Search results for: shared frailty survival models
8137 Toward Concerned Leadership: A Novel Conceptual Model to Raise the Well-Being of Employees and the Leaderful Practice of Organizations
Authors: Robert McGrath, Zara Qureshi
Abstract:
A innovative leadership philosophy that is proposed herein is distinctly more humane than most leadership approaches Concerned Leadership. The central idea to this approach is to consider the whole person that comes to work; their professional skills and talents, as well as any personal, emotional challenges that could be affecting productivity and effectiveness at work. This paper explores Concerned Leadership as an integration of the two conceptual models areas examined in this paper –(1) leaderful organizations and practices, as well as (2) organizational culture, and defines leadership in the context of Mental Health and Wellness in the workplace. Leaderful organizations calls for organizations to implement leaderful practice. Leaderful practice is when leadership responsibility and decision-making is shared across all team members and levels, versus only delegated to top management as commonly seen. A healthy culture thrives off key aspects such as acceptance, employee pride, equal opportunity, and strong company leadership. Concerned Leadership is characterized by five main components: Self-Concern, Leaderful Practice, Human Touch, Belonging, and Compassion. As scholars and practitioners conceptualize leadership in practice, the present model seeks to uphold the dignity of each organizational member, thereby having the potential to transform workplaces and support all members.Keywords: leadership, mental health, reflective practice, organizational culture
Procedia PDF Downloads 818136 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 1948135 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 1358134 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1338133 Ethnic Minority Small and Medium Enterprises and Entrepreneurial Resilience During the COVID-19 Pandemic: A Case of United Kingdom
Authors: Muhammad Bilal Mustafa, Javed Hussain, Simeon Babatunde
Abstract:
The Covid-19 pandemic has exposed the vulnerabilities of countless organisations beyond their size, type, and location. However, some groups and sectors are disproportionally get impacted by the pandemic. In the context of the UK, ethnic Small and Medium Enterprises (SMEs) turn out to be the most precarious group among all private sectors. Many ethnic SMEs shut down their business operations during a pandemic. A large portion of Black, Asian and minority ethnic (BAME) owners have huge concerns regarding their business’ survival and resilience. The current UK-centric studies have focused on the large business population, and there is a gap in ethnic SMEs and how they get affected by the Covid-19 pandemic. Moreover, there is a need to further knowledge and academic research to investigate the fundamental factors that could strengthen the resilience of ethnic SMEs as well as contribute to long-term sustainability. Therefore, this study aims to capture the effect of the Covid-19 pandemic on ethnic SMEs in the UK and assess the survival measures taken by ethnic SMEs during Covid-19. Besides, this study adopts a dynamic capabilities perspective that how firms' specific capabilities enable ethnic SMEs to exploit entrepreneurial opportunities during the Covid-19 pandemic. Finally, this research will help ethnic SMEs to develop vigorous resilience to address future external shocks and market uncertainties.Keywords: COVID-19 pandemic, ethnic minority SMEs, entrepreneurial resilience, dynamic capabilities, sustainability
Procedia PDF Downloads 1628132 Ecofriendly Approach for the Management of Red Cotton Bug Dysdercus koenigii by Botanicals
Authors: S: Kayesth, K. K. Gupta
Abstract:
The indiscriminate use of insecticides causes environmental contamination, adversely affects non-target organisms and develops resistance among insects and pests. There has always been felt a need for methods of control which can overcome these environmental and other ecological issues. The present study was designed to evaluate the effect of different plants volatiles on survival, longevity, growth, development and reproduction of Dysdercus koenigii. The hexane extract of three different plants (Catharanthus roseus, Ocimum sanctum and Lantana camara) was used. The fifth instars were exposed to hexane extract with concentrations of 10%, 5%, 2.5%, 1.25%, 0.1%, 0.5%, 0.25%, 0.13% and 0.06% while adults were treated with 10%, 5%, 2.5% and 1.25%. 