Search results for: thermal competitions
3101 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran
Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr
Abstract:
Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.Keywords: climate, change, thermal, power plants
Procedia PDF Downloads 793100 Experimental Study of Semitransparent and Opaque Photovoltaic Modules with and without Air Duct
Authors: Sanjay Agrawal, Trapti Varshney, G. N. Tiwari
Abstract:
In this paper, thermal modeling has been developed for photovoltaic PV modules, namely; Case A: semitransparent PV module without duct, Case B: semitransparent PV module with duct, Case C: opaque PV module without duct, Case D: opaque PV module with duct for Delhi, India climatic condition. MATLAB 7.0 software has been used to solve mathematical models of the proposed system. For validation of proposed system, the experimental study has also been carried out for all above four cases, and then comparative analysis of all different type of PV module has been presented. The hybrid PVT module air collectors presented in this study are self sustaining the system and can be used for the electricity generation in remote areas where access of electricity is not economical due to high transmission and distribution losses. It has been found that overall annual thermal energy and exergy gain of semitransparent PV module is higher by 11.6% and7.32% in summer condition and 16.39% and 18% in winter condition respectively as compared to opaque PV module considering same area (0.61 m2) of PV module.Keywords: semitransparent PV module, overall exergy, overall thermal energy, opaque
Procedia PDF Downloads 4373099 Innovation Potential of Palm Kernel Shells from the Littoral Region in Cameroon
Authors: Marcelle Muriel Domkam Tchunkam, Rolin Feudjio
Abstract:
This work investigates the ultrastructure, physicochemical and thermal properties evaluation of Palm Kernel Shells (PKS). PKS Tenera waste samples were obtained from a palm oil mill in Dizangué Sub-Division, Littoral region of Cameroon, while PKS Dura waste samples were collected from the Institute of Agricultural Research for Development (IRAD) of Mbongo. A sodium hydroxide solution was used to wash the shells. They were then rinsed by demineralised water and dried in an oven at 70 °C during 72 hours. They were then grounded and sieved to obtained powders from 0.04 mm to 0.45 mm in size. Transmission Electron Microscopy (TEM) and Surface Electron Microscopy (SEM) were used to characterized powder samples. Chemical compounds and elemental constituents, as well as thermal performance were evaluated by Van Soest Method, TEM/EDXA and SEM/EDS techniques. Thermal characterization was also performed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Our results from microstructural analysis revealed that most of the PKS material is made of particles with irregular morphology, mainly amorphous phases of carbon/oxygen with small amounts of Ca, K, and Mg. The DSC data enabled the derivation of the materials’ thermal transition phases and the relevant characteristic temperatures and physical properties. Overall, our data show that PKS have nanopores and show potential in 3D printing and membrane filtration applications.Keywords: DSC, EDXA, palm kernel shells, SEM, TEM
Procedia PDF Downloads 1203098 The Influence of Water on the Properties of Cellulose Fibre Insulation
Authors: Pablo Lopez Hurtado, Antroine Rouilly, Virginie Vandenbossche
Abstract:
Cellulose fibre insulation is an eco-friendly building material made from recycled paper fibres, treated with borates for fungal and fire resistance. It is comparable in terms of thermal and acoustic performance to mineral wool insulation and other insulation materials based on non-renewable resources. The main method of application consists in separating and blowing the fibres in attics or closed wall cavities. Another method, known as the “wet spray method” is gaining interest. With this method the fibres are projected with pulverized water, which stick to the wall cavities. The issue with the wet spray technique is that the water dosage could be difficult to control. A high water dosage implies not only a longer drying time, depending on ambient conditions, but also a change in the performance of the material itself. In our work we studied the thermal and mechanical properties of wet spray-cellulose insulation in order to understand how water dosage could affect these properties. The material was first characterized to study the chemical and physical properties of the fibres. Then representative samples of wet sprayed cellulose with varying applied water dosage were subject to thermal conductivity and compression testing in order to better understand how changes in the fibres induced by drying can affect these properties.Keywords: cellulose fibre, recycled paper, moisture sorption, thermal insulation
Procedia PDF Downloads 3033097 Models to Calculate Lattice Spacing, Melting Point and Lattice Thermal Expansion of Ga₂Se₃ Nanoparticles
Authors: Mustafa Saeed Omar
Abstract:
The formula which contains the maximum increase of mean bond length, melting entropy and critical particle radius is used to calculate lattice volume in nanoscale size crystals of Ga₂Se₃. This compound belongs to the binary group of III₂VI₃. The critical radius is calculated from the values of the first surface atomic layer height which is equal to 0.336nm. The size-dependent mean bond length is calculated by using an equation-free from fitting parameters. The size-dependent lattice parameter then is accordingly used to calculate the size-dependent lattice volume. The lattice size in the nanoscale region increases to about 77.6 A³, which is up to four times of its bulk state value 19.97 A³. From the values of the nanosize scale dependence of lattice volume, the nanoscale size dependence of melting temperatures is calculated. The melting temperature decreases with the nanoparticles size reduction, it becomes zero when the radius reaches to its critical value. Bulk melting temperature for Ga₂Se₃, for example, has values of 1293 K. From the size-dependent melting temperature and mean bond length, the size-dependent lattice thermal expansion is calculated. Lattice thermal expansion decreases with the decrease of nanoparticles size and reaches to its minimum value as the radius drops down to about 5nm.Keywords: Ga₂Se₃, lattice volume, lattice thermal expansion, melting point, nanoparticles
