Search results for: thin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1092

Search results for: thin

552 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface

Authors: Aleš Kratochvíl, Svatomír Slavík

Abstract:

The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.

Keywords: active damping, finite element method, flutter, tailplane model

Procedia PDF Downloads 292
551 The Joint Properties for Friction Stir Welding of Aluminium Tubes

Authors: Ahbdelfattah M. Khourshid, T. Elabeidi

Abstract:

Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones.

Keywords: friction stir welding (FSW), Al alloys, mechanical properties, microstructure

Procedia PDF Downloads 535
550 Simultaneous Determination of Some Phenolic Pesticides in Environmental and Biological Samples

Authors: Yasmeen F. Pervez, Etesh K. Janghel, Santosh Kumar Sar

Abstract:

Simple and sensitive analytical thermal gradient-thin layer chromatography technique has been developed for the simultaneous determination of phenolic pesticides like carbaryl, propoxur and carbofuran. It is based on the differential migration of colored derivatives formed by the reaction of hydrolysed phenolic compound with diazotized 3, 4 dimethyl aniline on a silica gel plate. Quantitative evaluation of hydrolyzed phenolic compound is made by visual comparison of intensities of color by spectrophotometry. The color system obeys Beer’s law in the following working range in ppm : carbaryl, 0.5-6.6; propoxur, 0.8-7.2; and carbofuran, 0.2-3.3 respectively. The Molar absorptivity, Sandell’s sensitivity, Correlation coefficient have been determined. The effects of analytical parameters on migration and analysis have been evaluated. The methods are highly reproducible and have been successfully applied to determination of phenolic pesticides in environmental and biological samples.

Keywords: phenolic pesticides (carbaryl, propoxur and carbofuran), 3.4 dimethyl aniline, environmental, biological samples

Procedia PDF Downloads 405
549 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: aluminum, die casting, fuel cap, motorcycle

Procedia PDF Downloads 366
548 Determining Full Stage Creep Properties from Miniature Specimen Creep Test

Authors: W. Sun, W. Wen, J. Lu, A. A. Becker

Abstract:

In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive  regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.

Keywords: creep damage property, miniature specimen, inverse approach, finite element modeling

Procedia PDF Downloads 231
547 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films

Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.

Keywords: physical properties, sol, gel, TiO2/SiO2 composite films

Procedia PDF Downloads 493
546 Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method

Authors: Samira Naghdi, Kyong Yop Rhee

Abstract:

Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities.

Keywords: antireflection coating, chemical vapor deposition, graphene, the sheet resistance

Procedia PDF Downloads 180
545 Dynamic Analysis of Viscoelastic Plates with Variable Thickness

Authors: Gülçin Tekin, Fethi Kadıoğlu

Abstract:

In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.

Keywords: dynamic analysis, inverse laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness

Procedia PDF Downloads 331
544 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 278
543 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 251
542 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO

Procedia PDF Downloads 403
541 Fabrication of Wearable Antennas through Thermal Deposition

Authors: Jeff Letcher, Dennis Tierney, Haider Raad

Abstract:

Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.

Keywords: thermal deposition, wearable antennas, bluetooth technology, flexible electronics

Procedia PDF Downloads 282
540 Determination of Phytostearol in Serial Grains

Authors: Sumonthip Kongtun Janphuk

Abstract:

Ten cereal grains that usually used as ingredients in healthy products were studied for phytosteryl glucoside contents. β-sitosteryl glucoside in 10 cereal grains, including Phasecolus vulgaris L. (kidney bean), Sorghum bicolor (sorghum), Moringa oleifera Lam. (drumstick), Nelumbo nucifera (lotus), Vigna radiate L. (mung bean), Coix lacrymajobi (job’tears), Oryza sativa. (red rice), Glycine max L. Merrill. (soybean),Cucurbita maschata Decne (pumpkin) and Helianthas annuus (sunflower seeds), were analyzed using Thin-layer chromatography (TLC) and High-Performance liquid chromatography (HPLC). All grains were extracted with methanol before analysis. Red bean showed the maximum phytosteryl glucoside content of 0.42% w/w. The content of others were as follows: pumpkin seed 0.173%, mung bean 0.099 %, soybean 0.07%, dried moringa seed 0.067%, lotus seed 0.044%, sorghum 0.032%, sunflower seed 0.016%, Job's tears 0.012%, and brown rice 0.006%.

Keywords: cereal grains, phytosterol, β-sitosteryl glucoside, food analysis.

