Search results for: online learning activities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14375

Search results for: online learning activities

8615 Potentiality of a Community of Practice between Public Schools and the Private Sector for Integrating Sustainable Development into the School Curriculum

Authors: Aiydh Aljeddani, Fran Martin

Abstract:

The critical time in which we live requires rethinking of many potential ways in order to make the concept of sustainability and its principles an integral part of our daily life. One of these potential approaches is how to attract community institutions, such as the private sector, to participate effectively in the sustainability industry by supporting public schools to fulfill their duties. A collaborative community of practice can support this purpose and can provide a flexible framework, which allows the members of the community to participate effectively. This study, conducted in Saudi Arabia, aimed to understand the process of a collaborative community of practice of involving the private sector as a member of this community to integrate the sustainability concept in school activities and projects. This study employed a qualitative methodology to understand this authentic and complex phenomenon. A case study approach, ethnography and some elements of action research were followed in this study. The methods of unstructured interviews, artifacts, observation, and teachers’ field notes were used to collect the data. The participants were three secondary teachers, twelve chief executive officers, and one school administrative officer. Certain contextual conditions, as shown by the data, should be taken into consideration when policy makers and school administrations in Saudi Arabia desire to integrate sustainability into school activities. The first of these was the acknowledgement of the valuable role of the members’ personality, efforts, abilities, and experiences, which played vital roles in integrating sustainability. Second, institutional culture, which was not expected to emerge as an important factor in this study, has a significant role in the integration of sustainability. Credibility among the members of the community towards the integration of the sustainability concept and its principles through school activities is another important condition. Fourth, some chief executive officers’ understanding of Corporate Social Responsibility (CSR) towards contribution to sustainability agenda was shallow and limited and this could impede the successful integration of sustainability. Fifth, a shared understanding between the members of the community about integrating sustainability was a vital condition in the integration process. The study also revealed that the integration of sustainability could not be an ongoing process if implemented in isolation of the other community institutions such as the private sector. The study finally offers a number of recommendations to improve on the current practices and suggests areas for further studies.

Keywords: community of practice, public schools, private sector, sustainable development

Procedia PDF Downloads 212
8614 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 48
8613 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 299
8612 Social Business Evaluation in Brazil: Analysis of Entrepreneurship and Investor Practices

Authors: Erica Siqueira, Adriana Bin, Rachel Stefanuto

Abstract:

The paper aims to identify and to discuss the impact and results of ex-ante, mid-term and ex-post evaluation initiatives in Brazilian Social Enterprises from the point of view of the entrepreneurs and investors, highlighting the processes involved in these activities and their aftereffects. The study was conducted using a descriptive methodology, primarily qualitative. A multiple-case study was used, and, for that, semi-structured interviews were conducted with ten entrepreneurs in the (i) social finance, (ii) education, (iii) health, (iv) citizenship and (v) green tech fields, as well as three representatives of various impact investments, which are (i) venture capital, (ii) loan and (iii) equity interest areas. Convenience (non-probabilistic) sampling was adopted to select both businesses and investors, who voluntarily contributed to the research. The evaluation is still incipient in most of the studied business cases. Some stand out by adopting well-known methodologies like Global Impact Investing Report System (GIIRS), but still, have a lot to improve in several aspects. Most of these enterprises use nonexperimental research conducted by their own employees, which is ordinarily not understood as 'golden standard' to some authors in the area. Nevertheless, from the entrepreneur point of view, it is possible to identify that most of them including those routines in some extent in their day-by-day activities, despite the difficulty they have of the business in general. In turn, the investors do not have overall directions to establish evaluation initiatives in respective enterprises; they are funding. There is a mechanism of trust, and this is, usually, enough to prove the impact for all stakeholders. The work concludes that there is a large gap between what the literature states in regard to what should be the best practices in these businesses and what the enterprises really do. The evaluation initiatives must be included in some extension in all enterprises in order to confirm social impact that they realize. Here it is recommended the development and adoption of more flexible evaluation mechanisms that consider the complexity involved in these businesses’ routines. The reflections of the research also suggest important implications for the field of Social Enterprises, whose practices are far from what the theory preaches. It highlights the risk of the legitimacy of these enterprises that identify themselves as 'social impact', sometimes without the proper proof based on causality data. Consequently, this makes the field of social entrepreneurship fragile and susceptible to questioning, weakening the ecosystem as a whole. In this way, the top priorities of these enterprises must be handled together with the results and impact measurement activities. Likewise, it is recommended to perform further investigations that consider the trade-offs between impact versus profit. In addition, research about gender, the entrepreneur motivation to call themselves as Social Enterprises, and the possible unintended consequences from these businesses also should be investigated.

