Search results for: three-to-six phase matrix converter
931 Selecting The Contractor using Multi Criteria Decision Making in National Gas Company of Lorestan Province of Iran
Authors: Fatemeh Jaferi, Moslem Parsa, Heshmatolah Shams Khorramabadi
Abstract:
In this modern fluctuating world, organizations need to outsource some parts of their activities (project) to providers in order to show a quick response to their changing requirements. In fact, a number of companies and institutes have contractors do their projects and have some specific criteria in contractor selection. Therefore, a set of scientific tools is needed to select the best contractors to execute the project according to appropriate criteria. Multi-criteria decision making (MCDM) has been employed in the present study as a powerful tool in ranking and selecting the appropriate contractor. In this study, devolving second-source (civil) project to contractors in the National Gas Company of Lorestan Province (Iran) has been found and therefore, 5 civil companies have been evaluated. Evaluation criteria include executive experience, qualification of technical staff, good experience and company's rate, technical interview, affordability, equipment and machinery. Criteria's weights are found through experts' opinions along with AHP and contractors ranked through TOPSIS and AHP. The order of ranking contractors based on MCDM methods differs by changing the formula in the study. In the next phase, the number of criteria and their weights has been sensitivity analysed through using AHP. Adding each criterion changed contractors' ranking. Similarly, changing weights resulted in a change in ranking. Adopting the stated strategy resulted in the facts that not only is an appropriate scientific method available to select the most qualified contractors to execute gas project, but also a great attention is paid to picking needed criteria for selecting contractors. Consequently, executing such project is undertaken by most qualified contractors resulted in optimum use of limited resource, accelerating the implementation of project, increasing quality and finally boosting organizational efficiency.Keywords: multi-criteria decision making, project, management, contractor selection, gas company
Procedia PDF Downloads 405930 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors
Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills
Abstract:
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO
Procedia PDF Downloads 470929 Long-Term Effects of Psychosocial Interventions for Adolescents on Depression and Anxiety: A Systematic Review and Meta-Analysis
Authors: Denis Duagi, Ben Carter, Maria Farrelly, Stephen Lisk, June S. L. Brown
Abstract:
Background: Adolescence represents a distinctive phase of development, and variables linked to this developmental period could affect the efficiency of prevention and treatment for depression and anxiety, as well as the long-term prognosis. The objectives of this study were to investigate the long-term effectiveness of psychosocial interventions for adolescents on depression and anxiety symptoms and to assess the influence of different intervention parameters on the long-term effects. Methods: Searches were carried out on the 11ᵗʰ of August 2022 using five databases (Cochrane Library, Embase, Medline, PsychInfo, Web of Science), as well as trial registers. Randomized controlled trials of psychosocial interventions targeting specifically adolescents were included if they assessed outcomes at 1-year post-intervention or more. The Cochrane risk of bias-2 quality assessment tool was used. The primary outcome was depression, and studies were pooled using a standardised mean difference, with an associated 95% confidence interval, p-value, and I². The study protocol was pre-registered (CRD42022348668). Findings: A total of 57 reports (n= 46,678 participants) were included in the review. Psychosocial interventions led to small reductions in depressive symptoms, with a standardised mean difference (SMD) at 1-year of -0.08 (95%CI -0.20, -0.03, p=0.002, I²=72%), 18-months SMD=-0.12, 95% CI -0.22, -0.01, p=0.03, I²=63%) and 2-years SMD=-0.12 (95% CI -0.20, -0.03, p=0.01, I²=68%). Sub-group analyses indicated that targeted interventions produced stronger effects, particularly when delivered by trained mental health professionals (K=18, SMD=-0.24, 95% CI -0.38, -0.10, p=0.001, I²=60%). No effects were detected for anxiety at any assessment. Conclusion: Psychosocial interventions specifically targeting adolescents were shown to have small but positive effects on depression symptoms but not anxiety symptoms, which were sustained for up to 2 years. These findings highlight the potential population-level preventive effects if such psychosocial interventions become widely implemented in accessible settings such as schools.Keywords: psychosocial, adolescent, interventions, depression, anxiety, meta-analysis, randomized controlled trial