Procedia PDF Downloads 388
539 New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections

Authors: Lise Paule Labéjof, Raíza Sales Pereira Bizerra, Galileu Barbosa Costa, Thaísa Barros dos Santos

Abstract:

Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic.

Keywords: image quality, microscopy research, staining technique, ultra thin section

Procedia PDF Downloads 432
538 The Consequences of Vibrations in Machining

Authors: Boughedaoui Rachid, Belaidi Idir, Ouali Mohamed

Abstract:

The formatting by removal of material remains an indispensable means for obtaining different forms of pieces. The objective of this work is to study the influence of parameters of the vibratory regime of the system PTM 'Piece-Tool-Machine, in the case of the machining of the thin pieces on the surface finish. As a first step, an analytical study of essential dynamic models 2D slice will be presented. The stability lobes will be thus obtained. In a second step, a characterization of PTM system will be realized. This system will be instrumented with accelerometric sensors but also a laser vibrometer so as to have the information closer to the cutting area. Dynamometers three components will be used for the analysis of cutting forces. Surface states will be measured and the condition of the cutting edge will be visualized thanks to a binocular microscope coupled to a data acquisition system. This information will allow quantifying the influence of chatter on the dimensional quality of the parts. From lobes stabilities previously determined experimental validation allow for the development a method for detecting of the phenomenon of chatter and so an approach will be proposed.

Keywords: chatter, dynamic, milling, lobe stability

Procedia PDF Downloads 357
537 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme

Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇

Abstract:

Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.

Keywords: glutathione reductase, antimalaria, inhibitor, enzyme

Procedia PDF Downloads 270
536 Enhancing the Efficiency of Organic Solar Cells Using Metallic Nanoparticles

Authors: Sankara Rao Gollu, Ramakant Sharma, G. Srinivas, Souvik Kundu, Dipti Gupta

Abstract:

In recent years, bulk heterojunction organic solar cells (BHJ OSCs) based on polymer–fullerene attracted a large research attention due to their numerous advantages such as light weight, easy processability, eco-friendly, low-cost, and capability for large area roll-to-roll manufacturing. BHJ OSCs usually suffer from insufficient light absorption due to restriction on keeping thin ( < 150 nm) photoactive layer because of small exciton diffusion length ( ~ 10 nm) and low charge carrier mobilities. It is thus highly desirable that light absorption as well as charge transport properties are enhanced by alternative methods so as to improve the device efficiency. In this work, therefore, we have focused on the strategy of incorporating metallic nanostructures in the active layer or charge transport layer to enhance the absorption and improve the charge transport.

Keywords: organic solar cell, efficiency, bulk heterojunction, polymer-fullerene

Procedia PDF Downloads 397
535 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.

Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel

Procedia PDF Downloads 282
534 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 132
533 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 203
532 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China

Authors: Guoheng Liu, Zhilong Huang

Abstract:

For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.

Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation

Procedia PDF Downloads 220
531 Sonochemical Zinc Oxide and Layered Hydroxy Zinc Acetate Synthesis in Fenton-Like Reactions

Authors: Durata Haciu, Ozgur Birer

Abstract:

Zinc acetate solution is sonicated at high power in water and in ethanol in the absence and presence of various peroxides. In the absence of peroxides, the products are zinc oxide and layered hydroxy zinc acetate in water and in ethanol, respectively. Layered basic zinc acetate are prepared for the first time using sonochemical methods. The addition of peroxides alters the reaction mechanisms. In water, insoluble peroxides produce zinc oxides while the water soluble peroxide, i.e.hydrogen peroxide, completely destroyed the structure and casted a doubt on the accepted peroxide initiated mechanism of reactions. In ethanol,peroxide addition caused the reaction mechanism to change and some oxide formation is observed. The reaction mechanism is sensitive to water/ethanol amounts as well as the peroxide to zinc ion mole ratio.Thin zinc oxide wafers (ca. 30 nm) with band gaps of 3.24 eV were obtained.

Keywords: ultrasound, zinc oxide, hydroxy zinc acetate, fenton, peroxide initiation

Procedia PDF Downloads 295
530 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 562
529 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 200
528 Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan

Authors: Sean Taylor, Sayantani Neogi, Julia Budka

Abstract:

The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes.

