Search results for: photovoltaic water pumping system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24063

Search results for: photovoltaic water pumping system

18303 Study of Electrocoagulation on the Elimination of Chromium in Waste Water From an Electroplating Bath Using Aluminium Electrodes

Authors: Salim Ahmed

Abstract:

Electrocoagulation has proven its effectiveness in industrial effluent treatment by eliminating pollutants, particularly metallic ones. The electrochemical processes that occur at aluminium electrodes give excellent performance. In this work, electrocoagulation tests were carried out on an industrial effluent from an electroplating bath located in Casablanca (Morocco). The aim was to remove chromium and reuse the purified water for other purposes within the company. To this end, we have optimised the operating parameters that affect the efficiency of electrocoagulation, such as electrical voltage, electrode material, stirring speed and distance between electrodes. We also evaluated these parameters. The effect on pH, conductivity, turbidity and chromium concentration. The tests were carried out in a perfectly stirred reactor on an industrial solution rich in chromium. The effluent concentration was 1000 mg/L of Cr6+. Chromium removal efficiency was determined for the following operating conditions: aluminium electrodes, regulated voltage of 6 volts and 12 volts, optimum stirring speed of 600 rpm and distance between electrodes of 2 cm. The sludge produced by electrocoagulation was characterised by X-ray diffractometry, infrared spectroscopy (IR) and scanning electron microscopy (SEM).

Keywords: wastewater, chromium, electrocoagulation, aluminium, aluminium hydroxide

Procedia PDF Downloads 69
18302 Magnetic Nano-Composite of Self-Doped Polyaniline Nanofibers for Magnetic Dispersive Micro Solid Phase Extraction Applications

Authors: Hatem I. Mokhtar, Randa A. Abd-El-Salam, Ghada M. Hadad

Abstract:

An improved nano-composite of self-doped polyaniline nanofibers and silica-coated magnetite nanoparticles were prepared and evaluated for suitability to magnetic dispersive micro solid-phase extraction. The work focused on optimization of the composite capacity to extract four fluoroquinolones (FQs) antibiotics, ciprofloxacin, enrofloxacin, danofloxacin, and difloxacin from water and improvement of composite stability towards acid and atmospheric degradation. Self-doped polyaniline nanofibers were prepared by oxidative co-polymerization of aniline with anthranilic acid. Magnetite nanopariticles were prepared by alkaline co-precipitation and coated with silica by silicate hydrolysis on magnetite nanoparticles surface at pH 6.5. The composite was formed by self-assembly by mixing self-doped polyaniline nanofibers with silica-coated magnetite nanoparticles dispersions in ethanol. The composite structure was confirmed by transmission electron microscopy (TEM). Self-doped polyaniline nanofibers and magnetite chemical structures were confirmed by FT-IR while silica coating of the magnetite was confirmed by Energy Dispersion X-ray Spectroscopy (EDS). Improved stability of the composite magnetic component was evidenced by resistance to degrade in 2N HCl solution. The adsorption capacity of self-doped polyaniline nanofibers based composite was higher than previously reported corresponding composite prepared from polyaniline nanofibers instead of self-doped polyaniline nanofibers. Adsorption-pH profile for the studied FQs on the prepared composite revealed that the best pH for adsorption was in range of 6.5 to 7. Best extraction recovery values were obtained at pH 7 using phosphate buffer. The best solvent for FQs desorption was found to be 0.1N HCl in methanol:water (8:2; v/v) mixture. 20 mL of Spiked water sample with studied FQs were preconcentrated using 4.8 mg of composite and resulting extracts were analysed by HPLC-UV method. The prepared composite represented a suitable adsorbent phase for magnetic dispersive micro-solid phase application.

Keywords: fluoroquinolones, magnetic dispersive micro extraction, nano-composite, self-doped polyaniline nanofibers

Procedia PDF Downloads 107
18301 Evaluation of the Trauma System in a District Hospital Setting in Ireland

Authors: Ahmeda Ali, Mary Codd, Susan Brundage

Abstract:

Importance: This research focuses on devising and improving Health Service Executive (HSE) policy and legislation and therefore improving patient trauma care and outcomes in Ireland. Objectives: The study measures components of the Trauma System in the district hospital setting of the Cavan/Monaghan Hospital Group (CMHG), HSE, Ireland, and uses the collected data to identify the strengths and weaknesses of the CMHG Trauma System organisation, to include governance, injury data, prevention and quality improvement, scene care and facility-based care, and rehabilitation. The information will be made available to local policy makers to provide objective situational analysis to assist in future trauma service planning and service provision. Design, setting and participants: From 28 April to May 28, 2016 a cross-sectional survey using World Health Organisation (WHO) Trauma System Assessment Tool (TSAT) was conducted among healthcare professionals directly involved in the level III trauma system of CMHG. Main outcomes: Identification of the strengths and weaknesses of the Trauma System of CMHG. Results: The participants who reported inadequate funding for pre hospital (62.3%) and facility based trauma care at CMHG (52.5%) were high. Thirty four (55.7%) respondents reported that a national trauma registry (TARN) exists but electronic health records are still not used in trauma care. Twenty one respondents (34.4%) reported that there are system wide protocols for determining patient destination and adequate, comprehensive legislation governing the use of ambulances was enforced, however, there is a lack of a reliable advisory service. Over 40% of the respondents reported uncertainty of the injury prevention programmes available in Ireland; as well as the allocated government funding for injury and violence prevention. Conclusions: The results of this study contributed to a comprehensive assessment of the trauma system organisation. The major findings of the study identified three fundamental areas: the inadequate funding at CMHG, the QI techniques and corrective strategies used, and the unfamiliarity of existing prevention strategies. The findings direct the need for further research to guide future development of the trauma system at CMHG (and in Ireland as a whole) in order to maximise best practice and to improve functional and life outcomes.

Keywords: trauma, education, management, system

Procedia PDF Downloads 235
18300 Experimental Study on a Solar Heat Concentrating Steam Generator

Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li

Abstract:

Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.

Keywords: heat concentrating, heat loss, medium temperature, solar steam production

Procedia PDF Downloads 166
18299 Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran

Authors: M. Goodarzi, M. Mohammadi, A. Gharib

Abstract:

Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes.

Keywords: renewable energy, solar energy, solar cathodic protection station, lifecycle cost method

Procedia PDF Downloads 521
18298 Impact of Changes in Travel Behavior Triggered by the Covid-19 Pandemic on Tourist Ininfrastructure. Water Reservoirs of the Vltava Cascade (Czechia) Case Study

Authors: Jiří Vágner, Dana Fialová

Abstract:

The Covid-19 pandemic and its effects have triggered significant changes in travel behavior. On the contrary to a deep decline in international tourism, domestic tourism has recovered. It has not fully replaced the total volume of national tourism so far. However, from a regional point of view, and especially according to the type of destinations, regional targeting has changed significantly compared to the previous period. Urban destinations, which used to be the domain of foreign tourists, have been relatively orphaned, in contrast to destinations tied to natural attractions, which have seen seasonal increases. Even here, at a lower hierarchical geographic level, we can observe the differentiation resulting from the existing localization and infrastructure. The case study is focused on the three largest water reservoirs of the Vltava Cascade in Czechia– Lipno, Orlík, and Slapy. Based on a detailed field survey, in the periods before and during the pandemic, as well as available statistical data (Tourdata; Czech Statistical Office, Czech Cadaster and Ordnance Survey), different trends in the exploitation of these destinations with regard to existing or planned infrastructure are documented, analyzed and explained. This gives us the opportunity to discuss on concrete examples of generally known phenomena that are usually neglected in tourism: slum, brownfield, greenfield. Changes in travel behavior – especially the focus on spending leisure time individually in naturally attractive destinations – can affect the use of sites, which can be defined as a tourist or recreational slum, brownfield, but also as a tourist greenfield development. Sociocultural changes and perception of destinations by tourists and other actors represent, besides environmental changes, major trends in current tourism.

Keywords: Covid-19 pandemic, czechia, sociocultural and environmental impacts, tourist infrastructure, travel behavior, the Vltava Cascade water reservoirs

Procedia PDF Downloads 138
18297 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 195
18296 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes

Authors: Misra Ayse Adsiz, Selim Selvi

Abstract:

In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.