Procedia PDF Downloads 72928 Investigation of Enterotoxigenic Staphylococcus aureus in Kitchen of Catering
Authors: Çiğdem Sezer, Aksem Aksoy, Leyla Vatansever
Abstract:
This study has been done for the purpose of evaluation of public health and identifying of enterotoxigenic Staphyloccocus aureus in kitchen of catering. In the kitchen of catering, samples have been taken by swabs from surface of equipments which are in the salad section, meat section and bakery section. Samples have been investigated with classical cultural methods in terms of Staphyloccocus aureus. Therefore, as a 10x10 cm area was identified (salad, cutting and chopping surfaces, knives, meat grinder, meat chopping surface) samples have been taken with sterile swabs with helping FTS from this area. In total, 50 samples were obtained. In aseptic conditions, Baird-Parker agar (with egg yolk tellurite) surface was seeded with swabs. After 24-48 hours of incubation at 37°C, the black colonies with 1-1.5 mm diameter and which are surrounded by a zone indicating lecithinase activity were identified as S. aureus after applying Gram staining, catalase, coagulase, glucose and mannitol fermentation and termonuclease tests. Genotypic characterization (Staphylococcus genus and S.aureus species spesific) of isolates was performed by PCR. The ELISA test was applied to the isolates for the identification of staphylococcal enterotoxins (SET) A, B, C, D, E in bacterial cultures. Measurements were taken at 450 nm in an ELISA reader using an Ridascreen-Total set ELISA test kit (r-biopharm R4105-Enterotoxin A, B, C, D, E). The results were calculated according to the manufacturer’s instructions. A total of 50 samples of 97 S. aureus was isolated. This number has been identified as 60 with PCR analysis. According to ELISA test, only 1 of 60 isolates were found to be enterotoxigenic. Enterotoxigenic strains were identified from the surface of salad chopping and cutting. In the kitchen of catering, S. aureus identification indicates a significant source of contamination. Especially, in raw consumed salad preparation phase of contamination is very important. This food can be a potential source of food-borne poisoning their terms, and they pose a significant risk to consumers have been identified.Keywords: Staphylococcus aureus, enterotoxin, catering, kitchen, health
Procedia PDF Downloads 403927 Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material
Authors: Makhlouf Mourad, Messabih Sidi Mohamed, Bouchher Omar, Houali Farida, Benrachedi Khaled
Abstract:
Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH3)3 was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich). The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process.Keywords: adsorption, kinetics, isotherm, mesoporous materials, Phenol, P-hydroxy benzoique acid
Procedia PDF Downloads 208926 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid
Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet
Abstract:
The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.Keywords: bio-oils, extraction, lignin, phenolic compounds
Procedia PDF Downloads 110925 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 161924 Physical Characterization of SnO₂ Films Prepared by the Rheotaxial Growth and Thermal Oxidation (RGTO) Method
Authors: A. Kabir, D. Boulainine, I. Bouanane, N. Benslim, B. Boudjema, C. Sedrati
Abstract:
SnO₂ is an n-type semiconductor with a direct gap of about 3.6 eV. It is largely used in several domains such as nanocrystalline photovoltaic cells. Due to its interesting physic-chemical properties, this material was elaborated in thin film forms using different deposition techniques. It was found that SnO₂ properties were directly affected by the deposition method parameters. In this work, the RGTO method (Rheotaxial Growth and Thermal Oxidation) was used to deposit elaborate SnO₂ thin films. This technique consists on thermal oxidation of the Sn films deposited onto a substrate heated to a temperature close to Sn melting point (232°C). Such process allows the preparation of high porosity tin oxide films which are very suitable for the gas sensing. The films structural, morphological and optical properties pre and post thermal oxidation were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) respectively. XRD patterns showed a polycrystalline structure of the cassiterite phase of SnO₂. The grain growth was found affected by the oxidation temperature. This grain size evolution was confronted to existing grain growth models in order to understand the growth mechanism. From SEM images, the as deposited Sn film was formed of difference diameter spherical agglomerations. As a function of the oxidation temperature, these spherical agglomerations shape changed due to the introduction of oxygen ions. The deformed spheres started to interconnect by forming bridges between them. The volume porosity, determined from the UV-Visible reflexion spectra, Changes as a function of the oxidation temperature. The variation of the crystalline fraction, determined from FTIR spectra, correlated with the variation of both the grain size and the volume porosity.Keywords: tin oxide, RGTO, grain growth, volume porosity, crystalline fraction