1-ml of each of these concentrations was used to make a thin film in sterilized glass jars of 500 ml capacity. Fifteen newly emerged fifth instar nymphs and ten pairs of adult bugs were treated separately with the extracts for 24 hour exposure to the plant volatiles. The effect of these plant extract was observed and readings were recorded for 23 days. Survival and longevity of both fifth instars and adults were in correlation with the concentrations of the plant extracts. The extracts did not influence growth of fifth instars significantly but impaired their development significantly at higher concentrations. The treated nymphs at higher concentrations either could not moult or died and those which could moult moulted into supranumery instars, adultoids or adults with wing deformities. The supranumery insects retained the nymphal characters except increased body size and wing pads. The adultoids had wing deformities and non-functional reproductive organs. Adultoids exhibited courtship and mounting attempts but were not able to mate. At lower concentrations from 0.1 to 0.06% the fifth instars developed into adults with fewer deformities. At these concentrations, the fecundity and fertility of these adults were drastically reduced. On the contrary, the treated adults also had reduced fecundity and fertility compared to control. Among three plant extracts Ocimcum was most toxic for both fifth instars and adults in terms of survival and longevity. Catharanthus, Ocimum and Lantana appeared to have potential molecules which possessed insect juvenile hormone like activity. Potential application of these plant extracts in IPM was discussed.Keywords: Catharanthus, Ocimum, Lantana, Dysdercus koenigii
Procedia PDF Downloads 3018131 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 1758130 Makerspaces as Centers of Innovation: An Assessment of the Impact of Technology Incubation Centers in Nigeria
Authors: Bisi Olawoyin
Abstract:
The idea of knowledge sharing facilitated by the internet and complemented by a collaborative offline process in form of shared workshops called Makerspaces has become an attractive economic development agenda worldwide. Towards this end, Nigeria has established a number of Technology Incubation Centers (TICs) across the country with a view to using them as institutional mechanisms for commercializing Research and Development results; thus helping to promote venture creation and economic development. This study thus examines the impact of the nurturing by the TICs, on the performance of selected incubated enterprises that have grown into medium scale businesses in different sectors of the economy. The objective is to determine the extent to which the process of incubation has contributed to their growth in relation to similar businesses that developed outside the TICs. Six enterprises nurtured by TICs and six others outside, these were selected for the study. Data were collected in respect of the twelve enterprises covering their first five years of operation. Performances in terms of annual turnover, market share, and product range were analysed by scatter diagram plotted to show these variables against time and on comparative basis between TIC and non-TIC enterprises. Results showed an initial decline in performance for most of the incubatees in the first two years due to sluggish adjustment to withdrawal of subsidies enjoyed at the TICs. However, four of them were able to catch up with improved performance and surpass their non–TIC counterparts consistently from the third year. Analysis of year on year performance also showed average growth rate of 7% and 5 % respectively for TIC and non–TIC enterprises. The study, therefore, concludes that TICs have great role to play in nurturing new, innovative businesses but sees the need for government to address the provision of critical facilities especially electricity and utilities that constitute critical cost components for businesses. It must also address the issue of investment grants, loans including the development of technology/industrial parks that will serve to boost business survival.Keywords: entrepreneurship, incubation, innovation, makerspaces
Procedia PDF Downloads 2218129 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 1688128 An Ecofriendly Approach for the Management of Aedes aegypti L (Diptera: Culicidae) by Ocimum sanctum
Authors: Mohd Shazad, Kamal Kumar Gupta
Abstract:
Aedes aegypti (Diptera: Culicidae), commonly known as tiger mosquito is the vector of dengue fever, yellow fever, chikungunya and zika virus. In the absence of any effective vaccine against these diseases, control the mosquito population is the only promising mean to prevent the diseases. Currently used chemical insecticides cause environmental contamination, high mammalian toxicity and hazards to non-target organisms, insecticide resistance and vector resurgence. Present research work aimed to explore the potentials of phytochemicals present in the Ocimum sanctum in management of mosquito population. The leaves of Ocimum were extracted with ethanol by ‘cold extraction method’. 