Keywords: evaluation practices, impact, results, social enterprise, social entrepreneurship ecosystem

Procedia PDF Downloads 126
8611 Special Education in the South African Context: A Bio-Ecological Perspective

Authors: Suegnet Smit

Abstract:

Prior to 1994, special education in South Africa was marginalized and fragmented. Moving away from a Medical model approach to special education, the Government, after 1994, promoted an Inclusive approach, as a means to transform education in general, and special education in particular. This transformation, however, is moving at too a slow pace for learners with barriers to learning and development to benefit fully from their education. The goal of the Department of Basic Education is to minimize, remove, and prevent barriers to learning and development in the educational setting, by attending to the unique needs of the individual learner. However, the implementation of Inclusive education is problematic, and general education remains poor. This paper highlights the historical development of special education in South Africa, underpinned by a bio-ecological perspective. Problematic areas within the systemic levels of the education system are highlighted in order to indicate how the interactive processes within the systemic levels affect special needs learners on the personal dimension of the bio-ecological approach. As part of the methodology, thorough document analysis was conducted on information collected from a large body of research literature, which included academic articles, reports, policies, and policy reviews. Through a qualitative analysis, data were grouped and categorized according to the bio-ecological model systems, which revealed various successes and challenges within the education system. The challenges inhibit change, growth, and development for the child, who experience barriers to learning. From these findings, it is established that special education in South Africa has been, and still is, on a bumpy road. Sadly, the transformation process of change, envisaged by implementing Inclusive education, is still yet a dream, not fully realized. Special education seems to be stuck at what is, and the education system has not moved forward significantly enough to reach what special education should and could be. The gap that exists between a vision of Inclusive quality education for all, and the current reality, is still too wide. Problems encountered in all the education system levels, causes a funnel-effect downward to learners with special educational needs, with negative effects for the development of these learners.

Keywords: bio-ecological perspective, education systems, inclusive education, special education

Procedia PDF Downloads 150
8610 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 97
8609 The Role of Anti-corruption Clauses in the Fight Against Corruption in Petroleum Sector

Authors: Azar Mahmoudi

Abstract:

