Search results for: feed forward network
1081 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads
Procedia PDF Downloads 3441080 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry
Procedia PDF Downloads 3661079 Foregrounding Events in Modern Sundanese: The Pragmatics of Particle-to-Active Voice Marking Shift
Authors: Rama Munajat
Abstract:
Discourse information levels may be viewed from either a background-foreground distinction or a multi-level perspective, and cross-linguistic studies on this area suggest that each information level is marked by a specific linguistic device. In this sense, Sundanese, spoken in Indonesia’s West Javanese Province, further differentiates the background and foreground information into ordinary and significant types. This paper will report an ongoing shift from particle-to-active voice marking in the way Sundanese signals foregrounding events. The shift relates to decades of contact with Bahasa Indonesia (Indonesia’s official language) and linguistic compatibility between the two surface marking strategies. Representative data analyzed include three groups of short stories in both Sundanese and Bahasa Indonesia (Indonesian) published in three periods: before 1945, 1965-2006, and 2016-2019. In the first group of Sundanese data, forward-moving events dominantly appear in particle KA (Kecap Anteuran, word-accompanying) constructions, where the KA represents different particles that co-occur with a special group of verbs. The second group, however, shows that the foregrounded events are more frequently described in active-voice forms with a subject-predicate (SP) order. Subsequently, the third offers stronger evidence for the use of the SP structure. As for the Indonesian data, the foregrounding events in the first group occur in verb-initial and passive-voice constructions, while in the second and third, the events more frequently appear in active-voice structures (subject-predicate sequence). The marking shift above suggests a structural influence from Indonesian, stemmed from generational differences among authors of the Sundanese short stories, particularly related to their education and language backgrounds. The first group of short stories – published before 1945 or before Indonesia's independence from Dutch – were written by native speakers of Sundanese who spoke Indonesian as a foreign language and went through the Dutch education system. The second group of authors, on the other hand, represents a generation of Sundanese native speakers who spoke Indonesian as a second language. Finally, the third group consists of authors who are bilingual speakers of both Sundanese and Indonesian. The data suggest that the last two groups of authors completed the Indonesian education system. With these, the use of subject-predicate sequences to denote foregrounding events began to appear more frequently in the second group and then became more dominant in those of the third. The coded data also signify that cohesion, coherence, and pragmatic purposes in Particle KA constructions are intact in their respective active-voice structure counterparts. For instance, the foregrounding events in Particle KA constructions occur in Sentence-initial KA and Pre-verbal KA forms, whereas those in the active-voice are described in Subject-Predicate (SP) and Zero-Subject active-voice patterns. Cross-language data further demonstrate that the Sentence-initial KA and the SP active-voice structures each contain an overt noun phrase (NP) co-referential with one of the entities introduced in a preceding context. Similarly, the pre-verbal KA and Zero-Subject active-voice patterns have a deleted noun phrase unambiguously referable to the only one entity previously mentioned. The presence and absence of an NP inform a pragmatic strategy to place prominence on topic/given and comment/new information, respectively.Keywords: discourse analysis, foregrounding marking, pragmatics, language contact
Procedia PDF Downloads 1401078 Eco-Politics of Infrastructure Development in and Around Protected Areas in Kenya: The Case of Nairobi National Park
Authors: Teresa Wanjiru Mbatia
Abstract:
On 7th June 2011, the government Minister of Roads in Kenya announced the proposed construction of a major highway known as a southern bypass to run on the northern border of the Nairobi National Park. The following day on 8th June 2011, the chairperson of the Friends of Nairobi National Park (FONNAP) posted a protest statement on their website, with the heading, ‘Nairobi Park is Not a cake’ alerting its members and conservation groups, with the aim of getting support to the campaign against the government’s intention to hive off a section of the park for road construction. This was the first and earliest statement that led to a series of other events that culminated in conservationists and some other members of the public campaign against the government’s plan to hive off sections of the park to build road and railway infrastructure in or around the park. Together with other non-state actors, mostly non-governmental organisations in conservation/environment and tourism businesses, FoNNAP issued a series of other statements on social, print and electronic media to battle against road and railway construction. This paper examined the strategies, outcomes and interests of actors involved in opposing/proposing the development of transport infrastructure in and around the Nairobi National Park. Specifically, the objectives were to analyse the: (1) Arguments put forward by the eco-warriors to protest infrastructure development; (2) Background and interests of the eco-warriors; (3) Needs/interests and opinions of ordinary common citizens on transport infrastructural development, particularly in and around the urban nature reserve and (4) Final outcomes of the eco-politics surrounding infrastructure development in and around Nairobi National Park. The methodological approach used was environmental