Search results for: non-linear finite element modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6241

Search results for: non-linear finite element modelling

451 Determining the Distance Consumers Are Willing to Travel to a Store: A Structural Equation Model Approach

Authors: Fuseina Mahama, Lieselot Vanhaverbeke

Abstract:

This research investigates the impact of patronage determinants on the distance consumers are willing to travel to patronize a tire shop. Although store patronage has been acknowledged as an important domain and has received substantial research interest, most of the studies so far conducted focus on grocery retail, leaving other categories of goods widely unexplored. In this study, we focus on car tires and provide a new perspective to the specific factors that influence tire shop patronage. An online survey of consumers’ tyre purchasing behaviour was conducted among private car owners in Belgium. A sample of 864 respondents was used in the study, with almost four out of five of them being male. 84% of the respondents had purchased a car tyre in the last 24 months and on average travelled 22.4kms to patronise a tyre shop. We tested the direct and mediated effects of store choice determinants on distance consumers are willing to travel. All hypotheses were tested using Structural Equation Modelling (SEM). Our findings show that with an increase in the consumer’s age the distance they were willing to travel to a tire shop decreased. Similarly, consumers who deemed proximity an important determinant of a tire shop our findings confirmed a negative effect on willingness to travel. On the other hand, the determinants price, personal contact and professionalism all had a positive effect on distance. This means that consumers actively sought out tire shops with these characteristics and were willing to travel longer distances in order to visit them. The indirect effects of the determinants flexible opening hours, family recommendation, dealer reputation, receiving auto service at home and availability of preferred brand on distance are mediated by dealer trust. Gender had a minimal effect on distance, with females exhibiting a stronger relation in terms of dealer trust as compared to males. Overall, we found that market relevant factors were better predictors of distance; and proximity, dealer trust and professionalism have the most profound effects on distance that consumers are willing to travel. This is related to the fact that the nature of shopping goods (among which are car tires) typically reinforces consumers to be more engaged in the shopping process, therefore factors that have to do with the store (e.g. location) and shopping process play a key role in store choice decision. These findings are very specific to shopping goods and cannot be generalized to other categories of goods. For marketers and retailers these findings can have direct implications on their location strategies. The factors found to be relevant to tire shop patronage will be used in our next study to calibrate a location model to be utilised to identify the optimum location for siting new tyre shop outlets and service centres.

Keywords: dealer trust, distance to store, tire store patronage, willingness to travel

Procedia PDF Downloads 231
450 Women’s Colours in Digital Innovation

Authors: Daniel J. Patricio Jiménez

Abstract:

Digital reality demands new ways of thinking, flexibility in learning, acquisition of new competencies, visualizing reality under new approaches, generating open spaces, understanding dimensions in continuous change, etc. We need inclusive growth, where colors are not lacking, where lights do not give a distorted reality, where science is not half-truth. In carrying out this study, the documentary or bibliographic collection has been taken into account, providing a reflective and analytical analysis of current reality. In this context, deductive and inductive methods have been used on different multidisciplinary information sources. Women today and tomorrow are a strategic element in science and arts, which, under the umbrella of sustainability, implies ‘meeting current needs without detriment to future generations’. We must build new scenarios, which qualify ‘the feminine and the masculine’ as an inseparable whole, encouraging cooperative behavior; nothing is exclusive or excluding, and that is where true respect for diversity must be based. We are all part of an ecosystem, which we will make better as long as there is a real balance in terms of gender. It is the time of ‘the lifting of the veil’, in other words, it is the time to discover the pseudonyms, the women who painted, wrote, investigated, recorded advances, etc. However, the current reality demands much more; we must remove doors where they are not needed. Mass processing of data, big data, needs to incorporate algorithms under the perspective of ‘the feminine’. However, most STEM students (science, technology, engineering, and math) are men. Our way of doing science is biased, focused on honors and short-term results to the detriment of sustainability. Historically, the canons of beauty, the way of looking, of perceiving, of feeling, depended on the circumstances and interests of each moment, and women had no voice in this. Parallel to science, there is an under-representation of women in the arts, but not so much in the universities, but when we look at galleries, museums, art dealers, etc., colours impoverish the gaze and once again highlight the gender gap and the silence of the feminine. Art registers sensations by divining the future, science will turn them into reality. The uniqueness of the so-called new normality requires women to be protagonists both in new forms of emotion and thought, and in the experimentation and development of new models. This will result in women playing a decisive role in the so-called "5.0 society" or, in other words, in a more sustainable, more humane world.