Despite the rise of global anti-corruption movements and the strong emergence of international and national anti-corruption laws, corrupt practices are still prevalent in most places, and countries still struggle to translate these laws into practice. On the other hand, in most countries, political and economic elites oppose anti-corruption reforms. In such a situation, the role of external actors, like the other States, international organizations, and transnational actors, becomes essential. Among them, Transnational Corporations [TNCs] can develop their own regime-like framework to govern their internal activities, and through this, they can contribute to the regimes established by State actors to solve transnational issues. Among various regimes, TNCs may choose to comply with the transnational anti-corruption legal regime to avoid the cost of non-compliance with anti-corruption laws. As a result, they decide to strenghen their anti-corruption compliance as they expand into new overseas markets. Such a decision extends anti-corruption standards among their employees and third-party agents and within their projects across countries. To better address the challenges posed by corruption, TNCs have adopted a comprehensive anti-corruption toolkit. Among the various instruments, anti-corruption clauses have become one of the most anti-corruption means in international commercial agreements. Anti-corruption clauses, acting as a due diligence tool, can protect TNCs against the engagement of third-party agents in corrupt practices and further promote anti-corruption standards among businesses operating across countries. An anti-corruption clause allows parties to create a contractual commitment to exclude corrupt practices during the term of their agreement, including all levels of negotiation and implementation. Such a clause offers companies a mechanism to reduce the risk of potential corruption in their dealings with third parties while avoiding civil and administrative penalties. There have been few attempts to examine the role of anti-corruption clauses in the fight against corruption; therefore, this paper aims to fill this gap and examine anti-corruption clauses in a specific sector where corrupt practices are widespread and endemic, i.e., the petroleum industry. This paper argues that anti-corruption clauses are a positive step in ensuring that the petroleum industry operates in an ethical and transparent manner, helping to reducing the risk of corruption and promote integrity in this sector. Contractual anti-corruption clauses vary in terms of the types commitment, so parties have a wide range of options to choose from for their preferred clauses incorporated within their contracts. This paper intends to propose a categorization of anti-corruption clauses in the petroleum sector. It examines particularly the anti-corruption clauses incorporated in transnational hydrocarbon contracts published by the Resource Contract Portal, an online repository of extractive contracts. Then, this paper offers a quantitative assessment of anti-corruption clauses according to the types of contract, the date of conclusion, and the geographical distribution.

Keywords: anti-corruption, oil and gas, transnational corporations, due diligence, contractual clauses, hydrocarbon, petroleum sector

Procedia PDF Downloads 138
8608 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness

Authors: Marzieh Karimihaghighi, Carlos Castillo

Abstract:

This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.

Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism

Procedia PDF Downloads 156
8607 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 152
8606 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities

Authors: Shoba Rathilal

Abstract:

High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.

Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development

Procedia PDF Downloads 82
8605 Chemical Composition, in vitro Antioxidant Activity and Gas Chromatography–Mass Spectrometry Analysis of Essential Oil and Extracts of Ruta chalpensis aerial Parts Growing in Tunisian Sahara

Authors: Samir Falhi, Neji Gharsallah, Adel Kadri

Abstract:

Ruta chalpensis L. is a medicinal plant in the family of Rutaceae, has been used as an important traditional in the Mediterranean basin in the treatment of many diseases. The current study was devoted to investigate and evaluate the chemical composition, total phenolic, flavonoid and tannin contents, and in vitro antioxidant activities of ethyl acetate, ethanol and hydroalcoholic extracts and essential oil from the aerial parts of Ruta chalpensis from Tunisian Sahara. Total phenolic, flavonoid and tannin contents of extracts ranged from 40.39 ± 1.87 to 75.13 ± 1.22 mg of GAE/g, from 22.62 ± 1.55 to 27.51 ± 1.04 mg of QE/g, and from 5.56 ± 1.32 to 10.89 ± 1.10 mg of CE/g respectively. Results showed that the highest antioxidant activities was determined for ethanol extract with IC50 value of 26.23 ± 0.91 µg/mL for 2,2-diphenyl-1-picrylhydrazyl assay, and for hydroalcoholic extract with EC50 value of 412.95±6.57 µg/mL and 105.52±2.45 mg of α-tocopherol/g for ferric reducing antioxidant power and total antioxidant capacity assays, respectively. Furthermore, Gas Chromatography–Mass Spectrometry (GC-MS) analysis of essential oil led to identification of 20 compounds representing 98.96 % of the total composition. The major components of essential oil were 2-undecanone (39.13%), 2-nonanone (25.04), 1-nonene (13.81), and α-limonene (7.72). Spectral data of Fourier-transform infrared spectroscopy analysis (FT-IR) of extracts revealed the presence of functional groups such as C= O, C─O, ─OH, and C─H, which confirmed its richness on polyphenols and biological active functional groups. These results showed that Ruta chalpensis could be a potential natural source of antioxidants that can be used in food and nutraceutical applications.

