Search results for: high cell density cultivation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24218

Search results for: high cell density cultivation

18548 Atypical Retinoid ST1926 Nanoparticle Formulation Development and Therapeutic Potential in Colorectal Cancer

Authors: Sara Assi, Berthe Hayar, Claudio Pisano, Nadine Darwiche, Walid Saad

Abstract:

Nanomedicine, the application of nanotechnology to medicine, is an emerging discipline that has gained significant attention in recent years. Current breakthroughs in nanomedicine have paved the way to develop effective drug delivery systems that can be used to target cancer. The use of nanotechnology provides effective drug delivery, enhanced stability, bioavailability, and permeability, thereby minimizing drug dosage and toxicity. As such, the use of nanoparticle (NP) formulations in drug delivery has been applied in various cancer models and have shown to improve the ability of drugs to reach specific targeted sites in a controlled manner. Cancer is one of the major causes of death worldwide; in particular, colorectal cancer (CRC) is the third most common type of cancer diagnosed amongst men and women and the second leading cause of cancer related deaths, highlighting the need for novel therapies. Retinoids, consisting of natural and synthetic derivatives, are a class of chemical compounds that have shown promise in preclinical and clinical cancer settings. However, retinoids are limited by their toxicity and resistance to treatment. To overcome this resistance, various synthetic retinoids have been developed, including the adamantyl retinoid ST1926, which is a potent anti-cancer agent. However, due to its limited bioavailability, the development of ST1926 has been restricted in phase I clinical trials. We have previously investigated the preclinical efficacy of ST1926 in CRC models. ST1926 displayed potent inhibitory and apoptotic effects in CRC cell lines by inducing early DNA damage and apoptosis. ST1926 significantly reduced the tumor doubling time and tumor burden in a xenograft CRC model. Therefore, we developed ST1926-NPs and assessed their efficacy in CRC models. ST1926-NPs were produced using Flash NanoPrecipitation with the amphiphilic diblock copolymer polystyrene-b-ethylene oxide and cholesterol as a co-stabilizer. ST1926 was formulated into NPs with a drug to polymer mass ratio of 1:2, providing a stable formulation for one week. The contin ST1926-NP diameter was 100 nm, with a polydispersity index of 0.245. Using the MTT cell viability assay, ST1926-NP exhibited potent anti-growth activities as naked ST1926 in HCT116 cells, at pharmacologically achievable concentrations. Future studies will be performed to study the anti-tumor activities and mechanism of action of ST1926-NPs in a xenograft mouse model and to detect the compound and its glucuroconjugated form in the plasma of mice. Ultimately, our studies will support the use of ST1926-NP formulations in enhancing the stability and bioavailability of ST1926 in CRC.

Keywords: nanoparticles, drug delivery, colorectal cancer, retinoids

Procedia PDF Downloads 88
18547 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components

Authors: Francesca Gullo, Paola Palmero, Massimo Messori

Abstract:

Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.

Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites

Procedia PDF Downloads 36
18546 'Call Drop': A Problem for Handover Minimizing the Call Drop Probability Using Analytical and Statistical Method

Authors: Anshul Gupta, T. Shankar

Abstract:

In this paper, we had analyzed the call drop to provide a good quality of service to user. By optimizing it we can increase the coverage area and also the reduction of interference and congestion created in a network. Basically handover is the transfer of call from one cell site to another site during a call. Here we have analyzed the whole network by two method-statistic model and analytic model. In statistic model we have collected all the data of a network during busy hour and normal 24 hours and in analytic model we have the equation through which we have to find the call drop probability. By avoiding unnecessary handovers we can increase the number of calls per hour. The most important parameter is co-efficient of variation on which the whole paper discussed.

Keywords: coefficient of variation, mean, standard deviation, call drop probability, handover

Procedia PDF Downloads 478
18545 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key

Authors: Fola John Adeyeye

Abstract:

In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.