Keywords: art, digitalization, gender, science

Procedia PDF Downloads 149
449 Engine Thrust Estimation by Strain Gauging of Engine Mount Assembly

Authors: Rohit Vashistha, Amit Kumar Gupta, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

Accurate thrust measurement is required for aircraft during takeoff and after ski-jump. In a developmental aircraft, takeoff from ship is extremely critical and thrust produced by the engine should be known to the pilot before takeoff so that if thrust produced is not sufficient then take-off can be aborted and accident can be avoided. After ski-jump, thrust produced by engine is required because the horizontal speed of aircraft is less than the normal takeoff speed. Engine should be able to produce enough thrust to provide nominal horizontal takeoff speed to the airframe within prescribed time limit. The contemporary low bypass gas turbine engines generally have three mounts where the two side mounts transfer the engine thrust to the airframe. The third mount only takes the weight component. It does not take any thrust component. In the present method of thrust estimation, the strain gauging of the two side mounts is carried out. The strain produced at various power settings is used to estimate the thrust produced by the engine. The quarter Wheatstone bridge is used to acquire the strain data. The engine mount assembly is subjected to Universal Test Machine for determination of equivalent elasticity of assembly. This elasticity value is used in the analytical approach for estimation of engine thrust. The estimated thrust is compared with the test bed load cell thrust data. The experimental strain data is also compared with strain data obtained from FEM analysis. Experimental setup: The strain gauge is mounted on the tapered portion of the engine mount sleeve. Two strain gauges are mounted on diametrically opposite locations. Both of the strain gauges on the sleeve were in the horizontal plane. In this way, these strain gauges were not taking any strain due to the weight of the engine (except negligible strain due to material's poison's ratio) or the hoop's stress. Only the third mount strain gauge will show strain when engine is not running i.e. strain due to weight of engine. When engine starts running, all the load will be taken by the side mounts. The strain gauge on the forward side of the sleeve was showing a compressive strain and the strain gauge on the rear side of the sleeve shows a tensile strain. Results and conclusion: the analytical calculation shows that the hoop stresses dominate the bending stress. The estimated thrust by strain gauge shows good accuracy at higher power setting as compared to lower power setting. The accuracy of estimated thrust at max power setting is 99.7% whereas at lower power setting is 78%.

Keywords: engine mounts, finite elements analysis, strain gauge, stress

Procedia PDF Downloads 457
448 The Effects of Shift Work on Neurobehavioral Performance: A Meta Analysis

Authors: Thomas Vlasak, Tanja Dujlociv, Alfred Barth

Abstract:

Shift work is an essential element of modern labor, ensuring ideal conditions of service for today’s economy and society. Despite the beneficial properties, its impact on the neurobehavioral performance of exposed subjects remains controversial. This meta-analysis aims to provide first summarizing the effects regarding the association between shift work exposure and different cognitive functions. A literature search was performed via the databases PubMed, PsyINFO, PsyARTICLES, MedLine, PsycNET and Scopus including eligible studies until December 2020 that compared shift workers with non-shift workers regarding neurobehavioral performance tests. A random-effects model was carried out using Hedge’s g as a meta-analytical effect size with a restricted likelihood estimator to summarize the mean differences between the exposure group and controls. The heterogeneity of effect sizes was addressed by a sensitivity analysis using funnel plots, egger’s tests, p-curve analysis, meta-regressions, and subgroup analysis. The meta-analysis included 18 studies resulting in a total sample of 18,802 participants and 37 effect sizes concerning six different neurobehavioral outcomes. The results showed significantly worse performance in shift workers compared to non-shift workers in the following cognitive functions with g (95% CI): processing speed 0.16 (0.02 - 0.30), working memory 0.28 (0.51 - 0.50), psychomotor vigilance 0.21 (0.05 - 0.37), cognitive control 0.86 (0.45 - 1.27) and visual attention 0.19 (0.11 - 0.26). Neither significant moderating effects of publication year or study quality nor significant subgroup differences regarding type of shift or type of profession were indicated for the cognitive outcomes. These are the first meta-analytical findings that associate shift work with decreased cognitive performance in processing speed, working memory, psychomotor vigilance, cognitive control, and visual attention. Further studies should focus on a more homogenous measurement of cognitive functions, a precise assessment of experience of shift work and occupation types which are underrepresented in the current literature (e.g., law enforcement). In occupations where shift work is fundamental (e.g., healthcare, industries, law enforcement), protective countermeasures should be promoted for workers.