Keywords: antioxidant, FT-IR analysis, GC-MS analysis, phytochemicals contents, Ruta chalpensis

Procedia PDF Downloads 149
8604 Environmental Awareness on Formal Education Level: A Program Approach through Physical Education Course

Authors: Jocelyn Floresca

Abstract:

This paper aimed to present the by-product of the introduction of environmental ecology awareness on a formal education level utilizing the program course of Physical Education, particularly in the tertiary level. It is based on the premise that the radical need for environmental protection may not only necessarily be the work of people in the pure sciences but also deemed necessary to look into more avenues of the school setting particularly in the field of Physical Education. In the Philippines, most schools’ Physical Education focuses on the advancement of sports, fitness and wellness which are mostly done in the confines of a closed building. The paper dwells into the introduction of Physical Education as an outdoor recreation activity where in the participants of the study had the opportunity to indulge in activities undertaken outside the confines of buildings and going into large areas of the environment. It looked into the individual participant’s environmental social behaviour and effects on the participant’s perceptions in terms of the set objectives of Physical Education before and after the study’s intervention. The study utilized the formal course in Physical Education on nature walks, mountaineering and bird watching as interventions to gain perceptions and understanding. The introduction of the environmental ecology activities as a formal Physical Education course has resulted in deeper awareness that led to understanding the need to protect the environment, appreciation of the value of natural areas and acquiring behaviour for a sustainable use of the environment during the practice of Physical Education. Also, prior to the introduction of environmental ecology in Physical Education as a formal study; participants have no knowledge of what dwells in the identified sites of intervention. Whereas after the study, participants were able to identify various species of birds and plants found in the sites of the study that may lead to further conservation of the particular species.

Keywords: appreciation, conservation, environmental ecology, outdoor

Procedia PDF Downloads 296
8603 The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis

Authors: Morteza Raki, Abolghasem Zabihollah, Omid Askari

Abstract:

Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. 

Keywords: blade, crack propagation, health monitoring, modal analysis

Procedia PDF Downloads 350
8602 Fear of Falling and Physical Activities: A Comparison Between Rural and Urban Elderly People

Authors: Farhad Azadi, Mohammad Mahdi Mohammadi, Mohsen Vahedi, Zahra Mahdiin

Abstract:

Context: The aging population is growing all over the world and maintaining physical activity is essential for healthy aging. However, fear of falling is a major obstacle to physical activity among the elderly. The aim of this study is to investigate and compare the relationship between fear of falling and physical activity in Iranian urban and rural elderly. Research Aim: The main aim of this cross-sectional analytical study is to investigate and compare the relationship between fear of falling and physical activity in Iranian rural and urban elderly. Methodology: The study used simple non-probability sampling to select 350 participants aged 60 years and older from rural and urban areas of Konarak, Sistan and Baluchistan provinces in Iran. The Persian versions of the Falls Efficacy Scale - International, Rapid Physical Activity Assessment, Activities of Daily Living, and Instrumental Activities of Daily Living questionnaires were used to assess fear of falling and physical activity. The data were analyzed using Pearson correlation tests. Findings: The study found a statistically significant negative correlation between fear of falling and physical activity, as measured by ADL, IADL, and RAPA1(aerobic ), in all elderly and rural and urban elderly (p<0.001). Fear of falling was higher in rural areas, while physical activity levels measured by ADL and RAPA1 were higher in urban areas. No significant difference was found between the two groups in IADL and RAPA2 (strength and flexibility) scores. Theoretical Importance: This study highlights the importance of considering the fear of falling as a significant obstacle to proper physical activity, especially among the elderly living in rural areas. Furthermore, the study provides insight into the difference between rural and urban elderly people in terms of fear of falling and physical activity. Data Collection and Analysis Procedures: Data was collected through questionnaires and analyzed using Pearson correlation tests. Questions Addressed: The study attempted to answer the following questions: Is there a relationship between fear of falling and physical activity in Iranian urban and rural elderly people? Is there a difference in fear of falling and physical activity between rural and urban elderly? Conclusion: Fear of falling is a major obstacle to physical activity among the elderly, especially in rural areas. The study found a significant negative correlation between fear of falling and physical activity in all elderly and rural and urban elderly. In addition, urban and rural elderly have differences in aerobic activity levels, but they do not differ in terms of flexibility and strength. Therefore, proper interventions are required to ensure that the elderly can maintain physical activity, especially in rural and deprived areas.