Keywords: cryptosystem, private and public key, DPML, symmetric group Pn

Procedia PDF Downloads 192
18544 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation

Authors: Yanpei Zhen

Abstract:

The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.

Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables

Procedia PDF Downloads 173
18543 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines

Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk

Abstract:

Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.

Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines

Procedia PDF Downloads 117
18542 Effect of Viscosity in Void Structure with Interacting Variable Charge Dust Grains

Authors: Nebbat El Amine

Abstract:

The void is a dust free region inside the dust cloud in the plasma. It is found that the dust grain charge variation lead to the extension of the void. Moreover, for bigger dust grains, it is seen that the wave-like structure recedes when charge variation is dealt with. Furthermore, as the grain-grain distance is inversely proportional to density, the grain-grain interaction gets more important for a denser dust population and is to be included in momentum equation. For the result indicate above, the plasma is considered non viscous. But in fact, it’s not always true. Some authors measured experimentally the viscosity of this background and found that the viscosity of dusty plasma increase with background gas pressure. In this paper, we tack account the viscosity of the fluid, and we compare the result with that found in the recent work.

Keywords: voids, dusty plasmas, variable charge, viscosity

Procedia PDF Downloads 75
18541 Antineoplastic Effect of Tridham and Penta Galloyl Glucose in Experimental Mammary Carcinoma Bearing Rats

Authors: Karthick Dharmalingam, Stalin Ramakrishnan, Haseena Banu Hedayathullah Khan, Sachidanandanam Thiruvaiyaru Panchanadham, Shanthi Palanivelu

Abstract:

Background: Breast cancer is arising as the most dreadful cancer affecting women worldwide. Hence, there arises a need to search and test for new drugs. Herbal formulations used in Siddha preparations are proved to be effective against various types of cancer. They also offer advantage through synergistic amplification and diminish any possible adverse effects. Tridham (TD) is a herbal formulation prepared in our laboratory consisting of Terminalia chebula, Elaeocarpus ganitrus and Prosopis cineraria in a definite ratio and has been used for the treatment of mammary carcinoma. Objective: To study the restorative effect of Tridham and penta galloyl glucose (a component of TD) on DMBA induced mammary carcinoma in female Sprague Dawley rats. Materials and Methods: Rats were divided into seven groups of six animals each. Group I (Control) received corn oil. Group II– mammary carcinoma was induced by DMBA dissolved in corn oil single dose orally. Group III and Group IV were induced with DMBA and subsequently treated with Tridham and penta galloyl glucose, respectively for 48 days. Group V was treated with DMBA and subsequently with a standard drug, cyclophosphamide. Group VI and Group VII were given Tridham and penta galloyl glucose alone, respectively for 48 days. After the experimental period, the animals were sacrificed by cervical decapitation. The mammary gland tissue was excised and levels of antioxidants were determined by biochemical assay. p53 and PCNA expression were accessed using immunohistochemistry. Nrf-2, Cox-2 and caspase-3 protein expression were studied by Western Blotting analysis. p21, Bcl-2, Bax, Bad and caspase-8 gene expression were studied by RT-PCR. Results: Histopathological studies confirmed induction of mammary carcinoma in DMBA induced rats and treatment with TD and PGG resulted in regression of tumour. The levels of enzymic and non-enzymic antioxidants were decreased in DMBA induced rats when compared to control rats. The levels of cell cycle inhibitory markers and apoptotic markers were decreased in DMBA induced rats when compared to control rats. These parameters were restored to near normal levels on treatment with Tridham and PGG. Conclusion: The results of the present study indicate the antineoplastic effect of Tridham and PGG are exerted through the modulation of antioxidant status and expression of cell cycle regulatory markers as well as apoptotic markers. Acknowledgment: Financial assistance provided in the form of ICMR-SRF by Indian Council of Medical Research (ICMR), India is gratefully acknowledged here.

Keywords: antioxidants, Mammary carcinoma, pentaGalloyl glucose, Tridham

Procedia PDF Downloads 267
18540 Seismic Behaviour of CFST-RC Columns

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.

Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance

Procedia PDF Downloads 236
18539 Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield

Authors: Himali N. Balasooriya, Kithsiri B. Dassanayake, Saman Seneweera, Said Ajlouni

Abstract:

Increase in atmospheric CO2 concentration [CO2] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO2] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO2] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO2] (400, 650 and 950 µmol mol-1) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO2] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO2] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol-1 [CO2], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol-1 [CO2] but no increment was found at 900 µmol mol-1 [CO2]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO2] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO2] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO2].

Keywords: atmospheric CO₂ concentration, fruit yield, strawberry, temperature

Procedia PDF Downloads 226
18538 Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation

Authors: Feng Guo

Abstract:

Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders.

Keywords: human brain organoids, microfluidics, organ-on-a-chip, neuroinflammation

Procedia PDF Downloads 194
18537 Analysis and Experimental Research on the Influence of Lubricating Oil on the Transmission Efficiency of New Energy Vehicle Gearbox

Authors: Chen Yong, Bi Wangyang, Zang Libin, Li Jinkai, Cheng Xiaowei, Liu Jinmin, Yu Miao

Abstract:

New energy vehicle power transmission systems continue to develop in the direction of high torque, high speed, and high efficiency. The cooling and lubrication of the motor and the transmission system are integrated, and new requirements are placed on the lubricants for the transmission system. The effects of traditional lubricants and special lubricants for new energy vehicles on transmission efficiency were studied through experiments and simulation methods. A mathematical model of the transmission efficiency of the lubricating oil in the gearbox was established. The power loss of each part was analyzed according to the working conditions. The relationship between the speed and the characteristics of different lubricating oil products on the power loss of the stirring oil was discussed. The minimum oil film thickness was required for the life of the gearbox. The accuracy of the calculation results was verified by the transmission efficiency test conducted on the two-motor integrated test bench. The results show that the efficiency increases first and then decreases with the increase of the speed and decreases with the increase of the kinematic viscosity of the lubricant. The increase of the kinematic viscosity amplifies the transmission power loss caused by the high speed. New energy vehicle special lubricants have less attenuation of transmission efficiency in the range above mid-speed. The research results provide a theoretical basis and guidance for the evaluation and selection of transmission efficiency of gearbox lubricants for new energy vehicles.

Keywords: new energy vehicles, lubricants, transmission efficiency, kinematic viscosity, test and simulation

Procedia PDF Downloads 122
18536 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field

Authors: Yue Yan, Chang Nyung Kim

Abstract:

The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.

Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic

Procedia PDF Downloads 480
18535 The Effect of the Spinacia oleracea Extract on the Control of the Green Mold 'Penilillium digitatum' at the Post Harvested Citrus

Authors: Asma Chbani, Douaa Salim, Josephine Al Alam, Pascale De Caro

Abstract:

Penicillium digitatum, the causal agent of citrus green mold, is responsible for 90% of post-harvest losses. Chemical fungicides remain the most used products for protection against this pathogen but are also responsible for damage to human health and the environment. The aim of this study is to evaluate the ability of Spinacia oleracea extract to serve as biological control agents, an alternative to harmful synthetic fungicides, against orange decay for storing fruit caused by P. digitatum. In this study, we studied the implication of a crude extract of a green plant, Spinacia oleracea, in the protection of oranges against P. digitatum. Thus, in vivo antifungal tests as well as adhesion test were done. For in vivo antifungal test, oranges were pulverized with the prepared crude extracts at different concentrations ranged from 25 g L⁻¹ to 200 g L⁻¹, contaminated by the fungus and then observed during 8 weeks for their macroscopic changes at 24°C. For adhesion test, the adhesion index is defined as the number of Penicillium digitatum spores fixed per orange cell. An index greater than 25 is the indicator of a strong adhesion, whereas for an index less than 10, the adhesion is low. Ten orange cells were examined in triplicate for each extract, and the averages of adherent cells were calculated. Obtained results showed an inhibitory activity of the Penicillium development with the aqueous extract of dry Spinacia oleracea with a concentration of 50 g L⁻¹ considered as the minimal protective concentration. The prepared extracts showed a greater inhibition of the development of P. digitatum up to 10 weeks, even greater than the fungicide control Nystatin. Adhesion test’s results showed that the adhesion of P. digitatum spores to the epidermal cells of oranges in the presence of the crude spinach leaves extract is weak; the mean of the obtained adhesion index was estimated to 2.7. However, a high adhesion was observed with water used a negative control. In conclusion, all these results confirm that the use of this green plant highly rich in chlorophyll having several phytotherapeutic activities, could be employed as a great treatment for protection of oranges against mold and also as an alternative for chemical fungicides.