Keywords: agile, design, missile, scrum

Procedia PDF Downloads 153
18295 The Role of Time-Dependent Treatment of Exogenous Salicylic Acid on Endogenous Phytohormone Levels under Salinity Stress

Authors: Hülya Torun, Ondřej Novák, Jaromír Mikulík, Miroslav Strnad, Faik A. Ayaz

Abstract:

World climate is changing. Millions of people in the world still face chronic undernourishment for conducting a healthy life and the world’s population is growing steadily. To meet this growing demand, agriculture and food systems must adapt to the adverse effects of climate change and become more resilient, productive and sustainable. From this perspective, to determine tolerant cultivars for undesirable environmental conditions will be necessary food production for sustainable development. Among abiotic stresses, soil salinity is one of the most detrimental global fact restricting plant sources. Development of salt-tolerant lines is required in order to increase the crop productivity and quality in salt-treated lands. Therefore, the objective of this study was to investigate the morphological and physiological responses of barley cultivars accessions to salinity stress by NaCl. For this purpose, it was aimed to determine the crosstalk between some endogenous phytohormones and exogenous salicylic acid (SA) in two different vegetative parts (leaves and roots) of barley (Hordeum vulgare L.; Poaceae; 2n=14; Ince-04) which is detected salt-tolerant. The effects of SA on growth parameters, leaf relative water content (RWC), endogenous phytohormones; including indole-3-acetic acid (IAA), cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA) and ethylene were investigated in barley cultivars under salinity stress. SA was applied to 17-day-old seedlings of barley in two different ways including before (pre-treated for 24 h) and simultaneously with NaCl stress treatment. NaCl (0, 150, 300 mM) exposure in the hydrophonic system was associated with a rapid decrease in growth parameters and RWC, which is an indicator of plant water status, resulted in a strong up-regulation of ABA as a stress indicator. Roots were more dramatically affected than leaves. Water conservation in 150 mM NaCl treated-barley plants did not change, but decreased in 300 mM NaCl treated plants. Pre- and simultaneously treatment of SA did not significantly alter growth parameters and RWC. ABA, JA and ethylene are known to be related with stress. In the present work, ethylene also increased, similarly to ABA, but not with the same intensity. While ABA and ethylene increased by the increment of salt concentrations, JA levels rapidly decreased especially in roots. Both pre- and simultaneously SA applications alleviated salt-induced decreases in 300 mM NaCl resulted in the increment of ABA levels. CKs and IAA are related to cell growth and development. At high salinity (300 mM NaCl), CKs (cZ+cZR) contents increased in both vegetative organs while IAA levels stayed at the same level with control groups. However, IAA increased and cZ+cZR rapidly decreased in leaves of barley plants with SA treatments before salt applications (in pre- SA treated groups). Simultaneously application of SA decreased CKs levels in both leaves and roots of the cultivar. Due to increasing concentrations of NaCl in association with decreasing ABA, JA and ethylene content and increments in CKs and IAA were recorded with SA treatments. As results of the study, in view of all the phytohormones that we tested, exogenous SA induced greater tolerance to salinity particularly when applied before salinity stress.

Keywords: Barley, Hordeum vulgare, phytohormones, salicylic acid, salinity

Procedia PDF Downloads 211
18294 Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream

Authors: J. C. Cheng, Y. L. Tsay, Z. D. Chan, C. H. Yang

Abstract:

In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ).

Keywords: block heat sources, 3-D cabinet, thermal interaction, heat transfer

Procedia PDF Downloads 541
18293 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 365
18292 Safety System Design and Overfill Protection for Loading Asphalt onto Trucks

Authors: Wendy Ampadu, Ray Diezmos, Hassan Malik, Jeremy Hyslob

Abstract:

There are several technologies out there for use as high-level switches as part of a system for shutting down flow to a vessel. Given that the asphalt truck loading poses issues such as poor visibility, coating, condensation, and fumes, a solution that is robust enough to last in these conditions is often needed in industries. Furthermore, the design of the loading arm, rack, and process equipment should allow for the safety of workers. The objective of this report includes the redesign of structures for use at loading facilities and selecting an overflow technology protection from hot bitumen. The report is based on loading facilities at a Canadian bitumen production company. The engineering design approach was used to create multiple redesign concepts for the loading dock system. Research on overfill systems was also completed by surveying the existing market for technologies and securing quotes from over 20 Canadian and United States instrumentation companies. A final loading dock redesign and level transmitter for overfill protection solution were chosen.