Keywords: aged, fear of falling, physical activity, urban population, rural population

Procedia PDF Downloads 76
8601 The International Field Placement: Experience in Vietnam Social Work International Placement Programme

Authors: Ngo Thi Thanh Mai, Nguyen Thu Ha, Frances Crawford

Abstract:

The demand for developing international social work field education is on the rise. Global foreign universities have considered international collaboration and cross-cultural perspective as an essential part of their social work training curriculum. International placement program at Faculty of Social Work (FSW), Hanoi National University of Education (HNUE) has met the need of international social work students, as well as the institutions involved in achieving social work professional social work knowledge in the Vietnamese context. This program has also lead to a long-term collaboration between HNUE and several global institutions in developing social work education, research and practice skill. This paper focuses on the benefits and challenges of students who involved in the global placement programme at Faculty of Social Work (FSW), Hanoi National University of Education (HNUE) and content of international field education provided to the international students based on the experience of the authors. Study results indicated that the participants have opportunity them to explore a new culture and social work system abroad especially in the Vietnamese context. However, there are still difficulties that international students have to face during different phases of the exchange process such as language and communication barriers, cultural value differences, insufficient support and supervision during placement. Basing on these results, the authors intend to propose some recommendations to enhance the programme activities such as pre-departure orientation, support and supervision during placement, cultural exchange and follow-up activities.

Keywords: social work education, social work, international placement, field placement, Vietnam

Procedia PDF Downloads 149
8600 Crude Extracts of Medicinal Plants Can Inhibit Some Bacteria of Clinical Importance in Minced Meat

Authors: Chika C. Ogueke, Ijeoma M. Agunwah

Abstract:

The antimicrobial activities and preservative potentials of crude extracts of Alstonia boonei stem bark and Euphorbia hirta leaves were studied. Soxhlet extraction and cold ethanol extraction methods were used for the extraction of the dried and ground plant samples. Well in agar diffusion method was used for the antimicrobial screening at different concentrations of 25mg/ml, 50mg/ml, 100mg/ml and 200mg/ml on E.coli and B.subtilis. The preservative effects of the extracts at 0.1%, 0.2% and 0.3% singly and in combination were determined in minced meat using E. coli and B. subtilis as test isolates. Phytochemical analysis was also conducted on the extracts using standard analytical methods. E.hirta cold and A.boonei cold extracts gave the highest zone of growth inhibition on E. coli and B.substilis with 20mm zone diameter at 200mg/ml concentration. Phytochemical analysis revealed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides. A.boonei at 0.1, 0.2 and 0.3% produced a log cycle reduction on the growth of E.coli. Mixture of A. boonei and E. hirta extracts (1:1) at 0.1% and 0.2% also produced a log cycle reduction on the growth of E.coli and B. subtilis, however the A. boonei extracts had more significant effect on the isolates. The observed antimicrobial activities are attributed to the phytochemicals identified in the extracts. The results reveal the potentials of plant extracts as natural antimicrobial preservatives in minced meat. Thus the crude extracts can act as inhibitors of bacteria in a food system. Upon further purification better results may be obtained.