0-24h old fourth instar larvae of Aedes aegypti were treated with the extract of concentrations 50ppm, 100ppm, 200ppm and 400ppm for 24h. Survival, growth and development of the treated larvae were evaluated. The adults emerged from the treated larvae were used for the reproductive fitness studies. Our results indicate 77.2% mortality in the larvae exposed to 400 ppm. At lower doses, although there was no significant reduction in the survival after 24h however, it decreased during subsequent days of observations. In control experiments, no mortality was observed. It was also observed that the larvae survived after treatment showed severe growth and developmental abnormalities. There was significant increase in larval duration. In control, fourth instar moulted into pupa after 3 days while larvae treated with 400 ppm extract were moulted after 4.6 days. Larva-pupa intermediates and the pupa-adult intermediates were observed in many cases. The adults emerged from the treated larvae showed impaired mating and oviposition behaviour. The females exhibited longer preoviposition period, reduced oviposition rate and decreased egg output. GCMS analysis of the ethanol extract revealed presence of JH mimics and intermediates of JH biosynthetic pathway. Potentials of Ocimum sanctum in integrated vector management programme of Aedes aegypti were discussed.Keywords: Aedes aegypti, Ocimum sanctum, oviposition, survival
Procedia PDF Downloads 1838127 An In-Depth Definition of the 24 Levels of Consciousness and Its Relationship to Buddhism and Artificial Intelligence
Authors: James V. Luisi
Abstract:
Understanding consciousness requires a synthesis of ideas from multiple disciplines, including obvious ones like psychology, biology, evolution, neurology, and neuroscience, as well as less obvious ones like protozoology, botany, entomology, carcinology, herpetology, mammalogy, and computer sciences. Furthermore, to incorporate the necessary backdrop, it is best presented in a theme of Eastern philosophy, specifically leveraging the teachings of Buddhism for its relevance to early thought on consciousness. These ideas are presented as a multi-level framework that illustrates the various aspects of consciousness within a tapestry of foundational and dependent building blocks as to how living organisms evolved to understand elements of their reality sufficiently to survive, and in the case of Homo sapiens, eventually move beyond meeting the basic needs of survival, but to also achieve survival of the species beyond the eventual fate of our planet. This is not a complete system of thought, but just a framework of consciousness gathering some of the key elements regarding the evolution of consciousness and the advent of free will, and presenting them in a unique way that encourages readers to continue the dialog and thought process as an experience to enjoy long after reading the last page. Readers are encouraged to think for themselves about the issues raised herein and to question every facet presented, as much further exploration is needed. Needless to say, this subject will remain a rapidly evolving one for quite some time to come, and it is probably in the interests of everyone to at least consider attaining both an ability and willingness to participate in the dialog.Keywords: consciousness, sentience, intelligence, artificial intelligence, Buddhism
Procedia PDF Downloads 1088126 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 848125 Bridging the Gap between Different Interfaces for Business Process Modeling
Authors: Katalina Grigorova, Kaloyan Mironov
Abstract:
The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.Keywords: business process modeling, business process modeling standards, workflow patterns, converting models
Procedia PDF Downloads 5868124 Hybrid Project Management Model Based on Lean and Agile Approach
Authors: Fatima-Zahra Eddoug, Jamal Benhra, Rajaa Benabbou
Abstract:
Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project.Keywords: agility, hybrid project management, lean, scrum
Procedia PDF Downloads 1388123 Decreased Tricarboxylic Acid (TCA) Cycle Staphylococcus aureus Increases Survival to Innate Immunity
Authors: Trenten Theis, Trevor Daubert, Kennedy Kluthe, Austin Nuxoll
Abstract:
Staphylococcus aureus is a gram-positive bacterium responsible for an estimated 23,000 deaths in the United States and 25,000 deaths in the European Union annually. Recurring S. aureus bacteremia is associated with biofilm-mediated infections and can occur in 5 - 20% of cases, even with the use of antibiotics. Despite these infections being caused by drug-susceptible pathogens, they are surprisingly difficult to eradicate. One potential explanation for this is the presence of persister cells—a dormant type of cell that shows a high tolerance to antibiotic treatment. Recent studies have shown a connection between low intracellular ATP and persister cell formation. Specifically, this decrease in ATP, and therefore increase in persister cell formation, is due to an interrupted tricarboxylic acid (TCA) cycle. However, S. aureus persister cells’ role in pathogenesis remains unclear. Initial studies have shown that a fumC (TCA cycle gene) knockout survives challenge from aspects of the innate immune system better than wild-type S. aureus. Specifically, challenges from two antimicrobial peptides--LL-37 and