Keywords: meta-analysis, neurobehavioral performance, occupational psychology, shift work

Procedia PDF Downloads 92
447 Photocatalytic Active Surface of LWSCC Architectural Concretes

Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky

Abstract:

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Keywords: photocatalytic concretes, titanium dioxide, architectural concretes, Lightweight Self-Compacting Concretes (LWSCC)

Procedia PDF Downloads 276
446 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.

Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity

Procedia PDF Downloads 519
445 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 237
444 Climate Change and Perceived Socialization: The Role of Parents’ Climate Change Coping Style and Household Communication

Authors: Estefanya Vazquez-Casaubon, Veroline Cauberghe, Dieneke Van de Sompel, Hayley Pearce

Abstract:

Working together to reduce the anthropogenic impact should be a collective action, including effort within the household. In the matter, children are considered to have an important role in influencing the household to reduce the environmental impact through reversed socialization where children motivate and increase the concern of the parents towards environmental protection. Previous studies reveal that communication between parents and kids is key for effective reversed socialization. However, multiple barriers have been identified in the literature, such as the acceptance of the influence from the kids, the properties of the communication, among other factors. Based on the previous evidence, the present study aims to assess barriers and facilitators of communication at the household level that have an impact on reversed socialization. More precisely, the study examines how parents’ climate change coping strategy (problem-focused, meaning-focused, disregarding) influences the valence and the type of the communication related to climate change, and eventually the extent to which they report their beliefs and behaviours to be influenced by the pro-environmental perspectives of their children; i.e. reversed socialization. Via an online survey, 723 Belgian parents self-reported on communication about environmental protection and risk within their household (such as the frequency of exchange about topics related to climate change sourced from school, the household rules, imparting knowledge to the children, and outer factors like media or peer pressure, the emotional valence of the communication), their perceived socialization, and personal factors (coping mechanisms towards climate change). The results, using structural equation modelling, revealed that parents applying a problem-solving coping strategy related to climate change, appear to communicate more often in a positive than in a negative manner. Parents with a disregarding coping style towards climate change appear to communicate less often in a positive way within the household. Parents that cope via meaning-making of climate change showed to communicate less often in either a positive or negative way. Moreover, the perceived valence of the communication (positive or negative) influenced the frequency and type of household communication. Positive emotions increased the frequency of the communication overall. However, the direct effect of neither of the coping mechanisms on the reversed socialization was significant. High frequency of communication about the media, environmental views of the household members among other external topics had a positive impact on the perceived socialization, followed by discussions school-related; while parental instructing had a negative impact on the perceived socialization. Moreover, the frequency of communication was strongly affected by the perceived valence of the communication (positive or negative). The results go in line with previous evidence that a higher frequency of communication facilitates reversed socialization. Hence the results outstand how the coping mechanisms of the parents can be either a facilitator when they cope via problem-solving, while parents that disregard might avert frequent communication about climate change at the household.