Keywords: antimicrobial preservative, crude extracts, minced meat, test isolates

Procedia PDF Downloads 299
8599 Exploring Students’ Voices in Lecturers’ Teaching and Learning Developmental Trajectory

Authors: Khashane Stephen Malatji, Makwalete Johanna Malatji

Abstract:

Student evaluation of teaching (SET) is the common way of assessing teaching quality at universities and tracing the professional growth of lecturers. The aim of this study was to investigate the role played by student evaluation in the teaching and learning agenda at one South African University. The researchers used a qualitative approach and a case study research design. With regards to data collection, document analysis was used. Evaluation reports were reviewed to monitor the growth of lecturers who were evaluated during the academic years 2020 and 2021 in one faculty. The results of the study reveal that student evaluation remains the most relevant tool to inform the teaching agenda at a university. Lecturers who were evaluated were found to grow academically. All lecturers evaluated during 2020 have shown great improvement when evaluated repeatedly during 2021. Therefore, it can be concluded that student evaluation helps to improve the pedagogical and professional proficiency of lecturers. The study therefore, recommends that lecturers conduct an evaluation for each module they teach every semester or annually in case of year modules. The study also recommends that lecturers attend to all areas that draw negative comments from students in order to improve.

Keywords: students’ voices, teaching agenda, evaluation, feedback, responses

Procedia PDF Downloads 92
8598 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 61
8597 Preclinical Evidence of Pharmacological Effect from Medicinal Hemp

Authors: Muhammad nor Farhan Sa'At, Xin Y. Lim, Terence Y. C. Tan, Siti Hajar M. Rosli, Syazwani S. Ali, Ami F. Syed Mohamed

Abstract:

INTRODUCTION: Hemp (Cannabis sativa subsp. sativa), commonly used for industrial purposes, differs from marijuana by containing lower levels of delta-9-tetrahydronannabidiol- the principal psychoactive constituent in cannabis. Due to its non-psychoactive nature, there has been growing interest in hemp’s therapeutic potential, which has been investigated through pre-clinical and clinical study modalities. OBJECTIVE: To provide an overview of the current landscape of hemp research, through recent scientific findings specific to the pharmacological effects of the medicinal hemp plant and its derived compounds. METHODS: This review was conducted through a systematic search strategy according to the preferred reporting items for systematic review and meta-analysis-ScR (PRISMA-ScR) checklist on electronic databases including MEDLINE, OVID (OVFT, APC Journal Club, EBM Reviews), Cochrane Library Central and Clinicaltrials.gov. RESULTS: From 65 primary articles reviewed, there were 47 pre-clinical studies related to medicinal hemp. Interestingly, the hemp derivatives showed several potential activities such as anti-oxidative, anti-hypertensive, anti-inflammatory, anti-diabetic, anti-neuroinflammatory, anti-arthritic, anti-acne, and anti-microbial activities. Renal protective effects and estrogenic properties were also exhibited in vitro. CONCLUSION: Medicinal hemp possesses various pharmacological effects tested in vitro and in vivo. Information provided in this review could be used as tool to strengthen the study design of future clinical trial research.

Keywords: Preclinical, Herbal Medicine, Hemp, Cannabis

Procedia PDF Downloads 140
8596 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 169
8595 Unfolding Simulations with the Use of Socratic Questioning Increases Critical Thinking in Nursing Students

Authors: Martha Hough RN

Abstract:

Background: New nursing graduates lack the critical thinking skills required to provide safe nursing care. Critical thinking is essential in providing safe, competent, and skillful nursing interventions. Educational institutions must provide a curriculum that improves nursing students' critical thinking abilities. In addition, the recent pandemic resulted in nursing students who previously received in-person clinical but now most clinical has been converted to remote learning, increasing the use of simulations. Unfolding medium and high-fidelity simulations and Socratic questioning are used in many simulations debriefing sessions. Methodology: Google Scholar was researched with the keywords: critical thinking of nursing students with unfolding simulation, which resulted in 22,000 articles; three were used. A second search was implemented with critical thinking of nursing students Socratic questioning, which resulted in two articles being used. Conclusion: Unfolding simulations increase nursing students' critical thinking, especially during the briefing (pre-briefing and debriefing) phases, where most learning occurs. In addition, the use of Socratic questions during the briefing phases motivates other questions, helps the student analyze and critique their thinking, and assists educators in probing students' thinking, which further increases critical thinking.