Keywords: Penicillium digitatum, Spinacia oleracea, oranges, biological control, postharvest diseases

Procedia PDF Downloads 161
18534 Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology

Authors: Jifang Tao, Fei Gao, Hong Cai, Yuan Jin Zheng, Yuan Dong Gu

Abstract:

Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports.

Keywords: indoor-air quality (IAQ) monitoring, photoacoustic gas sensor, cavity enhancement, integrated gas sensor

Procedia PDF Downloads 646
18533 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 350
18532 Biodegradation of Chlorophenol Derivatives Using Macroporous Material

Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina

Abstract:

Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.

Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation

Procedia PDF Downloads 205
18531 The Challenges and Opportunities Faced by Women in Geomatics Engineering: The Case of the SADC Region

Authors: Moreblessings Shoko

Abstract:

Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. Also, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.

Keywords: women, geomatics, challenges, capacity building

Procedia PDF Downloads 557
18530 Half Metallic Antiferromagnetic of Doped TiO2 Rutile with Doubles Impurities (Os, Mo) from Ab Initio Calculations

Authors: M. Fakhim Lamrani, M. Ouchri, M. Belaiche, El Kenz, M. Loulidi, A. Benyoussef

Abstract:

Electronic and magnetic calculations based on density functional theory within the generalized gradient approximation for II-VI compound semiconductor TiO2 doped with single impurity Os and Mo; these compounds are a half metallic ferromagnet in their ground state with a total magnetic moment of 2 μB for both systems. Then, TiO2 doped with double impurities Os and Mo have been performed. As result, Ti1-2xOsxMoxO2 with x=0.065 is half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. Moreover, Ti14OsMoO32 compound is stable energetically than Ti1-xMoxO2 and Ti1-xOsxO2. The antiferromagnetic interaction in Ti1-2xOsxMoxO2 system is attributed to the double exchange mechanism, and the latter could also be the origin of their half metallic.

Keywords: diluted magnetic semiconductor, half-metallic antiferromagnetic, augmented spherical wave method

Procedia PDF Downloads 411
18529 Analysis of Reinforced Granular Pile in Soft Soil

Authors: G. Nitesh

Abstract:

Stone column or granular pile is a proven technique to mitigate settlement in soft soil. Granular pile increases both rate of consolidation and stiffness of the ground. In this paper, a method to analyze further reduction in settlement of granular column reinforced with lime pile is presented treating the system as a unit cell and considering one-dimensional compression approach. The core of the granular pile is stiffened with a steel rod or lime column. Influence of a wide range of parameters such as area ratio of granular pile-soft soil, area ratio of lime pile-granular pile, modular ratio of granular pile and modular ratio of lime pile with respect to granular pile on settlement reduction factor, etc. are obtained and presented.

Keywords: lime pile, granular pile, soft soil, settlement

Procedia PDF Downloads 392
18528 The Road to Tunable Structures: Comparison of Experimentally Characterised and Numerical Modelled Auxetic Perforated Sheet Structures

Authors: Arthur Thirion

Abstract:

Auxetic geometries allow the generation of a negative Poisson ratio (NPR) in conventional materials. This behaviour allows materials to have certain improved mechanical properties, including impact resistance and altered synclastic behaviour. This means these structures have significant potential when it comes to applications as chronic wound dressings. To this end, 6 different "perforated sheet" structure types were 3D printed. These structures all had variations of key geometrical features included cell length and angle. These were tested in compression and tension to assess their Poisson ratio. Both a positive and negative Poisson ratio was generated by the structures depending on the loading. The a/b ratio followed by θ has been shown to impact the Poisson ratio significantly. There is still a significant discrepancy between modelled and observed behaviour.