Procedia PDF Downloads 1683096 Energy Conservation Strategies of Buildings in Hot, Arid Region: Al-Khobar, Saudi Arabia
Authors: M. H. Shwehdi, S. Raja Mohammad
Abstract:
Recently energy savings have become more pronounced as a result of the world financial crises as well the unstable oil prices. Certainly all entities needs to adapt Energy Conservation and Management Strategies due to high monthly consumption of their spread locations and advancements of its telecom systems. These system improvements necessitate the establishment of more exchange centers as well provide energy savings. This paper investigates the impact of HVAC System Characteristics, Operational Strategies, the impact of Envelope Thermal Characteristics, and energy conservation measures. These are classified under three types of measures i.e. Zero-Investment; Low-Investment and High-Investment Energy Conservation Measures. The study shows that the Energy Conservation Measures (ECMs) pertaining to the HVAC system characteristics and operation represent the highest potential for energy reduction, attention should be given to window thermal and solar radiation characteristics when large window areas are used. The type of glazing system needs to be carefully considered in the early design phase of future buildings. Paper will present the thermal optimization of different size centers in the two hot-dry and hot-humid Saudi Arabian city of Al Khobar, East province.Keywords: energy conservation, optimization, thermal design, intermittent operation, exchange centers, hot-humid climate, Saudi Arabia
Procedia PDF Downloads 4513095 Implication of E-Robot Kit in Kuwait’s Robotics Technology Learning and Innovation
Authors: Murtaza Hassan Sheikh, Ahmed A. A. AlSaleh, Naser H. N. Jasem
Abstract:
Kuwait has not yet made its mark in the world of technology and research. Therefore, advancements have been made to fill in this gap. Since Robotics covers a wide variety of fields and helps innovation, efforts have been made to promote its education. Despite of the efforts made in Kuwait, robotics education is still on hold. The paper discusses the issues and obstacles in the implementation of robotics education in Kuwait and how a robotics kit “E-Robot” is making an impact in the Kuwait’s future education and innovation. Problems such as robotics competitions rather than education, complexity of robot programming and lack of organized open source platform are being addressed by the introduction of the E-Robot Kit in Kuwait. Due to its success since 2012 a total of 15 schools have accepted the Kit as a core subject, with 200 teaching it as an extracurricular activity.Keywords: robotics education, Kuwait's education, e-robot kit, research and development, innovation and creativity
Procedia PDF Downloads 4173094 Distribution and Characterization of Thermal Springs in Northern Oman
Authors: Fahad Al Shidi, Reginald Victor
Abstract:
This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.Keywords: alkaline springs, geothermal, HSG, ophiolite
Procedia PDF Downloads 1423093 Effect of 3-Dimensional Knitted Spacer Fabrics Characteristics on Its Thermal and Compression Properties
Authors: Veerakumar Arumugam, Rajesh Mishra, Jiri Militky, Jana Salacova
Abstract:
The thermo-physiological comfort and compression properties of knitted spacer fabrics have been evaluated by varying the different spacer fabric parameters. Air permeability and water vapor transmission of the fabrics were measured using the Textest FX-3300 air permeability tester and PERMETEST. Then thermal behavior of fabrics was obtained by Thermal conductivity analyzer and overall moisture management capacity was evaluated by moisture management tester. Spacer Fabrics compression properties were also tested using Kawabata Evaluation System (KES-FB3). In the KES testing, the compression resilience, work of compression, linearity of compression and other parameters were calculated from the pressure-thickness curves. Analysis of Variance (ANOVA) was performed using new statistical software named QC expert trilobite and Darwin in order to compare the influence of different fabric parameters on thermo-physiological and compression behavior of samples. This study established that the raw materials, type of spacer yarn, density, thickness and tightness of surface layer have significant influence on both thermal conductivity and work of compression in spacer fabrics. The parameter which mainly influence on the water vapor permeability of these fabrics is the properties of raw material i.e. the wetting and wicking properties of fibers. The Pearson correlation between moisture capacity of the fabrics and water vapour permeability was found using statistical software named QC expert trilobite and Darwin. These findings are important requirements for the further designing of clothing for extreme environmental conditions.Keywords: 3D spacer fabrics, thermal conductivity, moisture management, work of compression (WC), resilience of compression (RC)
Procedia PDF Downloads 5423092 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings
Authors: Ranojoy Dutta, Adam Barker
Abstract:
Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.Keywords: electrochromic glazing, multi-family housing, passive cooling, thermal comfort, natural ventilation