history and the social construction of nature. The study collected combined qualitative data using four main approaches, the grounded theory approach, narratives, case studies and a phenomenological approach. The information collected was analysed using critical discourse analysis. The major findings of the study were that under the guise of “public participation,” influential non-state actors have the capacity to perpetuate social-spatial inequalities in the form of curtailing the majority from accessing common public goods. A case in point in this study is how the efforts of powerful conservationists, environmentalists, and tourism businesspersons managed to stall the construction of much-needed road and railway infrastructure severally through litigations in lengthy environmental court processes involving injunctions and stop orders to the government bodies in charge. Moreover, powerful non-state actors were found to have formed informal and sometimes formal coalitions with politicians with selfish interests, which serves to deepen the exclusionary practices and the common good. The study concludes that mostly composed of certain types of elites (NGOs, business communities, politicians and privileged social-cultural groups), non-state actors have used participatory policies to advance their own interests at the expense of the majority whom they claim to represent. These practices are traced to the historically unjust social, political, and economic forces involved in the production of space in Nairobi.Keywords: eco-politics, exclusion, infrastructure, Nairobi national park, non-state actors, protests
Procedia PDF Downloads 1801077 Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese
Abstract:
The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water.Keywords: water treatment, hybrid membranes, layer-by-layer coating, filtration, polyelectrolytes
Procedia PDF Downloads 1691076 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery
Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal
Abstract:
Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT
Procedia PDF Downloads 2311075 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration
Authors: Smaran Manchala
Abstract:
Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization
Procedia PDF Downloads 271074 Identifying Enablers and Barriers of Healthcare Knowledge Transfer: A Systematic Review
Authors: Yousuf Nasser Al Khamisi
Abstract:
Purpose: This paper presents a Knowledge Transfer (KT) Framework in healthcare sectors by applying a systematic literature review process to the healthcare organizations domain to identify enablers and barriers of KT in Healthcare. Methods: The paper conducted a systematic literature search of peer-reviewed papers that described key elements of KT using four databases (Medline, Cinahl, Scopus, and Proquest) for a 10-year period (1/1/2008–16/10/2017). The results of the literature review were used to build a conceptual framework of KT in healthcare organizations. The author used a systematic review of the literature, as described by Barbara Kitchenham in Procedures for Performing Systematic Reviews. Findings: The paper highlighted the impacts of using Knowledge Management (KM) concept at a healthcare organization in controlling infectious diseases in hospitals, improving family medicine performance and enhancing quality improvement practices. Moreover, it found that good-coding performance is analytically linked with a knowledge sharing network structure rich in brokerage and hierarchy rather than in density. The unavailability or ignored of the latest evidence on more cost-effective or more efficient delivery approaches leads to increase the healthcare costs and may lead to unintended results. Originality: Search procedure produced 12,093 results, of which 3523 were general articles about KM and KT. The titles and abstracts of these articles had been screened to segregate what is related and what is not. 94 articles identified by the researchers for full-text assessment. The total number of eligible articles after removing un-related articles was 22 articles.Keywords: healthcare organisation, knowledge management, knowledge transfer, KT framework
Procedia PDF Downloads 1391073 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 671072 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 1761071 A Historical Overview and Supplementation of the Dyad Concept of Industrial Marketing
Authors: Kimmo J. Kurppa
Abstract:
This paper describes the development of the buyer-supplier dyad concept over the years and proposes improvements, clarifications and extensions to the prevailing definitions published in 1970’s and 1980’s. This paper suggests a partition of the buyer-supplier dyad to concepts of Commercial Dyad (dyadic interaction in vertical relationships) and Innovative Dyad (dyadic interaction in horizontal relationship) since dyadic interaction takes place in two major types of contexts between industrial firms. Especially the context of joint product development in a dyadic relationship has not been adequately recognized being totally different from the interaction taking place in commercial buyer-supplier interaction. This paper provides therefore a solution to the existing gap in research by clarifying the descriptions and the context where dyadic interaction takes place between industrial firms. This paper also illustrates and explains how the firm’s organization and the interaction taking place inside it, is connected to the dyadic interaction structure between the firm and its partner firm. This theme has been discussed earlier but the phenomenon has not been adequately described and has not been illustrated in earlier research. This conceptual study has been interested in how the dyad concept of Industrial Marketing has been defined in the earlier research and how the definition could be improved. This conceptual paper has been constructed by using the systematic review methodology and proposes avenues for future research. The concept and existence of relationship and interaction between firm’s internal interaction network and external interaction between firm’s dyadic counterparts, need to be verified through empirical research.Keywords: dyadic interaction, industrial dyad, buyer-supplier relationship, strategic reciprocity, experience, socially adjusted opportunism