Keywords: auxetic materials, 3D printing, negative Poisson's ratio, tunable Poisson's ratio

Procedia PDF Downloads 96
18527 A Theragnostic Approach for Alzheimer’s Disease Focused on Phosphorylated Tau

Authors: Tomás Sobrino, Lara García-Varela, Marta Aramburu-Núñez, Mónica Castro, Noemí Gómez-Lado, Mariña Rodríguez-Arrizabalaga, Antía Custodia, Juan Manuel Pías-Peleteiro, José Manuel Aldrey, Daniel Romaus-Sanjurjo, Ángeles Almeida, Pablo Aguiar, Alberto Ouro

Abstract:

Introduction: Alzheimer’s disease (AD) and other tauopathies are primary causes of dementia, causing progressive cognitive deterioration that entails serious repercussions for the patients' performance of daily tasks. Currently, there is no effective approach for the early diagnosis and treatment of AD and tauopathies. This study suggests a theragnostic approach based on the importance of phosphorylated tau protein (p-Tau) in the early pathophysiological processes of AD. We have developed a novel theragnostic monoclonal antibody (mAb) to provide both diagnostic and therapeutic effects. Methods/Results: We have developed a p-Tau mAb, which was doped with deferoxamine for radiolabeling with Zirconium-89 (89Zr) for PET imaging, as well as fluorescence dies for immunofluorescence assays. The p-Tau mAb was evaluated in vitro for toxicity by MTT assay, LDH activity, propidium iodide/Annexin V assay, caspase-3, and mitochondrial membrane potential (MMP) assay in both mouse endothelial cell line (bEnd.3) and cortical primary neurons cell cultures. Importantly, non-toxic effects (up to concentrations of p-Tau mAb greater than 100 ug/mL) were detected. In vivo experiments in the tauopathy model mice (PS19) show that the 89Zr-pTau-mAb and 89Zr-Fragments-pTau-mAb are stable in circulation for up to 10 days without toxic effects. However, only less than 0.2% reached the brain, so further strategies have to be designed for crossing the Brain-Blood-Barrier (BBB). Moreover, an intraparenchymal treatment strategy was carried out. The PS19 mice were operated to implement osmotic pumps (Alzet 1004) at two different times, at 4 and 7 months, to stimulate the controlled release for one month each of the B6 antibody or the IgG1 control antibody. We demonstrated that B6-treated mice maintained their motor and memory abilities significantly compared with IgG1 treatment. In addition, we observed a significant reduction in p-Tau deposits in the brain. Conclusions /Discussion: A theragnostic pTau-mAb was developed. Moreover, we demonstrated that our p-Tau mAb recognizes very-early pathology forms of p-Tau by non-invasive techniques, such as PET. In addition, p-Tau mAb has non-toxic effects, both in vitro and in vivo. Although the p-Tau mAb is stable in circulation, only 0.2% achieve the brain. However, direct intraventricular treatment significantly reduces cognitive impairment in Alzheimer's animal models, as well as the accumulation of toxic p-Tau species.