Procedia PDF Downloads 1053091 Numerical Investigation of Heat Transfer Characteristics of Different Rib Shapes in a Gas Turbine Blade
Authors: Naik Nithesh, Andre Rozek
Abstract:
The heat transfer and friction loss performances of a single rib-roughened rectangular cooling channel having four novel rib shapes were evaluated through numerical investigation using Ansys CFX. The investigation was conducted on a rectangular channel of aspect ratio (AR) = 4:1 with rib height to hydraulic diameter ratio (e/Dh) of 0.1 and rib pitch to height ratio (e/P) of 10 at Re = 30,000. The computations were performed by solving the RANS equation using k-ε turbulence model. Fluid flow simulation results of stationery case for different configuration are presented in terms of thermal performance parameter, Nusselt number and friction factor. These parameters indicate that a particular configuration of novel shaped ribs provides better heat transfer characteristics over the conventional 45° ribs. The numerical investigation undertaken in this study indicates an increase in overall efficiency of gas turbine due to increased thermal performance parameter, heat transfer co-efficient and less pumping pressure.Keywords: gas turbine, rib shapes, nusselt number, thermal performance parameter
Procedia PDF Downloads 5183090 Effects of Sexual Activities in Male Athletes Performance
Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Massimo Briamo, Giovanni Abalsamo
Abstract:
Most of the benefits of sport come from related physical activity, however, there are secondary psychological positive effects. There are also obvious disadvantages, high tensions related to failure, injuries, eating disorders and burnout. Depressive symptoms and illnesses related to anxiety or stress can be preventable or even simply alleviated through regular activity and exercise. It has been shown that the practice of a sport brings physical benefits, but can also have psychological and spiritual benefits. Reduced performance in male individuals has been linked to sexual activity before competitions in the past. The long-standing debate about the impact of sexual activity on sports performance has been controversial in the mainstream media in recent decades. This salacious topic has generated extensive discussion, although its high-quality data has been limited. Literature has, so far, mainly included subjective assessments from surveys. However, such surveys can be skewed as these assessments are based on individual beliefs, perceptions, and memory. There has been a long discussion over the years but even there objective data has been lacking. One reason behind coaches' bans on sexual activity before sporting events may be the belief that abstinence increases frustration, which in turn is shifted into aggressive behavior toward competitors. However, this assumption is not always valid. In fact, depriving an athlete of a normal activity can cause feelings of guilt and loss of concentration. Sexual activity during training can promote relaxation and positively influence performance. The author concludes that, although there is a need for scientific research in this area, it seems that sexual intercourse does not decrease performance unless it is accompanied by late night socialization, loss of sleep or drinking. Although the effects of sexual engagement on aerobic and strength athletic performance have not been definitively established, most research seems to rule out a direct impact. In order to analyze, as much as possible without bias, whether sexual activity significantly affects an athletic performance or not, we sampled 5 amateur athletes, between 22 and 25 years old and all male. The study was based on the timing of 4 running races of 5 champions. We asked participants to respect guidelines to avoid sexual activity (sex or masturbation) 12 hours before 2 of the 4 competitions, and to practice before the remaining 2 races.In doing so, we were able to compare and analyze the impact of activity and abstinence on performance results. We have come to the conclusion that sexual behavior on athletic performance needs to be better understood, more randomized trials and high-quality controls are strongly needed but available information suggests that sexual activity the day before a race has no negative effects on performance.Keywords: sex, masturbation, male performance, soccer
Procedia PDF Downloads 713089 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach
Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola
Abstract:
Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy
Procedia PDF Downloads 1183088 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.Keywords: distributed energy resources, network energy system, optimization, microgeneration system
Procedia PDF Downloads 1903087 Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate
Authors: Gwi Hyun Lee, Mun Soo Na
Abstract:
Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min.Keywords: conical solar concentrator, performance evaluation, solar energy, solar energy system
Procedia PDF Downloads 2793086 Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank
Authors: Sung Uk Ryu, Byoung Gook Jeon, Sung-Jae Yi, Dong-Jin Euh
Abstract:
In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant.Keywords: passive safety injection systems, steam penetration, direct contact condensation, particle image velocimetry
Procedia PDF Downloads 3953085 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations
Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik
Abstract:
The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor
Procedia PDF Downloads 1743084 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 2683083 The Role of Building Services in Energy Conservation into Residential Buildings
Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan
Abstract:
The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder
Procedia PDF Downloads 2943082 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation
Authors: O. Hinrichs, H. Franz, G. Reiter
Abstract:
Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing
Procedia PDF Downloads 3353081 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+
Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti
Abstract:
This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.Keywords: additive manufacturing, numerical simulation, metallurgy, steel
Procedia PDF Downloads 713080 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein
Authors: Nasser A. Al-Shabib
Abstract:
Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.Keywords: ovomucoid, thermal treatment, solutions, surfaces
Procedia PDF Downloads 4483079 Materials for Electrically Driven Aircrafts: Highly Conductive Carbon-Fiber Reinforced Epoxy Composites
Authors: Simon Bard, Martin Demleitner, Florian Schonl, Volker Altstadt
Abstract:
For an electrically driven aircraft, whose engine is based on semiconductors, alternative materials are needed. The avoid hotspots in the materials thermally conductive polymers are necessary. Nevertheless, the mechanical properties of these materials should remain. Herein, the work of three years in a project with airbus and Siemens is presented. Different strategies have been pursued to achieve conductive fiber-reinforced composites: Metal-coated carbon fibers, pitch-based fibers and particle-loaded matrices have been investigated. In addition, a combination of copper-coated fibers and a conductive matrix has been successfully tested for its conductivity and mechanical properties. First, prepregs have been produced with a laboratory scale prepreg line, which can handle materials with maximum width of 300 mm. These materials have then been processed to fiber-reinforced laminates. For the PAN-fiber reinforced laminates, it could be shown that there is a strong dependency between fiber volume content and thermal conductivity. Laminates with 50 vol% of carbon fiber offer a conductivity of 0.6 W/mK, those with 66 vol% of fiber a thermal conductivity of 1 W/mK. With pitch-based fiber, the conductivity enhances to 1.5 W/mK for 61 vol% of fiber, compared to 0.81 W/mK with the same amount of fibers produced from PAN (+83% in conducitivity). The thermal conductivity of PAN-based composites with 50 vol% of fiber is at 0.6 W/mK, their nickel-coated counterparts with the same fiber volume content offer a conductivity of 1 W/mK, an increase of 66%.Keywords: carbon, electric aircraft, polymer, thermal conductivity
Procedia PDF Downloads 1633078 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 523077 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings
Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.Keywords: thermal energy storage, buildings, phase change materials, alcohols
Procedia PDF Downloads 973076 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.Keywords: invar alloy, aluminum, phase equilibrium, thermal expansion coefficient, microstructure, tensile properties
Procedia PDF Downloads 3713075 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: model predictive control, optimal control, process control, crystal growth
Procedia PDF Downloads 3593074 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector
Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy
Abstract:
Energy is required in almost every aspect of human activities and development of any nation in this world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and Matlab Simulink of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on the thermal and electrical efficiency.Keywords: renewable energy, hybrid PV/T system, sensitivity analysis, ecological sciences
Procedia PDF Downloads 2923073 Numerical Simulation of a Combined Impact of Cooling and Ventilation on the Indoor Environmental Quality
Authors: Matjaz Prek
Abstract:
Impact of three different combinations of cooling and ventilation systems on the indoor environmental quality (IEQ) has been studied. Comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit and cooling with flat wall displacement outlets was performed. All three combinations were evaluated from the standpoint of whole-body and local thermal comfort criteria as well as from the standpoint of ventilation effectiveness. The comparison was made on the basis of numerical simulation with DesignBuilder and Fluent. Numerical simulations were carried out in two steps. Firstly the DesignBuilder software environment was used to model the buildings thermal performance and evaluation of the interaction between the environment and the building. Heat gains of the building and of the individual space, as well as the heat loss on the boundary surfaces in the room, were calculated. In the second step Fluent software environment was used to simulate the response of the indoor environment, evaluating the interaction between building and human, using the simulation results obtained in the first step. Among the systems presented, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling has proved inadequate from the standpoint of thermal comfort whereas flat wall displacement outlets were inadequate from the standpoint of ventilation effectiveness. The study showed the need in evaluating indoor environment not solely from the energy use point of view, but from the point of view of indoor environmental quality as well.Keywords: cooling, ventilation, thermal comfort, ventilation effectiveness, indoor environmental quality, IEQ, computational fluid dynamics
Procedia PDF Downloads 1873072 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study
Authors: Tolga Arda Eraslan
Abstract:
The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort
Procedia PDF Downloads 118