Procedia PDF Downloads 2181070 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2
Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti
Abstract:
A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays
Procedia PDF Downloads 4511069 Sexting Phenomenon in Educational Settings: A Data Mining Approach
Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera
Abstract:
Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.Keywords: educational ethics, sexting, Greek sexters, sex education, data mining
Procedia PDF Downloads 1821068 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 3991067 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 1511066 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University
Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf
Abstract:
This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer
Procedia PDF Downloads 1321065 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion
Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab
Abstract:
Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.Keywords: air jet loom, twist per inch, twist loss, weft yarn
Procedia PDF Downloads 4041064 Neuroinflammation in Late-Life Depression: The Role of Glial Cells
Authors: Chaomeng Liu, Li Li, Xiao Wang, Li Ren, Qinge Zhang
Abstract:
Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD.Keywords: neuroinflammation, late-life depression, microglia, astrocytes, central nervous system, blood-brain barrier, Kynurenine pathway
Procedia PDF Downloads 481063 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning
Authors: Redouane Larbi Boufeniza, Jing-Jia Luo
Abstract:
This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning
Procedia PDF Downloads 771062 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development
Authors: Ananchai Ukaew, Choopong Chauypen
Abstract:
Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system
Procedia PDF Downloads 3511061 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation
Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates
Abstract:
The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.Keywords: biomass, distribuited generation, small-scale, Monte Carlo
Procedia PDF Downloads 2881060 Health Equity in Hard-to-Reach Rural Communities in Abia State, Nigeria: An Asset-Based Community Development Intervention to Influence Community Norms and Address the Social Determinants of Health in Hard-to-Reach Rural Communities
Authors: Chinasa U. Imo, Queen Chikwendu, Jonathan Ajuma, Mario Banuelos
Abstract:
Background: Sociocultural norms primarily influence the health-seeking behavior of populations in rural communities. In the Nkporo community, Abia State, Nigeria, their sociocultural perception of diseases runs counter to biomedical definitions, wherein they rely heavily on traditional medicine and practices. In a state where birth asphyxia and sepsis account for the significant causes of death for neonates, malaria leads to the causes of other mortalities, followed by common preventable diseases such as diarrhea, pneumonia, acute respiratory tract infection, malnutrition, and HIV/AIDS. Most local mothers attribute their health conditions and that of their children to witchcraft attacks, the hand of God, and ancestral underlining. This influences how they see antenatal and postnatal care, choice of place of accessing care and birth delivery, response to children's illnesses, immunization, and nutrition. Method: To implement a community health improvement program, we adopted an asset-based community development model to address health's normative and social determinants. The first step was to use a qualitative approach to conduct a community health needs baseline assessment, involving focus group discussions with twenty-five (25) youths aged 18-25, semi-structured interviews with ten (10) officers-in-charge of primary health centers, eight (8) ward health committee members, and nine (9) community leaders. Secondly, we designed an intervention program. Going forward, we will proceed with implementing and evaluating this program. Result: The priority needs identified by the communities were malaria, lack of clean drinking water, and the need for behavioral change information. The study also highlighted the significant influence of youths on their peers, family, and community as caregivers and information interpreters. Based on the findings, the NGO SieDi-Hub collaborated with the Abia State Ministry of Health, the State Primary Healthcare Agency, and Empower Next Generations to design a one-year "Community Health Youth Champions Pilot Program." Twenty (20) youths in the community were trained and equipped to champion a participatory approach to bridging the gap between access and delivery of primary healthcare, to adjust sociocultural norms to improve health equity for people in Nkporo community – with limited education, lack of access to health information, and quality healthcare facilities using an innovative community-led improvement approach. Conclusion: Youths play a vital role in achieving health equity, being a vulnerable population with significant influence. To ensure effective primary healthcare, strategies must include cultural humility. The asset-based community development model offers valuable tools, and this article will share ongoing lessons from the intervention's behavioral change strategies with young people.Keywords: asset-based community development, community health, primary health systems strengthening, youth empowerment