Procedia PDF Downloads 258923 Satureja bachtiarica Bunge Induce Apoptosis via Mitochondrial Intrinsic Pathway and G1 Cell Cycle Arrest
Authors: Hamed Karimian, Noraziah Nordin, Mohamad Ibrahim Noordin, Syam Mohan, Mahboubeh Razavi, Najihah Mohd Hashim, Happipah Mohd Ali
Abstract:
Satureja bachtiarica Bunge is a perennial medicinal plant belonging to the Lamiaceae family and endemic species in Iran. Satureja bachtiarica Bunge with the local name of Marzeh koohi is edible vegetable use as flavoring agent, anti-bacterial and to relieve cough and indigestion. In this study, the anti-cancer effect of Satureja bachtiarica Bunge on the MDA-MB-231 cell line as an Breast cancer cell model has been analyzed for the first time. Satureja bachtiarica Bunge was extracted using different solvents in the order of increasing polarity. Cytotoxicity activity of hexane extract of Satureja bachtiarica Bunge (SBHE) was observed using MTT assay. Acridine orange/Propidium iodide staining was used to detect early apoptosis; Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS), with Annexin-Vserving as a marker for apoptotic cells. Caspase 3/7, 8 and-9 assays showed significantly activation of caspase-9 where lead intrinsic mitochondrial pathway. Bcl-2/Bax expressions and cell cycle arrest were also investigated. SBHE had exhibited significantly higher cytotoxicity against MDA-MB-231 Cell line compare to other cell lines. A significant increase in chromatin condensation in the cell nucleus was observed by fluorescence analysis. Treatment of MDA-MB-231 cells with SBHE encouraged apoptosis, by down-regulating Bcl-2 and up-regulating Bax, which lead the activation of caspase 9. Moreover, SBHE treatment significantly arrested MDA-MB-231 cells in the G1 phase. Together, the results presented in this study demonstrated that SBHE inhibited the proliferation of MDA-MB-231 cells, leading cell cycle arrest and programmed cell death, which was confirmed to be through the mitochondrial pathway.Keywords: Satureja bachtiarica Bunge, MDA-MB-231, apoptosis, annexin-V, cell cycle
Procedia PDF Downloads 338922 Detecting Hate Speech And Cyberbullying Using Natural Language Processing
Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão
Abstract:
Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning
Procedia PDF Downloads 229921 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application
Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro
Abstract:
In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype
Procedia PDF Downloads 160920 Sentiment Analysis of Social Media Responses: A Comparative Study of (NDA) and Indian National Developmental Inclusive Alliance (INDIA) during Indian General Elections 2024
Authors: Pankaj Dhiman, Simranjeet Kaur
Abstract:
This research paper presents a comprehensive sentiment analysis of social media responses to videos on Facebook, YouTube, Twitter, and Instagram during the 2024 Indian general elections. The study focuses on the sentiment patterns of voters towards the National Democratic Alliance (NDA) and The Indian National Developmental Inclusive Alliance (INDIA) on these platforms. The analysis aims to understand the impact of social media on voter sentiment and its correlation with the election outcome. The study employed a mixed-methods approach, combining both quantitative and qualitative methods. With a total of 200 posts analysed during general election-2024 final phase, the sentiment analysis was conducted using natural language processing (NLP) techniques, including sentiment dictionaries and machine learning algorithms. The results show that NDA received significantly more positive sentiment responses across all platforms, with a positive sentiment score of 47% compared to INDIA's score of 38.98 %. The analysis also revealed that Twitter and YouTube were the most influential platforms in shaping voter sentiment, with 60% of the total sentiment score coming from these two platforms. The study's findings suggest that social media sentiment analysis can be a valuable tool for understanding voter sentiment and predicting election outcomes. The results also highlight the importance of social media in shaping public opinion and the need for political parties to engage effectively with voters on these platforms. The study's implications are significant, as they indicate that social media can be a key factor in determining the outcome of elections. The findings also underscore the need for political parties to develop effective social media strategies to engage with voters and shape public opinion.Keywords: Indian Elections-2024, NDA, INDIA, sentiment analysis, social media, democracy
Procedia PDF Downloads 56919 Current Harvesting Methods for Jatropha curcas L.