hBD-3—show a log increase in survival of the fumC::N∑ strain compared to wild type S. aureus after 18 hours. Furthermore, preliminary studies show that the fumC knockout has a log more survival within a macrophage. These data lead us to hypothesize that the fumC knockout is better suited to other aspects of the innate immune system compared to wild-type S. aureus. To further investigate the mechanism for increased survival of fumC::N∑ within a macrophage, we tested bacterial growth in the presence of reactive oxygen species (ROS), reactive nitrogen species (RNS), and a low pH. Preliminary results suggest that the fumC knockout has increased growth compared to wild-type S. aureus in the presence of all three antimicrobial factors; however, no difference was observed in any single factor alone. To investigate survival within a host, a nine-day biofilm-associated catheter infection was performed on 6–8-week-old male and female C57Bl/6 mice. Although both sexes struggled to clear the infection, female mice were trending toward more frequently clearing the HG003 wild-type infection compared to the fumC::N∑ infection. One possible reason for the inability to reduce the bacterial burden is that biofilms are largely composed of persister cells. To test this hypothesis further, flow cytometry in conjunction with a persister cell marker was used to measure persister cells within a biofilm. Cap5A (a known persister cell marker) expression was found to be increased in a maturing biofilm, with the lowest levels of expression seen in immature biofilms and the highest expression exhibited by the 48-hour biofilm. Additionally, bacterial cells in a biofilm state closely resemble persister cells and exhibit reduced membrane potential compared to cells in planktonic culture, further suggesting biofilms are largely made up of persister cells. These data may provide an explanation as to why infections caused by antibiotic-susceptible strains remain difficult to treat.Keywords: antibiotic tolerance, Staphylococcus aureus, host-pathogen interactions, microbial pathogenesis
Procedia PDF Downloads 1808122 Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate
Authors: Mi-Hye Hwang, Young Min Son, Kichan Lee, Bang-Hun Hyun, Byeong Yeal Jung
Abstract:
Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism.Keywords: botulism, livestock, vaccine, recombinant protein, toxin
Procedia PDF Downloads 2398121 Importance of Collegiality to Improve the Effectiveness of a Poorly Resourced School
Authors: Prakash Singh
Abstract:
This study focused on the importance of collegiality to improve the effectiveness of a poorly resourced school (PRS). In an effective school that embraces collegiality as its culture, one can expect to find a teaching staff and a management team that shares responsibilities and accountabilities through the development of a common purpose and vision, regardless of whether the school is considered to be poorly resourced or not. Working together in collegial teams is a more effective way to accomplish tasks and to create a climate for effective learning, even for learners in PRSs from poor communities. The main aim of this study was therefore to determine whether collegiality as a leadership strategy could extract the best from people in a PRS, and consequently create the most effective and efficient educational climate possible. The responses received from the teachers and the principal at the PRS supports the notion that collegiality does have a positive influence on learning, as demonstrated by the improved academic achievement of the learners. The teachers were now more involved in the school. They agreed that this was a positive development. Their descriptions of increased involvement, shared accountability and shared decision-making identified important aspects of collegiality that transformed the school from being dysfunctional. Hence, it is abundantly clear that a collegial leadership style can help extract the best from people because the most effective and efficient educational climate can be created at a school when collegiality is employed. Collegial leadership demonstrates that even in PRSs, there are boundless opportunities to improve teaching and learning.Keywords: collegiality, collegial leadership, effective educational climate, poorly resourced school
Procedia PDF Downloads 4038120 The Impact of Tax Policies on Small Business Growth in Developing Countries: A Case Study of Montserrado Mount County, Republic of Liberia
Authors: Lemuel David
Abstract:
This study aims to investigate The Impact of Tax Policies on Small Business Growth in Developing Countries: A Case Study of Montserrado Mount County, Republic of Liberia. Businesses in Liberia are crucial for job creation and the economic empowerment of its citizens, especially in Grand Cape Mount County where they provide 95% of all jobs and support local capital formation. However, many businesses face challenges that lead to premature closure, including tax-related issues such as multiple taxations and high tax burdens. This research aims to examine the effects of various taxation on business survival in Grand Cape Mount County. The study employed a survey research design with a population of 50 and a sample size of 74. Data was collected using a self-administered questionnaire and analyzed quantitatively with simple percentages, and the research hypotheses were tested with ANOVA. The study findings revealed that multiple taxations hurts business survival, and the relationship between business size and its ability to pay taxes is significant. Therefore, the study recommends that the government of Liberia should create uniform tax policies that support business development in Grand Cape Mount County, and consider the size of businesses when formulating tax policies.Keywords: multiple taxations, businesses, mortality, growth
Procedia PDF Downloads 748119 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements
Authors: Sabiu Bala Muhammad, Rosli Saad
Abstract:
Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity
Procedia PDF Downloads 2768118 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques
Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa
Abstract:
This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences
Procedia PDF Downloads 3478117 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 5408116 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 1268115 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 2748114 Biodegradable Poly D,L-Lactide-Co-Glycolic Acid Microparticle Vaccine against Aeromonas hydrophila Infection
Authors: Saekil Yun, Sib Sankar Giri, Jin Woo Jun, Hyoun Joong Kim, Sang Guen Kim, Sang Wha Kim, Jung Woo Kang, Se Jin Han, Se Chang Park
Abstract:
In aquaculture, vaccination is important to control and prevent diseases. In the study, we utilized poly D,L-lactide-co-glycolic acid (PLGA) microparticles (MPs) for encapsulating formalin-killed Aeromonas hydrophila cells. To assess the innate and adaptive immune responses, carps and loaches were used for the experiments. Fish were divided into three groups (A, B, C). Total antigen of 0.1 ml vaccine was adjusted by 2 x 108 CFU and injected via intraperitoneal route. Group A was vaccinated with 0.1 ml of PLGA vaccine, group B was with 0.1 ml of FKC vaccine and group C was with 0.1 ml of sterile PBS. All three groups were challenged with A. hydrophila and challenge dose was lethal dose (LD50). Loaches and carp were then challenged with A. hydrophila at 12 and 20 weeks post vaccination (wpv), and 10 and 14 wpv, respectively, and relative survival rates were calculated. For both fish species, the curve of antibody titer over time was shallower in the PLGA group than the FKC group and the PLGA groups demonstrated higher survival rates at all time-points. In the groups of PLGA-MP, relative mRNA levels of IL-1β, TNF-α, lysozyme C and IgM were significantly upregulated than FKC treated groups. Biodegradable PLGA microparticle vaccine could induce longer immune responses than original FKC vaccines to protect from A. hydrophila infection.Keywords: PLGA, microparticles, Aeromonas hydrophila, vaccine
Procedia PDF Downloads 2728113 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 1688112 Effect of Different Media and Planting Time on the Cuttings of Cherry (Prunus Avium L.) Rootstock Colt Under the Agro Climatic Conditions of Temprate Region
Authors: Sajjad Ali Khan Sajjad Ali Khan, Gohar Ayub, Khalil Ur Rahman, Muhammad Sajid, Mumtaz Farooq, Mohammad Irshad, Haider Ali
Abstract:
A trail was carried out to know the effect of different soil media and planting time on the cuttings of cherry (Prunus avium L.) rootstock Colt at Agriculture Research Institute (ARI) Mingora swat, during winter 2011. The experiment was laid out in Randomized Complete Block Design (RCBD) with split plot arrangement and was replicated three times. Soil media (Silt, Garden soil and Silt+Garden soil+FYM) were assigned to main plots whereas, planting Dates (1st Jan, 11th Jan, 21st Jan, 1st Feb, 11th Feb, 21st Feb and 2nd March) subjected to sub plots. The data recorded on sprouting percentage, shoot diameter cutting-1, number of leaves cutting-1, rootstock height (cm), survival percentage, number of roots, root length (cm), root volume (cm3) and root weight (gm) were significantly affected by different soil media. Maximum sprouting percentage (100%), shoot diameter (1.72 mm), number of leaves cutting-1 (76.74), rootstock height (104.36 cm), survival percentage (41.67%), number of roots (76.35), root length (11.28 cm), root volume (4.43 cm3) and root weight (4.64 gm) were recorded in media M3 (Garden soil+silt+FYM). A significant response to various planting dates were observed for most of vegetative and rooting attributes of cherry rootstock Colt. 1st January plantation showed maximum sprouting percentage (100%), shoot diameter (1.99 mm), number of leaves (81.46), rootstock height (126.24 cm), survival percentage (58.12%), whereas 11th January plantation showed more number of roots (94.43), root length (10.60 cm), root volume (3.68 cm3) and root weight (3.71 gm). Based on the results from the experimental work, it is recommended that cherry cuttings should be planted in early January in soil media (Silt+Garden soil+ FYM) for better growth and development under the agro climatic conditions of temperate region.Keywords: soil media, cherry rootstock, planting dates, growth parameters