Keywords: anthropogenic sediment, New Kingdom, site formation processes, soil micromorphology

Procedia PDF Downloads 436
527 Role of Physical Appearance in Associating People with a Group Identity

Authors: Gurleen Kaur

Abstract:

Being tall-short, fat-thin, black-white, etc. is an inevitable part of how people perceive you. This association of people with your external appearance carves out an identity for you. This paper will look at the reasons why people relate a person to a particular categorization on the basis of his/her physical appearance. The paper delves into reasons for this categorization into groups: Subconscious grouping, personal gain, ease of relating to the group, and social acceptance. Development of certain unique physical features also leads to a person relating himself to a collective identity. Thus, this paper will support the fact that physical appearance plays a crucial role in categorization of people into groups and hence forming a group identity for them. This paper is divided into three parts. The first part will discuss what physical appearance is and how is it linked to our daily lives. The second part will talk about why it works i.e. why this factor of external appearance is important in formation of identity. The last part will talk about the factors which lead to categorization of identity because of physical appearance.

Keywords: group identity, physical appearance, subconscious grouping, collective identity

Procedia PDF Downloads 419
526 Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers

Authors: Béchir Wanassi, Béchir Azzouz, Taher Halimi, Mohamed Ben Hassen

Abstract:

Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method.

Keywords: cotton wastes, DOE, mechanical recycling, rotor spinning

Procedia PDF Downloads 306
525 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns

Authors: Mostefa Mimoune

Abstract:

Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.

Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section

Procedia PDF Downloads 378
524 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 258
523 Detection of Triclosan in Water Based on Nanostructured Thin Films

Authors: G. Magalhães-Mota, C. Magro, S. Sério, E. Mateus, P. A. Ribeiro, A. B. Ribeiro, M. Raposo

Abstract:

Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol], belonging to the class of Pharmaceuticals and Personal Care Products (PPCPs), is a broad-spectrum antimicrobial agent and bactericide. Because of its antimicrobial efficacy, it is widely used in personal health and skin care products, such as soaps, detergents, hand cleansers, cosmetics, toothpastes, etc. However, it has been considered to disrupt the endocrine system, for instance, thyroid hormone homeostasis and possibly the reproductive system. Considering the widespread use of triclosan, it is expected that environmental and food safety problems regarding triclosan will increase dramatically. Triclosan has been found in river water samples in both North America and Europe and is likely widely distributed wherever triclosan-containing products are used. Although significant amounts are removed in sewage plants, considerable quantities remain in the sewage effluent, initiating widespread environmental contamination. Triclosan undergoes bioconversion to methyl-triclosan, which has been demonstrated to bio accumulate in fish. In addition, triclosan has been found in human urine samples from persons with no known industrial exposure and in significant amounts in samples of mother's milk, demonstrating its presence in humans. The action of sunlight in river water is known to turn triclosan into dioxin derivatives and raises the possibility of pharmacological dangers not envisioned when the compound was originally utilized. The aim of this work is to detect low concentrations of triclosan in an aqueous complex matrix through the use of a sensor array system, following the electronic tongue concept based on impedance spectroscopy. To achieve this goal, we selected the appropriate molecules to the sensor so that there is a high affinity for triclosan and whose sensitivity ensures the detection of concentrations of at least nano-molar. Thin films of organic molecules and oxides have been produced by the layer-by-layer (LbL) technique and sputtered onto glass solid supports already covered by gold interdigitated electrodes. By submerging the films in complex aqueous solutions with different concentrations of triclosan, resistance and capacitance values were obtained at different frequencies. The preliminary results showed that an array of interdigitated electrodes sensor coated or uncoated with different LbL and films, can be used to detect TCS traces in aqueous solutions in a wide range concentration, from 10⁻¹² to 10⁻⁶ M. The PCA method was applied to the measured data, in order to differentiate the solutions with different concentrations of TCS. Moreover, was also possible to trace a curve, the plot of the logarithm of resistance versus the logarithm of concentration, which allowed us to fit the plotted data points with a decreasing straight line with a slope of 0.022 ± 0.006 which corresponds to the best sensitivity of our sensor. To find the sensor resolution near of the smallest concentration (Cs) used, 1pM, the minimum measured value which can be measured with resolution is 0.006, so the ∆logC =0.006/0.022=0.273, and, therefore, C-Cs~0.9 pM. This leads to a sensor resolution of 0.9 pM for the smallest concentration used, 1pM. This attained detection limit is lower than the values obtained in the literature.

Keywords: triclosan, layer-by-layer, impedance spectroscopy, electronic tongue

Procedia PDF Downloads 252