Authors: Luigi Pari, Alessandro Suardi, Enrico Santangelo
Abstract:
In the last decade Jatropha curcas L. (an oleaginous crop native to Central America and part of South America) has raised particular interest owing to of its properties and uses. Its capsules may contain up to 40% in oil and can be used as feedstock for biodiesel production. The harvesting phase is made difficult by the physiological traits of the specie, because fruits are in bunches and do not ripen simultaneously. Three harvesting methodologies are currently diffused and differ for the level of mechanization applied: manual picking, semi-mechanical harvesting, and mechanical harvesting. The manual picking is the most common in the developing countries but it is also the most time consuming and inefficient. Mechanical harvesting carried out with modified grape harvesters has the higher productivity, but it is very costly as initial investment and requires appropriate schemes of cultivation. The semi-mechanical harvesting method is achieved with shaker tools employed to facilitate the fruit detachment. This system resulted much cheaper than the fully mechanized one and quite flexible for small and medium scale applications, but it still requires adjustments for improving the productive performance. CRA-ING, within the European project Jatromed (http://www.jatromed.aua.gr) has carried out preliminary studies on the applicability of such approach, adapting an olive shaker to harvest Jatropha fruits. The work is a survey of the harvesting methods currently available for Jatropha, show the pros and cons of each system, and highlighting the criteria to be considered for choosing one respect another. The harvesting of Jatropha curcas L. remains a big constrains for the spread of the species as energy crop. The approach pursued by CRA-ING can be considered a good compromise between the fully mechanized harvesters and the exclusive manual intervention. It is an attempt to promote a sustainable mechanization suited to the social context of developing countries by encouraging the concrete involvement of local populations.Keywords: jatropha curcas, energy crop, harvesting, central america, south america
Procedia PDF Downloads 389918 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride
Authors: Farzaneh Shayeganfar, Ali Ramazani
Abstract:
Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.Keywords: surface plasmon, hot carrier, strain engineering, valley polariton
Procedia PDF Downloads 110917 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux
Procedia PDF Downloads 370916 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 67915 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry
Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke
Abstract:
There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction
Procedia PDF Downloads 170914 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 130913 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique
Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina
Abstract:
The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.Keywords: diffusion, glass-ceramics, ion exchange, vitrification
Procedia PDF Downloads 270912 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability
Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana
Abstract:
Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare
Procedia PDF Downloads 150911 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 231910 A Photoredox (C)sp³-(C)sp² Coupling Method Comparison Study
Authors: Shasline Gedeon, Tiffany W. Ardley, Ying Wang, Nathan J. Gesmundo, Katarina A. Sarris, Ana L. Aguirre
Abstract:
Drug discovery and delivery involve drug targeting, an approach that helps find a drug against a chosen target through high throughput screening and other methods by way of identifying the physical properties of the potential lead compound. Physical properties of potential drug candidates have been an imperative focus since the unveiling of Lipinski's Rule of 5 for oral drugs. Throughout a compound's journey from discovery, clinical phase trials, then becoming a classified drug on the market, the desirable properties are optimized while minimizing/eliminating toxicity and undesirable properties. In the pharmaceutical industry, the ability to generate molecules in parallel with maximum efficiency is a substantial factor achieved through sp²-sp² carbon coupling reactions, e.g., Suzuki Coupling reactions. These reaction types allow for the increase of aromatic fragments onto a compound. More recent literature has found benefits to decreasing aromaticity, calling for more sp³-sp² carbon coupling reactions instead. The objective of this project is to provide a comparison between various sp³-sp² carbon coupling methods and reaction conditions, collecting data on production of the desired product. There were four different coupling methods being tested amongst three cores and 4-5 installation groups per method; each method ran under three distinct reaction conditions. The tested methods include the Photoredox Decarboxylative Coupling, the Photoredox Potassium Alkyl Trifluoroborate (BF3K) Coupling, the Photoredox Cross-Electrophile (PCE) Coupling, and the Weix Cross-Electrophile (WCE) Coupling. The results concluded that the Decarboxylative method was very difficult in yielding product despite the several literature conditions chosen. The BF3K and PCE methods produced competitive results. Amongst the two Cross-Electrophile coupling methods, the Photoredox method surpassed the Weix method on numerous accounts. The results will be used to build future libraries.Keywords: drug discovery, high throughput chemistry, photoredox chemistry, sp³-sp² carbon coupling methods