Procedia PDF Downloads 988111 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 4838110 Sublethal Effects of Clothianidin and Summer Oil on the Demographic Parameters and Population Projection of Bravicoryne Brassicae(Hemiptera: Aphididae)
Authors: Mehdi Piri Ouchtapeh, Fariba Mehrkhou, Maryam Fourouzan
Abstract:
The cabbage aphid, Bravicoryne brassicae (Hemiptera: Aphididae), is known as an economically important and oligophagous pest of different cole crops. The polyvolitine characteristics of B. brassicae resulted in resistance to insecticides. For this purpose, in this study, the sub-lethal concentration (LC25) of two insecticides, clothianidin and summer oil, on the life table parameters and population projection of cabbage aphid were studied at controlled condition (20±1 ℃, R.H. 60 ±5 % and a photoperiod of 16:8 h (L:D). The dipping method was used in bioassay and life table studies. Briefly, the leaves of cabbage containing 15 the same-aged (24h) adults of cabbage aphid (four replicates) were dipped into the related concentrations of insecticides for 10 s. The sub-lethal (LC25) obtained concentration were used 5.822 and 108.741 p.p.m for clothianidin and summer oil, respectively. The biological and life table studies were done using at least 100, 93 and 82 the same age of eggs for control, summer oil and clothianidin treatments respectively. The life history data of the greenhouse whitefly cohorts exposed to sublethal concentration of the aforementioned insecticides were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results of this study showed that the used insecticides affected the developmental time, survival rate, adult longevity, and fecundity of the F1 generation. The developmental time on control, clothianidin and summer oil treatments was obtained (5.91 ± 0.10 days), (7.64 ± 0.12 days) and (6.66 ± 0.10 days), respectively. The sublethal concentration of clothianidin resulted in decreasing of adult longevity (8.63 ± 0.30 days), fecundity (14.14 ± 87 nymphs), survival rate (71%) and the life expectancy (10.26 days) of B. brassicae, as well. Additionally, usage of LC25 insecticides led to decreasing of the net reproductive rate (R0) of the cabbage aphid compared to summer oil and control treatments. The intrinsic rate of increase (r) (day-1) was decreased in F1 adults of cabbage aphid compared with other treatments. Additionally, the population projection results were accordance with the population growth rate of cabbage aphid. Therefore, the findings of this research showed that, however, both of the insecticides were effective on cabbage aphid population, but clothianidin was more effective and could be consider in the management of aforementioned pest.Keywords: the cabbage aphid, sublethal effects, survival rate, population projection, life expectancy
Procedia PDF Downloads 798109 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 1698108 Death Anxiety and Life Expectancy among Older Adults in Iran
Authors: Vahid Rashedi, Banafsheh Ebrahimi, Mahtab Sharif Mohseni, Mohammadali Hosseini
Abstract:
Introduction: One of the metrics used to evaluate health status is life expectancy. This index alters as people age as a result of several events, illnesses, stress, and anxiety. One of the issues that might develop into a lethal phobia is death anxiety. This study looked at older persons in Tehran, Iran, to see if there was any correlation between life expectancy and fear of dying. Methods: Cluster random sampling was used to select 208 older persons (age 60) who had been sent to adult daycare facilities in Tehran for this correlational descriptive study. A demographic questionnaire, Temper's death anxiety scale, and Snyder's life expectancy scale were used to gather the data. Statistical Package for the Social Sciences softwear version 22 was used to conduct the data analysis. Results: The average age of the senior citizens was 66.60 (6.58) years. With a mean life expectancy of 24.94, it was discovered that the average death anxiety was 12.21. Additionally, Pearson's correlation coefficient demonstrated a bad correlation between fear of dying and life expectancy. Age, residential status, and death fear were the three primary predictors of a decline in life expectancy, according to multiple regression analysis. Conclusion: The findings suggest that there is a link between death fear and a lower life expectancy, which calls for the use of appropriate strategies to increase older individuals' life expectancies as well as the teaching of anxiety coping mechanisms.Keywords: aged, frailty, death, anxiety, life
Procedia PDF Downloads 85