Keywords: bitumen, reliability engineering, safety system, process safety management, asphalt, loading docks, tanker trucks

Procedia PDF Downloads 135
18291 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 349
18290 Solvent Dependent Triazole-Appended Glucofuranose-Based Fluorometric Sensor for Detection of Au³⁺ Ions

Authors: Samiul Islam Hazarika, Domngam Boje, Ananta Kumar Atta

Abstract:

It is well familiar that solvents play a significant role in modern chemistry. Solvents can change the reactivity and physicochemical properties of molecules in a solution. Keeping this in mind, we have designed and synthesized a mono-triazolyl-linked pyrenyl-appended xylofuranose derivative for the detection of metal ions with changing solvent systems. The incorporation of a sugar backbone in the sensor increases the water solubility and biocompatibility. The experimental study revealed that the xylofuranose-based fluorescence probe did not exhibit any specific selectivity towards metal ions in acetonitrile (CH₃CN) solvent. Whereas, we revealed that triazole-linked pyrenyl-appended xylofuranose-based fluorescent sensor would exhibit high selectivity and sensitivity towards Au³⁺ ions in CH₃CN-H₂O (1/1, v/v) system. This observation might be explained by the viscosity and polarity differences of CH₃CN and CH₃CN-H₂O solvent systems. The formation of the sensor-Au³⁺ complex was also established by high-resolution mass spectrometry (HRMS) data of the complex.

Keywords: triazole, furanose, fluorometric, solvent dependent

Procedia PDF Downloads 107
18289 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 195
18288 Guidelines for Proper Internal Control of Internet Payment: A Case Study of Internet Payment Gateway, Thailand

Authors: Pichamon Chansuchai

Abstract:

The objective of this research were to investigate electronic payment system on the internet and offer the guidelines for proper internal control of the payment system based on international standard security control (ISO/IEC 17799:2005),in a case study of payment of the internet, Thailand. The guidelines covered five important areas: (1) business requirement for access control, (2) information systems acquisition, development and maintenance, (3) information security incident management, (4) business continuity management, and (5) compliance with legal requirement. The findings from this qualitative study revealed the guidelines for proper internet control that were more reliable and allow the same line of business to implement the same system of control.

Keywords: audit, best practice, internet, payment

Procedia PDF Downloads 484
18287 Characterization of Onion Peels Extracts and Its Utilization in a Deep Fried Snack

Authors: Nabia Siddiqui, Tahira Mohsin Ali, Tanveer Abbas, Abid Hasnain

Abstract:

The present study proposed the use of different onion peel extracts in a South Asian snacks called ‘sew’. The polyphenols extracted from peels were initially analyzed for their antimicrobial potential and bioactive components following three different extraction systems. A relatively higher level of total phenolic content (TP), total flavonoid (TF) and antioxidant activity was observed for EWE (ethanol and water based) extracts followed by EAAE (ethanol and acetic acid) and WE (water extract) sample. Onion extracts showed ability to inhibit gram-positive as well as gram-negative bacteria. The incorporation of onion peel extracts in sew showed a marked increase in bioactive components. Besides bioactivity, sensory attributes, textural characteristics and storage stability of these snacks containing onion peel extract also significantly improved during the shelf study at ambient temperature for up to two months. Thus, these results justify the utilization of these plant polyphenols in fried snacks.

Keywords: onion peels extract, South Asian snacks, antioxidant capacity, bioactivity

Procedia PDF Downloads 219
18286 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications

Authors: Aymen Laadhari

Abstract:

The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.

Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell

Procedia PDF Downloads 238
18285 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System

Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe

Abstract:

Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.

Keywords: constitutive model, polymer, mechanical testing, wrapping system

Procedia PDF Downloads 284
18284 Values in Higher Education: A Case Study of Higher Education Students

Authors: Bahadır Erişti

Abstract:

Values are the behavioral procedures of society based communication and interaction process that includes social and cultural backgrounds. The policy of learning and teaching in higher education is oriented towards constructing knowledge and skills, based on theorist framework of cognitive and psychomotor aspects. This approach makes people not to develop generosity, empathy, affection, solidarity, justice, equality and so on. But the sensorial gains of education system provide the integrity of society interaction. This situation carries out the necessity of values education’s in higher education. The current study aims to consider values education from the viewpoint of students in higher education. Within the framework of the current study, an open ended survey based scenario of higher education students was conducted with the students’ social, cognitive, affective and moral developments. In line with this purpose, the following situations of the higher education system were addressed based on the higher education students’ viewpoint: The views of higher education students’ regarding values that are tried to be gained at the higher education system; The higher education students’ suggestions regarding values education at the higher education system; The views of the higher education students’ regarding values that are imposed at the higher education system. In this study, descriptive qualitative research method was used. The study group of the research is composed of 20 higher education postgraduate students at Curriculum and Instruction Department of Educational Sciences at Anadolu University. An open-ended survey was applied for the purpose of collecting qualitative data. As a result of the study, value preferences, value judgments and value systems of the higher education students were constructed on prioritizes based on social, cultural and economic backgrounds and statues. Multi-dimensional process of value education in higher education need to be constructed on higher education-community-cultural background cooperation. Thus, the act of judgement upon values between higher education students based on the survey seems to be inherent in the system of education itself. The present study highlights the students’ value priorities and importance of values in higher education. If the purpose of the higher education system gains on values, it is possible to enable society to promote humanity.