Procedia PDF Downloads 144909 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times
Authors: John Dimopoulos
Abstract:
This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.Keywords: design, hypermodernity, object-oriented ontology, weapon-being
Procedia PDF Downloads 153908 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin
Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava
Abstract:
Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup
Procedia PDF Downloads 152907 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles
Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban
Abstract:
In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272
Procedia PDF Downloads 342906 The Electrophysiology Study Results in Patients with Guillain Barre Syndrome (GBS): A Retrospective Study in a TertiaryHospital in Cebu City, Philippines
Authors: Dyna Ann C. Sevilles, Noel J. Belonguel, Jarungchai Anton S. Vatanagul, Mary Jeanne O. Flordelis, Grace G. Anota
Abstract:
Guillain Barre syndrome is an acute inflammatory polyradiculoneuropathy causing progressive symmetrical weakness which can be debilitating to the patient. Early diagnosis is important especially in the acute phase when treatment favors good outcome and reduces the incidence of the need for mechanical ventilation. Electrodiagnostic studies aid in the evaluation of patients suspected with GBS. However, the characteristic electrical changes may not be evident until after several weeks. Thus, studies performed early in the course may give unclear results. The aim of this study is to associate the symptom onset of patients diagnosed with Guillain Barre syndrome with the EMG NCV results and determine the earliest time when there is evident findings supporting the diagnosis. This is a retrospective descriptive chart review study involving patients of >/= 18 years of age with GBS written on their charts in a Tertiaty hospital in Cebu City, Philippines from January 2000 to July 2014. Twenty patients showed electrodiagnostic findings suggestive of GBS. The mean day of illness when EMG NCV was carried out was 7 days. The earliest with suggestive findings was done on day 2 (10%) of illness. Moreover, the highest frequency with positive results was done on day 3 (20%) of illness. Based on the Dutch Guillain Barre Study group criteria, the most frequent variables noted were: prolonged distal motor latency in both median and ulnar nerves(65%) and both peroneal and tibial nerves (71%); and reduced CMAP in both median and ulnar nerves (65%) and both tibial and peroneal nerves (71%). The EMG NCV findings showed majority of demyelinating type (59%). Electrodiagnostic studies are helpful in aiding the physician in the diagnosis and treatment of the disease in the early stage. Based on this study, neurophysiologic evidence of GBS can be seen in as early as day 2 of clinical illness.Keywords: Acute Inflammatory Demyelinating Polyneuropathy, electrophysiologic study, EMG NCV, Guillain Barre Syndrome
Procedia PDF Downloads 287905 Towards Consensus: Mapping Humanitarian-Development Integration Concepts and Their Interrelationship over Time
Authors: Matthew J. B. Wilson
Abstract:
Disaster Risk Reduction relies heavily on the effective cooperation of both humanitarian and development actors, particularly in the wake of a disaster, implementing lasting recovery measures that better protect communities from disasters to come. This can be seen to fit within a broader discussion around integrating humanitarian and development work stretching back to the 1980s. Over time, a number of key concepts have been put forward, including Linking Relief, Rehabilitation, and Development (LRRD), Early Recovery (ER), ‘Build Back Better’ (BBB), and the most recent ‘Humanitarian-Development-Peace Nexus’ or ‘Triple Nexus’ (HDPN) to define these goals and relationship. While this discussion has evolved greatly over time, from a continuum to a more integrative synergistic relationship, there remains a lack of consensus around how to describe it, and as such, the reality of effectively closing this gap has yet to be seen. The objective of this research was twofold. First, to map these four identified concepts (LRRD, ER, BBB & HDPN) used in the literature since 1995 to understand the overall trends in how this relationship is discussed. Second, map articles reference a combination of these concepts to understand their interrelationship. A scoping review was conducted for each concept identified. Results were gathered from Google Scholar by firstly inputting specific boolean search phrases for each concept as they related specifically to disasters each year since 1995 to identify the total number of articles discussing each concept over time. A second search was then done by pairing concepts together within a boolean search phrase and inputting the results into a matrix to understand how many articles contained references to more than one of the concepts. This latter search was limited to articles published after 2017 to account for the more recent emergence of HDPN. It was found that ER and particularly BBB are referred to much more widely than LRRD and HDPN. ER increased particularly in the mid-2000’s coinciding with the formation of the ER cluster, and BBB, whilst emerging gradually in the mid-2000s due to its usage in the wake of the Boxing Day Tsunami, increased significantly from about 2015 after its prominent inclusion in Sendai Framework. HDPN has only just started to increase in the last 4-5 years. In regards to the