Keywords: briefing, critical thinking, Socratic thinking, unfolding simulations

Procedia PDF Downloads 188
8594 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 68
8593 Application of GeoGebra into Teaching and Learning of Linear and Quadratic Equations amongst Senior Secondary School Students in Fagge Local Government Area of Kano State, Nigeria

Authors: Musa Auwal Mamman, S. G. Isa

Abstract:

This study was carried out in order to investigate the effectiveness of GeoGebra software in teaching and learning of linear and quadratic equations amongst senior secondary school students in Fagge Local Government Area, Kano State–Nigeria. Five research items were raised in objectives, research questions and hypotheses respectively. A random sampling method was used in selecting 398 students from a population of 2098 of SS2 students. The experimental group was taught using the GeoGebra software while the control group was taught using the conventional teaching method. The instrument used for the study was the mathematics performance test (MPT) which was administered at the beginning and at the end of the study. The results of the study revealed that students taught with GeoGebra software (experimental group) performed better than students taught with traditional teaching method. The t- test was used to analyze the data obtained from the study.

Keywords: GeoGebra Software, mathematics performance, random sampling, mathematics teaching

Procedia PDF Downloads 253
8592 Play in College: Shifting Perspectives and Creative Problem-Based Play

Authors: Agni Stylianou-Georgiou, Eliza Pitri

Abstract:

This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.

Keywords: creative problem-based play, educational games, flexible thinking, tertiary education

Procedia PDF Downloads 296
8591 A Question of Ethics and Faith

Authors: Madhavi-Priya Singh, Liam Lowe, Farouk Arnaout, Ludmilla Pillay, Giordan Perez, Luke Mischker, Steve Costa

Abstract:

An Emergency Department consultant identified the failure of medical students to complete the task of clerking a patient in its entirety. As six medical students on our first clinical placement, we recognised our own failure and endeavoured to examine why this failure was consistent among all medical students that had been given this task, despite our best motivations as adult learner. Our aim is to understand and investigate the elements which impeded our ability to learn and perform as medical students in the clinical environment, with reference to the prescribed task. We also aim to generate a discussion around the delivery of medical education with potential solutions to these barriers. Six medical students gathered together to have a comprehensive reflective discussion to identify possible factors leading to the failure of the task. First, we thoroughly analysed the delivery of the instructions with reference to the literature to identify potential flaws. We then examined personal, social, ethical, and cultural factors which may have impacted our ability to complete the task in its entirety. Through collation of our shared experiences, with support from discussion in the field of medical education and ethics, we identified two major areas that impacted our ability to complete the set task. First, we experienced an ethical conflict where we believed the inconvenience and potential harm inflicted on patients did not justify the positive impact the patient interaction would have on our medical learning. Second, we identified a lack of confidence stemming from multiple factors, including the conflict between preclinical and clinical learning, perceptions of perfectionism in the culture of medicine, and the influence of upward social comparison. After discussions, we found that the various factors we identified exacerbated the fears and doubts we already had about our own abilities and that of the medical education system. This doubt led us to avoid completing certain aspects of the tasks that were prescribed and further reinforced our vulnerability and perceived incompetence. Exploration of philosophical theories identified the importance of the role of doubt in education. We propose the need for further discussion around incorporating both pedagogic and andragogic teaching styles in clinical medical education and the acceptance of doubt as a driver of our learning. Doubt will continue to permeate our thoughts and actions no matter what. The moral or psychological distress that arises from this is the key motivating factor for our avoidance of tasks. If we accept this doubt and education embraces this doubt, it will no longer linger in the shadows as a negative and restrictive emotion but fuel a brighter dialogue and positive learning experience, ultimately assisting us in achieving our full potential.