Keywords: alzheimer's disease, theragnosis, tau, PET, immunotherapy, tauopathies

Procedia PDF Downloads 58
18526 Strategic Management Model for High Performance Sports Centers

Authors: Jose Ramon Sanabria Navarro, Yahilina Silveira Perez, Valentin Molina Moreno, Digna Dionisia Perez Bravo

Abstract:

The general objective of this research is to conceive a model of strategic direction for Latin American high-performance sports centers for the improvement of their results. The sample is 62 managers, 187 trainers, 2930 athletes and 62 expert researchers from centers in Cuba, Venezuela, Ecuador, Colombia and Argentina, for 3241. The measurement instrument includes 12 key variables in the process of management strategies which are consolidated with the factorial analysis and the ANOVA of a factor through the SPSS 24.0. The reliability of the scale obtained an alpha higher than 0.7 in each sample. In this sense, a model is obtained that taxes the deficiencies detected in the diagnosis, based on the needs of the members of these organizations, considering criteria and theories of the strategic direction in the improvement of the organizational results. The validation of the model for high performance sports centers of the countries analyzed aims to develop joint strategies to generate synergies in their operational mode, which leads to enhance the sports organization.

Keywords: sports organization, information management, decision making, control

Procedia PDF Downloads 121
18525 An Approach to Physical Performance Analysis for Judo

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes.

Keywords: sport performance, physical performance, judo, performance coefficients

Procedia PDF Downloads 400
18524 Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete

Authors: Isyaka Abdulkadir, Egbe Ngu-Ntui Ogork

Abstract:

This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control.

Keywords: compressive strength, high performance concrete, scrap tyre steel fiber, splitting tensile strength

Procedia PDF Downloads 193
18523 Extremely Low-Frequency Magnetic Field; An Invisible Risk Association between High Power Transmission Lines and Childhood Leukemia and Adult Brain Cancer: Literature Review

Authors: Ali Azeem, Seung-Cheol Hong

Abstract:

This study focuses on the epidemiological association between childhood leukaemia & adult brain cancer to offer strong evidence that extremely low-frequency magnetic field (ELF-MF) produced from power lines caused cancer. It also gives a comprehensive literature review on epidemiological studies of ELF-MF risk associated with HVTL and childhood leukaemia & adult brain cancer. From the literature review, it is concluded that there is a weak association present between ELF-MF and childhood leukaemia. No consistent association was present between brain cancer and ELF-MF. This study is done on Scielo data and PubMed using the terms extremely low-frequency magnetic field (ELF-MF+cancer), adult brain cancer, high power transmission lines, etc., for the past 10 years.

Keywords: childhood leukaemia, high voltage transmission lines, acute lymphoblastic leukaemia, power lines

Procedia PDF Downloads 211
18522 The Impact of Urbanisation on Sediment Concentration of Ginzo River in Katsina City, Katsina State, Nigeria

Authors: Ahmed A. Lugard, Mohammed A. Aliyu

Abstract:

This paper studied the influence of urban development and its accompanied land surface transformation on sediment concentration of a natural flowing Ginzo river across the city of Katsina. An opposite twin river known as Tille river, which is less urbanized, was used to compare the result of the sediment concentration of the Ginzo River in order to ascertain the consequences of the urban area on impacting the sediment concentration. An instrument called USP 61 point integrating cable way sampler described by Gregory and walling (1973), was used to collect the suspended sediment samples in the wet season months of June, July, August and September. The result obtained in the study shows that only the sample collected at the peripheral site of the city, which is mostly farmland areas resembles the results in the four sites of Tille river, which is the reference stream in the study. It was found to be only + 10% different from one another, while at the other three sites of the Ginzo which are highly urbanized the disparity ranges from 35-45% less than what are obtained at the four sites of Tille River. In the generalized assessment, the t-distribution result applied to the two set of data shows that there is a significant difference between the sediment concentration of urbanized River Ginzo and that of less urbanized River Tille. The study further discovered that the less sediment concentration found in urbanized River Ginzo is attributed to concretization of surfaced, tarred roads, concretized channeling of segments of the river including the river bed and reserved open grassland areas, all within the catchments. The study therefore concludes that urbanization affect not only the hydrology of an urbanized river basin, but also the sediment concentration which is a significant aspect of its geomorphology. This world certainly affects the flood plain of the basin at a certain point which might be a suitable land for cultivation. It is recommended here that further studies on the impact of urbanization on River Basins should focus on all elements of geomorphology as it has been on hydrology. This would make the work rather complete as the two disciplines are inseparable from each other. The authorities concern should also trigger a more proper environmental and land use management policies to arrest the menace of land degradation and related episodic events.