relationship between concepts, it was found the vast majority of all concepts identified were referred to in isolation from each other. The strongest relationship was between LRRD and HDPN (8% of articles referring to both), whilst ER-BBB and ER-HDPN both were about 3%, LRRD-ER 2%, and BBB-HDPN 1% and BBB-LRRD 1%. This research identified a fundamental issue around the lack of consensus and even awareness of different approaches referred to within academic literature relating to integrating humanitarian and development work. More research into synthesizing and learning from a range of approaches could work towards better closing this gap.Keywords: build back better, disaster risk reduction, early recovery, linking relief rehabilitation and development, humanitarian development integration, humanitarian-development (peace) nexus, recovery, triple nexus
Procedia PDF Downloads 80904 The Effects of Arginine, Glutamine and Threonine Supplementation in the Starting Phase on Subsequent Performance of Male Broile
Authors: Jalal Fazli Amiri, Mohammad Hossein Shahir, Mohammad Hossein Nemati, Afshin Heidarinia
Abstract:
The current study was performed to investigate the effects of arginine, threonine, and glutamine supplementation in excess of requirements in the starter period (17 days) on performance, intestinal morphology, and immune response of broilers. Four hundred and sixteen male day-old chicks were assigned in a 2×2×2 factorial arrangement to a completely randomized design with four replicates (13 birds per replicate ). Treatments were: a control group that received the basal diet, basal diet plus 1% glutamine, basal diet plus 0.2% threonine, basal diet plus 0.75 % arginine, and combination of these three amino acids (glutamine+arginine, glutamine+threonine, arginine+threonine and arginine+ glutamine+threonine). The effect of glutamine supplementation on feed intake was significant in week 4 (p < 0.05), week 6 (p < 0.001), and total feed intake (p < 0.05) and caused declined feed intake. No significant differences of glutamine addition were observed on intestinal morphology (villi height, crypt depth, villi height to crypt depth ratio, villi width). Threonine supplementation caused increased weight gain in week 2 (p < 0.001) and 3 and a decrease of total feed intake (p < 0.05). Duodenum and jejunum villi height, crypt depth, villi height to crypt depth ratio, villi width were not affected. The effect of arginine supplementation was the increase of breast percentage (p < 0.05) and a decrease of jejunum villi high (p < 0.05) and Jejunum crypt depth (p < 0.05). Supplementation of arginine, threonine, and glutamine had no significant effects on blood titer of antibodies against Newcastle disease, infectious bronchitis, avian influenza. Overall, it seems that the supplementation of arginine, threonine, and glutamine in excess of requirements in the starter period had no effect on performance in subsequent periods and intestinal morphology.Keywords: intestinal morphology, immunity, broiler chickens, glutamine, arginine, threonine
Procedia PDF Downloads 137903 Community Crèche Is a Measure to Prevent Child Injuries: Its Challenges and Measures for Improvement
Authors: Rabbya Ashrafi, Mohammad Tarikul Islam , Al-Amin Bhuiyan, Aminur Rahman
Abstract:
Injury is the leading killer of children in Bangladesh. Anchal (community crèche) is an effective intervention to prevent injuries among children under 5. Through the SoLiD project, 1,600 Anchals are in place in three sub-districts in Bangladesh. The objectives of the Anchal are to provide supervision and early childhood development stimulations (ECD) to the children. A locally trained caregiver supervises 20-25 children, 9 to 59 months old, from 9 a.m. to 1 p.m., six days a week. Although it was found effective, during its implementation phase several challenges were noticed. To identify challenges and means to overcome those to improve the Anchal activities. In-depth interviews were conducted with Anchal caregivers, their supervisors, and trainers. Focus group discussions were conducted with the mothers of the Anchal children. The study was conducted in the Manohardi sub-district in November 2015. Decay of knowledge and skills after 2-3 months of training, lack of formal certification and inappropriate selection of women as Anchal caregivers, and enrollment of small children (less than 12 months) were the important challenges. The reluctance of parents to send children to the Anchal at the proper time, failure to engage children in various ECD activities, ineffective conduction of parents and community leaders meeting by the Anchal caregivers, insufficient accommodation, and poor supply of logistics for children were also the important challenges. The suggestion for improvement was to recruit caregivers as per standard criteria, provide them refreshers training at three months intervals, train them on effective conduction of parents and community leaders meetings, provide a formal certificate, and ensure regular supply of logistics. The identified challenges are needed to be addressed by utilizing the suggestions obtained from the IDIs and FGDs to make the Anchal intervention more effective in preventing childhood injuries.Keywords: comunity crech, earlychildhood development, measures for improvement, childhood injury
Procedia PDF Downloads 89902 Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard
Authors: Byl Farney Cunha Junior
Abstract:
In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response.Keywords: finite element method, synthetic wind, tall buildings, shear building
Procedia PDF Downloads 274