Keywords: communication, parents’ coping mechanisms, environmental protection, household, perceived socialization

Procedia PDF Downloads 62
443 In-situ Phytoremediation Of Polluted Soils By Micropollutants From Artisanal Gold Mining Processes In Burkina Faso

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Artisanal gold mining has seen a resurgence in recent years in Burkina Faso with its corollary of soil and water pollution. Indeed, in addition to visible impacts, it generates discharges rich in trace metal elements and acids. This pollution has significant environmental consequences, making these lands unusable while the population depends on the natural environment for its survival. The goal of this study is to assess the decontamination potential of Chrysopogon zizanioides on two artisanal gold processing sites in Burkina Faso. The cyanidation sites of Nebia (1Ha) and Nimbrogo (2Ha) located respectively in the Central West and Central South regions were selected. The soils were characterized to determine the initial pollution levels before the implementation of phytoremediation. After development of the site, parallel trenches equidistant 6 m apart, 30 cm deep, 40 cm wide and opposite to the water flow direction were dug and filled with earth amended with manure. The Chrysopogon zizanioides plants were transplanted 5 cm equidistant into the trenches. The mere fact that Chrysopogon zizanioides grew in the polluted soil is an indication that this plant tolerates and resists the toxicity of trace elements present on the site. The characterization shows sites very polluted with free cyanide 900 times higher than the national standard, the level of Hg in the soil is 5 times more than the limit value, iron and Zn are respectively 1000 times and 200 more than the tolerated environmental value. At time T1 (6 months) and T2 (12 months) of culture, Chrysopogon zizanioides showed less development on the Nimbrogo site than that of the Nebia site. Plant shoots and associated soil samples were collected and analyzed for total As, Hg, Fe and Zn concentration. The trace element content of the soil, the bioaccumulation factor and the hyper accumulation thresholds were also determined to assess the remediation potential. The concentration of As and Hg in the soil was below international risk thresholds, while that of Fe and Zn was well above these thresholds. The CN removal efficiency at the Nebia site is respectively 29.90% and 68.62% compared to 6.6% and 60.8% at Nimbrogo at time T1 and T2.

Keywords: chrysopogon zizanioides, in-situ phytoremediation, polluted soils, micropollutants

Procedia PDF Downloads 54
442 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 115
441 A Q-Methodology Approach for the Evaluation of Land Administration Mergers

Authors: Tsitsi Nyukurayi Muparari, Walter Timo De Vries, Jaap Zevenbergen

Abstract:

The nature of Land administration accommodates diversity in terms of both spatial data handling activities and the expertise involved, which supposedly aims to satisfy the unpredictable demands of land data and the diverse demands of the customers arising from the land. However, it is known that strategic decisions of restructuring are in most cases repelled in favour of complex structures that strive to accommodate professional diversity and diverse roles in the field of Land administration. Yet despite of this widely accepted knowledge, there is scanty theoretical knowledge concerning the psychological methodologies that can extract the deeper perceptions from the diverse spatial expertise in order to explain the invisible control arm of the polarised reception of the ideas of change. This paper evaluates Q methodology in the context of a cadastre and land registry merger (under one agency) using the Swedish cadastral system as a case study. Precisely, the aim of this paper is to evaluate the effectiveness of Q methodology towards modelling the diverse psychological perceptions of spatial professionals who are in a widely contested decision of merging the cadastre and land registry components of Land administration using the Swedish cadastral system as a case study. An empirical approach that is prescribed by Q methodology starts with the concourse development, followed by the design of statements and q sort instrument, selection of the participants, the q-sorting exercise, factor extraction by PQMethod and finally narrative development by logic of abduction. The paper uses 36 statements developed from a dominant competing value theory that stands out on its reliability and validity, purposively selects 19 participants to do the Qsorting exercise, proceeds with factor extraction from the diversity using varimax rotation and judgemental rotation provided by PQMethod and effect the narrative construction using the logic abduction. The findings from the diverse perceptions from cadastral professionals in the merger decision of land registry and cadastre components in Sweden’s mapping agency (Lantmäteriet) shows that focus is rather inclined on the perfection of the relationship between the legal expertise and technical spatial expertise. There is much emphasis on tradition, loyalty and communication attributes which concern the organisation’s internal environment rather than innovation and market attributes that reveals customer behavior and needs arising from the changing humankind-land needs. It can be concluded that Q methodology offers effective tools that pursues a psychological approach for the evaluation and gradations of the decisions of strategic change through extracting the local perceptions of spatial expertise.