Keywords: medical education, clinical education, andragogy, pedagogy

Procedia PDF Downloads 131
8590 The Effect of the Environmental Activities of Organizations on Financial Performance

Authors: Fatemeh Khalili Varnamkhasti

Abstract:

Natural administration has outside impacts such that companies regularly respect natural input as a fetched with no clear advantage. In this manner, in case natural security can bring financial benefits, showing that natural security and financial interface are in concordance, companies will effectively fulfill their obligation to ensure the environment. Contamination is, for the most part, related to the squandering of assets, misplaced vitality, and crude materials not completely utilized. Contamination avoidance and clean innovation, as inner organizational hones, can offer assistance to play down taken toll and to develop economic aptitudes for the long run, whereas outside organizational hones (item stewardship and maintainability vision) can offer assistance to coordinated partner sees into trade operations and to define future commerce directions. Taken together, these practices can drive shareholder esteem while at the same time contributing to a more feasible world. On the off chance that the company's budgetary execution is nice, it'll draw in financial specialists to contribute and progress the company's execution. In this way, budgetary execution is additionally the determinant of the progression of a company. This can be because the monetary back gotten by the company gets to be the premise for the running of trade forms in the future. Moreover, A green picture can assist firms in pulling in more clients by influencing shopper choices and moving forward with buyer brand dependability. Numerous shoppers need to purchase items from ecologically inviting firms, in spite of the fact that there are, of course, a few who will not pay premium costs for green items.

Keywords: environmental activities, financial performanance, advantage, clients

Procedia PDF Downloads 62
8589 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 295
8588 Role of Agriculture Equipment toward Food Security: Case Study of Agriculture Equipment Assistance during President Joko Widodo Era in Indonesia

Authors: Raihan Zahirah Mauludy Ridwan, Frisca Devi Choirina

Abstract:

Indonesia is an agrarian country endowed by fertile soil, supportive weather, and natural resources which can support agricultural activities. There are commodities which produced by local farmers. Even though Indonesia had commodities, it still imports stocks of staple food. To reduce the dependency on imported staple food, President Joko Widodo wants to generate more locally-produced staple food by giving 69.000 tractors, free seeds, and fertilizers to the local farmers. In Indonesia, the problem revolves around the amount of food production especially rice derived from farmers who cannot afford technologies which can support the agricultural activities. Moreover, they cannot afford seeds and fertilizers which can make the production of commodities more effective and have high quality. Therefore, the paper would like to answer how agriculture equipment assistance during President Joko Widodo era can give significant impact towards food security. The purpose of this paper is to explore the role of agriculture equipment assistance and its impact towards Indonesia’s food security. This paper uses Boserup and Ruthenberg theory of agricultural intensification to link agriculture equipment and intensification of production which in the end will have impact towards food security through case study method. The paper affirms that the role of agricultural equipment assistance toward food security in Indonesia is significant toward Indonesia’s food production and security.

Keywords: agricultural equipment, agricultural intensification, Boserup, Indonesia, Joko Widodo, Ruthenberg

Procedia PDF Downloads 190
8587 Application of Simulation of Discrete Events in Resource Management of Massive Concreting

Authors: Mohammad Amin Hamedirad, Seyed Javad Vaziri Kang Olyaei

Abstract:

Project planning and control are one of the most critical issues in the management of construction projects. Traditional methods of project planning and control, such as the critical path method or Gantt chart, are not widely used for planning projects with discrete and repetitive activities, and one of the problems of project managers is planning the implementation process and optimal allocation of its resources. Massive concreting projects is also a project with discrete and repetitive activities. This study uses the concept of simulating discrete events to manage resources, which includes finding the optimal number of resources considering various limitations such as limitations of machinery, equipment, human resources and even technical, time and implementation limitations using analysis of resource consumption rate, project completion time and critical points analysis of the implementation process. For this purpose, the concept of discrete-event simulation has been used to model different stages of implementation. After reviewing the various scenarios, the optimal number of allocations for each resource is finally determined to reach the maximum utilization rate and also to reduce the project completion time or reduce its cost according to the existing constraints. The results showed that with the optimal allocation of resources, the project completion time could be reduced by 90%, and the resulting costs can be reduced by up to 49%. Thus, allocating the optimal number of project resources using this method will reduce its time and cost.

Keywords: simulation, massive concreting, discrete event simulation, resource management

Procedia PDF Downloads 150
8586 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 124