Keywords: higher education, value, values education, values in higher education

Procedia PDF Downloads 322
18283 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia

Authors: Mathewos Temesgen, Lemi Geleta

Abstract:

Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.

Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka

Procedia PDF Downloads 101
18282 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

Authors: T. D. Gunneswara Rao, Mudimby Andal

Abstract:

Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability.

Keywords: cementing efficiency, compressive strength, low calcium fly ash, workability

Procedia PDF Downloads 467
18281 Positive Energy Districts in the Swedish Energy System

Authors: Vartan Ahrens Kayayan, Mattias Gustafsson, Erik Dotzauer

Abstract:

The European Union is introducing the positive energy district concept, which has the goal to reduce overall carbon dioxide emissions. Other studies have already mapped the make-up of such districts, and reviewed their definitions and where they are positioned. The Swedish energy system is unique compared to others in Europe, due to the implementation of low-carbon electricity and heat energy sources and high uptake of district heating. The goal for this paper is to start the discussion about how the concept of positive energy districts can best be applied to the Swedish context and meet their mitigation goals. To explore how these differences impact the formation of positive energy districts, two cases were analyzed for their methods and how these integrate into the Swedish energy system: a district in Uppsala with a focus on energy and another in Helsingborg with a focus on climate. The case in Uppsala uses primary energy calculations which can be critisied but take a virtual border that allows for its surrounding system to be considered. The district in Helsingborg has a complex methodology for considering the life cycle emissions of the neighborhood. It is successful in considering the energy balance on a monthly basis, but it can be problematized in terms of creating sub-optimized systems due to setting tight geographical constraints. The discussion of shaping the definitions and methodologies for positive energy districts is taking place in Europe and Sweden. We identify three pitfalls that must be avoided so that positive energy districts meet their mitigation goals in the Swedish context. The goal of pushing out fossil fuels is not relevant in the current energy system, the mismatch between summer electricity production and winter energy demands should be addressed, and further implementations should consider collaboration with the established district heating grid.

Keywords: positive energy districts, energy system, renewable energy, European Union

Procedia PDF Downloads 67
18280 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power

Procedia PDF Downloads 214
18279 A Golay Pair Based Synchronization Algorithm for Distributed Multiple-Input Multiple-Output System

Authors: Weizhi Zhong, Xiaoyi Lu, Lei Xu

Abstract:

In order to solve the problem of inaccurate synchronization for distributed multiple-input multiple-output (MIMO) system in multipath environment, a golay pair aided timing synchronization method is proposed in this paper. A new synchronous training sequence based on golay pair is designed. By utilizing the aperiodic auto-correlation complementary property of the new training sequence, the fine timing point is obtained at the receiver. Simulation results show that, compared with the tradition timing synchronization approaches, the proposed algorithm can provide high accuracy in synchronization, especially under multipath condition.

Keywords: distributed MIMO system, golay pair, multipath, synchronization

Procedia PDF Downloads 238
18278 Red Green Blue Image Encryption Based on Paillier Cryptographic System

Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson

Abstract:

In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.

Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier

Procedia PDF Downloads 222
18277 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, Raspberry Pi, wiFi technology

Procedia PDF Downloads 383
18276 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit

Procedia PDF Downloads 115
18275 Earthquake Resistant Sustainable Steel Green Building

Authors: Arup Saha Chaudhuri

Abstract:

Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.

Keywords: steel building, green and sustainable, earthquake resistant, EBF system

Procedia PDF Downloads 338
18274 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique

Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said

Abstract:

With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.

Keywords: genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation

Procedia PDF Downloads 517