Procedia PDF Downloads 941059 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 1361058 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia
Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke
Abstract:
Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia
Procedia PDF Downloads 331057 Aluminum Based Hexaferrite and Reduced Graphene Oxide a Suitable Microwave Absorber for Microwave Application
Authors: Sanghamitra Acharya, Suwarna Datar
Abstract:
Extensive use of digital and smart communication createsprolong expose of unwanted electromagnetic (EM) radiations. This harmful radiation creates not only malfunctioning of nearby electronic gadgets but also severely affects a human being. So, a suitable microwave absorbing material (MAM) becomes a necessary urge in the field of stealth and radar technology. Initially, Aluminum based hexa ferrite was prepared by sol-gel technique and for carbon derived composite was prepared by the simple one port chemical reduction method. Finally, composite films of Poly (Vinylidene) Fluoride (PVDF) are prepared by simple gel casting technique. Present work demands that aluminum-based hexaferrite phase conjugated with graphene in PVDF matrix becomes a suitable candidate both in commercially important X and Ku band. The structural and morphological nature was characterized by X-Ray diffraction (XRD), Field emission-scanning electron microscope (FESEM) and Raman spectra which conforms that 30-40 nm particles are well decorated over graphene sheet. Magnetic force microscopy (MFM) and conducting force microscopy (CFM) study further conforms the magnetic and conducting nature of composite. Finally, shielding effectiveness (SE) of the composite film was studied by using Vector network analyzer (VNA) both in X band and Ku band frequency range and found to be more than 30 dB and 40 dB, respectively. As prepared composite films are excellent microwave absorbers.Keywords: carbon nanocomposite, microwave absorbing material, electromagnetic shielding, hexaferrite
Procedia PDF Downloads 1781056 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 1841055 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1131054 Lack of Regulation Leads to Complexity: A Case Study of the Free Range Chicken Meat Sector in the Western Cape, South Africa
Authors: A. Coetzee, C. F. Kelly, E. Even-Zahav
Abstract:
Dominant approaches to livestock production are harmful to the environment, human health and animal welfare, yet global meat consumption is rising. Sustainable alternative production approaches are therefore urgently required, and ‘free range’ is the main alternative for chicken meat offered in South Africa (and globally). Although the South African Poultry Association provides non-binding guidelines, there is a lack of formal definition and regulation of free range chicken production, meaning it is unclear what this alternative entails and if it is consistently practised (a trend observed globally). The objective of this exploratory qualitative case study is therefore to investigate who and what determines free range chicken. The case study, conducted from a social constructivist worldview, uses semi-structured interviews, photographs and document analysis to collect data. Interviews are conducted with those involved with bringing free range chicken to the market - farmers, chefs, retailers, and regulators. Data is analysed using thematic analysis to establish dominant patterns in the data. The five major themes identified (based on prevalence in data and on achieving the research objective) are: 1) free range means a bird reared with good animal welfare in mind, 2) free range means quality meat, 3) free range means a profitable business, 4) free range is determined by decision makers or by access to markets, and 5) free range is coupled with concerns about the lack of regulation. Unpacking the findings in the context of the literature reveals who and what determines free range. The research uncovers wide-ranging interpretations of ‘free range’, driven by the absence of formal regulation for free range chicken practices and the lack of independent private certification. This means that the term ‘free range’ is socially constructed, thus varied and complex. The case study also shows that whether chicken meat is free range is generally determined by those who have access to markets. Large retailers claim adherence to the internationally recognised Five Freedoms, also include in the South African Poultry Association Code of Good Practice, which others in the sector say are too broad to be meaningful. Producers describe animal welfare concerns as the main driver for how they practice/view free range production, yet these interpretations vary. An additional driver is a focus on human health, which participants achieve mainly through the use of antibiotic-free feed, resulting in what participants regard as higher quality meat. The participants are also strongly driven by business imperatives, with most stating that free range chicken should carry a higher price than conventionally-reared chicken due to increased production costs. Recommendations from this study focus on, inter alia, a need to understand consumers’ perspectives on free range chicken, given that those in the sector claim they are responding to consumer demand, and conducting environmental research such as life cycle assessment studies to establish the true (environmental) sustainability of free range production. At present, it seems the sector mostly responds to social sustainability: human health and animal welfare.Keywords: chicken meat production, free range, socially constructed, sustainability
Procedia PDF Downloads 1581053 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater
Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio
Abstract:
Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.Keywords: contamination, water research, biodigester, nutrients
Procedia PDF Downloads 601052 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 167