Keywords: environment, infiltration, river, urbanization

Procedia PDF Downloads 304
18521 Magnetic Field Analysis of External Rotor Permanent-Magnet Synchronous Motors with Non Magnetic Rotor Core

Authors: Mabrak Samir

Abstract:

The motor performance created by permanent magnetic in a slotless air-gap of a surface mounted permanent-magnet synchronous motor with non magnetic rotor and either sinusoidal or mixed (quasi-Halbatch) magnetization is presented in this paper using polar coordinates. The analysis works for both internal and external rotor motor topologies, The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance, calculated from the conformal transformation of the slot geometry. We compare predicted results of flux density distribution and cogging torque with those obtained by finite-element analysis.

Keywords: air-cored, cogging torque, finite element magnetic field, permanent-magnet

Procedia PDF Downloads 357
18520 Combined Treatment of Estrogen-Receptor Positive Breast Microtumors with 4-Hydroxytamoxifen and Novel Non-Steroidal Diethyl Stilbestrol-Like Analog Produces Enhanced Preclinical Treatment Response and Decreased Drug Resistance

Authors: Sarah Crawford, Gerry Lesley

Abstract:

This research is a pre-clinical assessment of anti-cancer effects of novel non-steroidal diethyl stilbestrol-like estrogen analogs in estrogen-receptor positive/ progesterone-receptor positive human breast cancer microtumors of MCF 7 cell line. Tamoxifen analog formulation (Tam A1) was used as a single agent or in combination with therapeutic concentrations of 4-hydroxytamoxifen, currently used as a long-term treatment for the prevention of breast cancer recurrence in women with estrogen receptor positive/ progesterone receptor positive malignancies. At concentrations ranging from 30-50 microM, Tam A1 induced microtumor disaggregation and cell death. Incremental cytotoxic effects correlated with increasing concentrations of Tam A1. Live tumor microscopy showed that microtumos displayed diffuse borders and substrate-attached cells were rounded-up and poorly adherent. A complete cytotoxic effect was observed using 40-50 microM Tam A1 with time course kinetics similar to 4-hydroxytamoxifen. Combined treatment with TamA1 (30-50 microM) and 4-hydroxytamoxifen (10-15 microM) induced a highly cytotoxic, synergistic combined treatment response that was more rapid and complete than using 4-hydroxytamoxifen as a single agent therapeutic. Microtumors completely dispersed or formed necrotic foci indicating a highly cytotoxic combined treatment response. Moreover, breast cancer microtumors treated with both 4-hydroxytamoxifen and Tam A1 displayed lower levels of long-term post-treatment regrowth, a critical parameter of primary drug resistance, than observed for 4-hydroxytamoxifen when used as a single agent therapeutic. Tumor regrowth at 6 weeks post-treatment with either single agent 4-hydroxy tamoxifen, Tam A1 or a combined treatment was assessed for the development of drug resistance. Breast cancer cells treated with both 4-hydroxytamoxifen and Tam A1 displayed significantly lower levels of post-treatment regrowth, indicative of decreased drug resistance, than observed for either single treatment modality. The preclinical data suggest that combined treatment involving the use of tamoxifen analogs may be a novel clinical approach for long-term maintenance therapy in patients with estrogen-receptor positive/progesterone-receptor positive breast cancer receiving hormonal therapy to prevent disease recurrence. Detailed data on time-course, IC50 and tumor regrowth assays post- treatment as well as a proposed mechanism of action to account for observed synergistic drug effects will be presented.

Keywords: 4-hydroxytamoxifen, tamoxifen analog, drug-resistance, microtumors

Procedia PDF Downloads 56
18519 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit

Authors: Naheem Olakunle Adesina

Abstract:

The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.

Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator

Procedia PDF Downloads 169