Keywords: cadastre, factor extraction, land administration merger, land registry, q-methodology, rotation

Procedia PDF Downloads 171
440 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 377
439 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 254
438 A Survey Proposal towards Holistic Management of Schizophrenia

Authors: Pronab Ganguly, Ahmed A. Moustafa

Abstract:

Holistic management of schizophrenia involves mainstream pharmacological intervention, complimentary medicine intervention, therapeutic intervention and other psychosocial factors such as accommodation, education, job training, employment, relationship, friendship, exercise, overall well-being, smoking, substance abuse, suicide prevention, stigmatisation, recreation, entertainment, violent behaviour, arrangement of public trusteeship and guardianship, day-day-living skill, integration with community, and management of overweight due to medications and other health complications related to medications amongst others. Our review shows that there is no integrated survey by combining all these factors. An international web-based survey was conducted to evaluate the significance of all these factors and present them in a unified manner. It is believed this investigation will contribute positively towards holistic management of schizophrenia. There will be two surveys. In the pharmacological intervention survey, five popular drugs for schizophrenia will be chosen and their efficacy as well as harmful side effects will be evaluated on a scale of 0 -10. This survey will be done by psychiatrists. In the second survey, each element of therapeutic intervention and psychosocial factors will be evaluated according to their significance on a scale of 0 - 10. This survey will be done by care givers, psychologists, case managers and case workers. For the first survey, professional bodies of psychiatrists in English speaking countries will be contacted to request them to ask their members to participate in the survey. For the second survey, professional bodies of clinical psychologist and care givers in English speaking countries will be contacted to request them to ask their members to participate in the survey. Additionally, for both the surveys, relevant professionals will be contacted through personal contact networks. For both the surveys, mean, mode, median, standard deviation and net promoter score will be calculated for each factor and then presented in a statistically significant manner. Subsequently each factor will be ranked according to their statistical significance. Additionally, country specific variation will be highlighted to identify the variation pattern. The results of these surveys will identify the relative significance of each type of pharmacological intervention, each type of therapeutic intervention and each type of psychosocial factor. The determination of this relative importance will definitely contribute to the improvement in quality of life for individuals with schizophrenia.

Keywords: schizophrenia, holistic management, antipsychotics, quality of life

Procedia PDF Downloads 121
437 Copy Number Variants in Children with Non-Syndromic Congenital Heart Diseases from Mexico

Authors: Maria Lopez-Ibarra, Ana Velazquez-Wong, Lucelli Yañez-Gutierrez, Maria Araujo-Solis, Fabio Salamanca-Gomez, Alfonso Mendez-Tenorio, Haydeé Rosas-Vargas

Abstract:

Congenital heart diseases (CHD) are the most common congenital abnormalities. These conditions can occur as both an element of distinct chromosomal malformation syndromes or as non-syndromic forms. Their etiology is not fully understood. Genetic variants such copy number variants have been associated with CHD. The aim of our study was to analyze these genomic variants in peripheral blood from Mexican children diagnosed with non-syndromic CHD. We included 16 children with atrial and ventricular septal defects and 5 healthy subjects without heart malformations as controls. To exclude the most common heart disease-associated syndrome alteration, we performed a fluorescence in situ hybridization test to identify the 22q11.2, responsible for congenital heart abnormalities associated with Di-George Syndrome. Then, a microarray based comparative genomic hybridization was used to identify global copy number variants. The identification of copy number variants resulted from the comparison and analysis between our results and data from main genetic variation databases. We identified copy number variants gain in three chromosomes regions from pediatric patients, 4q13.2 (31.25%), 9q34.3 (25%) and 20q13.33 (50%), where several genes associated with cellular, biosynthetic, and metabolic processes are located, UGT2B15, UGT2B17, SNAPC4, SDCCAG3, PMPCA, INPP6E, C9orf163, NOTCH1, C20orf166, and SLCO4A1. In addition, after a hierarchical cluster analysis based on the fluorescence intensity ratios from the comparative genomic hybridization, two congenital heart disease groups were generated corresponding to children with atrial or ventricular septal defects. Further analysis with a larger sample size is needed to corroborate these copy number variants as possible biomarkers to differentiate between heart abnormalities. Interestingly, the 20q13.33 gain was present in 50% of children with these CHD which could suggest that alterations in both coding and non-coding elements within this chromosomal region may play an important role in distinct heart conditions.

