hamed

Abstract:

Successful blind image Super-Resolution algorithms require the exact estimation of the Point Spread Function (PSF). In the absence of any prior information about the imagery system and the true image; this estimation is normally done by trial and error experimentation until an acceptable restored image quality is obtained. Multi-frame blind Super-Resolution algorithms often have disadvantages of slow convergence and sensitiveness to complex noises. This paper presents a Super-Resolution image reconstruction algorithm based on estimation of the PSF that yields the optimum restored image quality. The estimation of PSF is performed by the knife-edge method and it is implemented by measuring spreading of the edges in the reproduced HR image itself during the reconstruction process. The proposed image reconstruction approach is using L1 norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. A series of experiment results show that the proposed method can outperform other previous work robustly and efficiently.

Keywords: blind, PSF, super-resolution, knife-edge, blurring, bilateral, L1 norm

Procedia PDF Downloads 351
14874 Images Selection and Best Descriptor Combination for Multi-Shot Person Re-Identification

Authors: Yousra Hadj Hassen, Walid Ayedi, Tarek Ouni, Mohamed Jallouli

Abstract:

To re-identify a person is to check if he/she has been already seen over a cameras network. Recently, re-identifying people over large public cameras networks has become a crucial task of great importance to ensure public security. The vision community has deeply investigated this area of research. Most existing researches rely only on the spatial appearance information from either one or multiple person images. Actually, the real person re-id framework is a multi-shot scenario. However, to efficiently model a person’s appearance and to choose the best samples to remain a challenging problem. In this work, an extensive comparison of descriptors of state of the art associated with the proposed frame selection method is studied. Specifically, we evaluate the samples selection approach using multiple proposed descriptors. We show the effectiveness and advantages of the proposed method by extensive comparisons with related state-of-the-art approaches using two standard datasets PRID2011 and iLIDS-VID.

Keywords: camera network, descriptor, model, multi-shot, person re-identification, selection

Procedia PDF Downloads 263
14873 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 139
14872 Zinc Oxid Nanotubes Modified by SiO2 as a Recyclable Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones

Authors: Rakhshan Hakimelahi

Abstract:

In recent years, zinc oxid nano tubes have attracted much attention. The direct use of zinc oxid nano tubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are high density defects on nano tubes surfaces. A simple and efficient method for the quinazolin derivatives synthesis from the condensation isatoic anhydride and an aromatic aldehyde with ammonium acetate in the presence of a catalytic amount zinc oxid nano tubes modified by SiO2 is described. The reason proposed for higher catalytic activity of zinc oxid nano tubes modified by SiO2 is a combination effect of the small particle size and high-density surface defects. The practical and simple method led to excellent yields of the 2,3-Di hydro quinazolin-4(1H)-one derivatives under mild conditions and within short times.

Keywords: 2, 3-Dihydroquinazolin-4(1H)-one derivatives, reusable catalyst, SiO2, zinc oxid nanotubes

Procedia PDF Downloads 364
14871 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.

Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence

Procedia PDF Downloads 147
14870 Preparation of Polyethylene/Cashewnut Flour/ Gum Arabic Polymer Blends Through Melt-blending and Determination of Their Biodegradation by Composting Method for Possible Reduction of Polyethylene-based Wastes from the Environment

Authors: Abubakar Umar Birnin-yauri

Abstract:

Plastic wastes arising from Polyethylene (PE)-based materials are increasingly becoming environmental problem, this is owed to the fact that these PE waste materials will only decompose over hundreds, or even thousands of years, during which they cause serious environmental problems. In this research, Polymer blends prepared from PE, Cashewnut flour (CNF) and Gum Arabic (GA) were studied in order to assay their biodegradation potentials via composting method. Different sample formulations were made i.e., X1= (70% PE, 25% CNF and 5% GA, X2= (70% PE, 20% CNF and 10% GA), X3= (70% PE, 15% CNF and 15% GA), X4 = (70% PE, 10% CNF and 20% GA) and X5 = (70% PE, 5% CNF and 25% GA) respectively. The results obtained showed that X1 recorded weight loss of 9.89% of its original weight after the first 20 days and 37.45% after 100 day, and X2 lost 12.67 % after the first 20 days and 42.56% after 100day, sample X5 experienced the greatest weight lost in the two methods adopted which are 52.9% and 57.89%. Instrumental analysis such as Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and Scanning electron microscopy were performed on the polymer blends before and after biodegradation. The study revealed that the biodegradation of the polymer blends is influenced by the contents of both the CNF and GA added into the blends.

Keywords: polyethylene, cashewnut, gum Arabic, biodegradation, blend, environment

Procedia PDF Downloads 59
14869 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm

Authors: Ali Ravangard, S. Mohammadi

Abstract:

Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: capacitor placement, power losses, voltage stability, radial distribution systems

Procedia PDF Downloads 367
14868 Communicative Language Teaching Technique: A Neglected Approach in Reading Comprehension Instruction

Authors: Olumide Yusuf Jimoh

Abstract:

Reading comprehension is an interactive and purposeful process of getting meaning from and bringing meaning to a text. Over the years, teachers of the English Language (in Nigeria) have been glued to the monotonous method of making students read comprehension passages silently and then answer the questions that follow such passages without making the reading session interactive. Hence, students often find such exercises monotonous and boring. Consequently, students'’ interest in language learning continues to dwindle, and this often affects their overall academic performance. Relying on Communicative Accommodation Theory therefore, the study employed the qualitative research design method to x-ray Communicative Language Teaching Approach (CLTA) in reading comprehension. Moreover, techniques such as the Genuinely Collaborative Reading Approach (GCRA), Jigsaw reading, Pre-reading, and Post-reading tasks were examined. The researcher submitted that effective reading comprehension could not be done passively. Students must respond to what they read; they must interact not only with the materials being read but also with one another and with the teacher; this can be achieved by developing communicative and interactive reading programs.

Keywords: collaborative reading approach, communicative teaching, interactive reading program, pre-reading task, reading comprehension

Procedia PDF Downloads 82
14867 Numerical Simulation of Different Enhanced Oil Recovery (EOR) Scenarios on a Volatile Oil Reservoir

Authors: Soheil Tavakolpour

Abstract:

Enhance Oil Recovery (EOR) can be considered as an undeniable action in reservoirs life period. Different kind of EOR methods are available, but suitable EOR method depends on reservoir properties, like rock and fluid properties. In this paper, we nominated fifth SPE’s Comparative Solution Projects (CSP) for testing different scenarios. We used seven EOR scenarios for this reservoir and we simulated it for 10 years after 2 years production without any injection. The first scenario is waterflooding for whole of the 10 years period. The second scenario is gas injection for ten years. The third scenario is Water-Alternation-Gas (WAG). In the next scenario, water injected for 4 years before starting WAG injection for the next 6 years. In the fifth scenario, water injected after 6 years WAG injection for 4 years. For sixth and last scenarios, all the things are similar to fourth and fifth scenarios, but gas injected instead of water. Results show that fourth scenario was the most efficient method for 10 years EOR, but it resulted very high water production. Fifth scenario was efficient too, with little water production in comparison to the fourth scenario. Gas injection was not economically attractive. In addition to high gas production, it produced less oil in comparison to other scenarios.

Keywords: WAG, SPE’s comparative solution projects, numerical simulation, EOR scenarios

Procedia PDF Downloads 418
14866 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 81
14865 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices

Authors: Zhuang Yiwen

Abstract:

The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.

Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms

Procedia PDF Downloads 63