Keywords: aCGH, bioinformatics, congenital heart diseases, copy number variants, fluorescence in situ hybridization

Procedia PDF Downloads 266
436 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami

Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe

Abstract:

Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.

Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements

Procedia PDF Downloads 172
435 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.

Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity

Procedia PDF Downloads 505
434 Research on the Overall Protection of Historical Cities Based on the 'City Image' in Ancient Maps: Take the Ancient City of Shipu, Zhejiang, China as an Example

Authors: Xiaoya Yi, Yi He, Zhao Lu, Yang Zhang

Abstract:

In the process of rapid urbanization, many historical cities have undergone excessive demolition and construction under the protection and renewal mechanism. The original pattern of the city has been changed, the urban context has been cut off, and historical features have gradually been lost. The historical city gradually changed into the form of decentralization and fragmentation. The understanding of the ancient city includes two levels. The first one refers to the ancient city on the physical space, which defined an ancient city by its historic walls. The second refers to the public perception of the image, which is derived from people's spatial identification of the ancient city. In ancient China, people draw maps to show their way of understanding the city. Starting from ancient maps and exploring the spatial characteristics of traditional Chinese cities from the perspective of urban imagery is a key clue to understanding the spatial characteristics of historical cities on an overall level. The spatial characteristics of the urban image presented by the ancient map are summarized into two levels by typology. The first is the spatial pattern composed of the center, axis and boundary. The second is the space element that contains the city, street, and sign system. Taking the ancient city of Shipu as a typical case, the "city image" in the ancient map is analyzed as a prototype, and it is projected into the current urban space. The research found that after a long period of evolution, the historical spatial pattern of the ancient city has changed from “dominant” to “recessive control”, and the historical spatial elements are non-centralized and fragmented. The wall that serves as the boundary of the ancient city is transformed into “fragmentary remains”, the streets and lanes that serve as the axis of the ancient city are transformed into “structural remains”, and the symbols of the ancient city center are transformed into “site remains”. Based on this, the paper proposed the methods of controlling the protection of land boundaries, the protecting of the streets and lanes, and the selective restoring of the city wall system and the sign system by accurate assessment. In addition, this paper emphasizes the continuity of the ancient city's traditional spatial pattern and attempts to explore a holistic conservation method of the ancient city in the modern context.

Keywords: ancient city protection, ancient maps, Shipu ancient city, urban intention

Procedia PDF Downloads 102
433 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 101
432 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 143
431 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling

Authors: Ghita Benayad

Abstract:

Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.

Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market

Procedia PDF Downloads 23
430 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 8
429 Effect of Non-metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: Case Study

Authors: Tomasz Dubiel, Tadeusz Balawender, Miroslaw Osetek

Abstract:

The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross-section was 0.531 [mm] in width and 1.523 [mm] in length; the defect was continuous along the entire axis of the bolt. In analysis, a FEM simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.

Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head

Procedia PDF Downloads 137
428 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 135
427 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging

Authors: Chih-Chung Huang, Po-Hsun Peng

Abstract:

Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.

Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming

Procedia PDF Downloads 510
426 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 17
425 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 20
424 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 107
423 A Numerical Investigation of Segmental Lining Joints Interactions in Tunnels

Authors: M. H. Ahmadi, A. Mortazavi, H. Zarei

Abstract:

Several authors have described the main mechanism of formation of cracks in the segment lining during the construction of tunnels with tunnel boring machines. A comprehensive analysis of segmental lining joints may help to guarantee a safe construction during Tunneling and serviceable stages. The most frequent types of segment damage are caused by a condition of uneven segment matching due to contact deficiencies. This paper investigated the interaction mechanism of precast concrete lining joints in tunnels. The Discrete Element Method (DEM) was used to analyze a typical segmental lining model consisting of six segment rings. In the analyses, typical segmental lining design parameters of the Ghomrood water conveyance tunnel, Iran were employed in the study. In the conducted analysis, the worst-case scenario of loading faced during the boring of Ghomrood tunnel was considered. This was associated with the existence of a crushed zone dipping at 75 degree at the location of the key segment. In the analysis, moreover, the effect of changes in horizontal stress ratio on the loads on the segment was assessed. The boundary condition associated with K (ratio of the horizontal to the vertical stress) values of 0.5, 1, 1.5 and 2 were applied to the model and separate analysis was conducted for each case. Important parameters such as stress, moments, and displacements were measured at joint locations and the surrounding rock. Accordingly, the segment joint interactions were assessed and analyzed. Moreover, rock mass properties of the Ghomrood in Ghom were adopted. In this study, the load acting on segments joints are included a crushed zone stratum force that intersect tunnel with 75 slopes in the location of the key segment, gravity force of segments and earth pressures. A numerical investigation was used for different coefficients of stress concentration of 0.5, 1, 1.5, 2 and different geological conditions of saturated crushed zone under the critical scenario. The numerical results also demonstrate that maximum bending moments in longitudinal joints occurred for crushed zone with the weaken strengths (Sandstone). Besides that, increasing the load in segment-stratum interfaces affected radial stress in longitudinal joints and finally the opening of joints occurred.

Keywords: joint, interface, segment, contact

Procedia PDF Downloads 243
422 Applying Biculturalism in Studying Tourism Host Community Cultural Integrity and Individual Member Stress

Authors: Shawn P. Daly

Abstract:

Communities heavily engaged in the tourism industry discover their values intersect, meld, and conflict with those of visitors. Maintaining cultural integrity in the face of powerful external pressures causes stress among society members. This effect represents a less studied aspect of sustainable tourism. The present paper brings a perspective unique to the tourism literature: biculturalism. The grounded theories, coherent hypotheses, and validated constructs and indicators of biculturalism represent a sound base from which to consider sociocultural issues in sustainable tourism. Five models describe the psychological state of individuals operating at cultural crossroads: assimilation (joining the new culture), acculturation (grasping the new culture but remaining of the original culture), alternation (varying behavior to cultural context), multicultural (maintaining distinct cultures), and fusion (blending cultures). These five processes divide into two units of analysis (individual and society), permitting research questions at levels important for considering sociocultural sustainability. Acculturation modelling has morphed into dual processes of acculturation (new culture adaptation) and enculturation (original culture adaptation). This dichotomy divides sustainability research questions into human impacts from assimilation (acquiring new culture, throwing away original), separation (rejecting new culture, keeping original), integration (acquiring new culture, keeping original), and marginalization (rejecting new culture, throwing away original). Biculturalism is often cast in terms of its emotional, behavioral, and cognitive dimensions. Required cultural adjustments and varying levels of cultural competence lead to physical, psychological, and emotional outcomes, including depression, lowered life satisfaction and self-esteem, headaches, and back pain—or enhanced career success, social skills, and life styles. Numerous studies provide empirical scales and research hypotheses for sustainability research into tourism’s causality and effect on local well-being. One key issue in applying biculturalism to sustainability scholarship concerns identification and specification of the alternative new culture contacting local culture. Evidence exists for tourism industry, universal tourist, and location/event-specific tourist culture. The biculturalism paradigm holds promise for researchers examining evolving cultural identity and integrity in response to mass tourism. In particular, confirmed constructs and scales simplify operationalization of tourism sustainability studies in terms of human impact and adjustment.

Keywords: biculturalism, cultural integrity, psychological and sociocultural adjustment, tourist culture

Procedia PDF Downloads 385