Search results for: quality of learning
15572 Organizational Learning Strategies for Building Organizational Resilience
Authors: Stephanie K. Douglas, Gordon R. Haley
Abstract:
Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.Keywords: human resource development, human resource management, organizational learning, organizational resilience
Procedia PDF Downloads 13815571 US Airlines Performance and Its Connection with Service Quality
Authors: Nicole Kalemba, Fernando Campa-Planas, Ana-Beatriz Hernández-Lara, Maria Victória Sánchez-Rebull
Abstract:
The purpose of this paper is to determine the effects of service quality on US airlines’ economic performance. In order to cover this goal, it has been considered four different indexes of service quality in the air transportation industry, and also two indicators of economic performance, revenues and return on investment (ROI). Data from American airline companies over a period that covers from 2006 to 2013 have been used in order to determine if airlines’ profitability increases when service quality improves. Considering the effects on airlines’ profitability, the results confirm the positive and significant influence of service quality on the ROI of the companies in our study. Meanwhile, a non-significant effect was found for airline revenues related to quality. No previous research in this area has been done and these findings could encourage airline companies to invest in quality as far as this policy can have a return on their profitability.Keywords: airlines, economic performance, key performance indicators, quality
Procedia PDF Downloads 47415570 Enhancing Pedagogical Practices in Online Arabic Language Instruction: Challenges, Opportunities, and Strategies
Authors: Salah Algabli
Abstract:
As online learning takes center stage; Arabic language instructors face the imperative to adapt their practices for the digital realm. This study investigates the experiences of online Arabic instructors to unveil the pedagogical opportunities and challenges this format presents. Utilizing a transcendental phenomenological approach with 15 diverse participants, the research shines a light on the unique realities of online language teaching at the university level, specifically in the United States. The study proposes theoretical and practical solutions to maximize the benefits of online language learning while mitigating its challenges. Recommendations cater to instructors, researchers, and program coordinators, paving the way for enhancing the quality of online Arabic language education. The findings highlight the need for pedagogical approaches tailored to the online environment, ultimately shaping a future where both instructors and learners thrive in this digital landscape.Keywords: online Arabic language learning, pedagogical opportunities and challenges, online Arabic teachers, online language instruction, digital pedagogy
Procedia PDF Downloads 6215569 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning
Authors: Angelina A. Tzacheva, Jaishree Ranganathan
Abstract:
Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.Keywords: actionable pattern discovery, education, emotion, data mining
Procedia PDF Downloads 9915568 Game On: Unlocking the Educational Potential of Games and Entertainment in Online Learning
Authors: Colleen Cleveland, W. Adam Baldowski
Abstract:
In the dynamic realm of online education, the integration of games and entertainment has emerged as a powerful strategy to captivate learners, drive active participation, and cultivate meaningful learning experiences. This abstract presents an overview of the upcoming conference, "Game On," dedicated to exploring the transformative impact of gamification, interactive simulations, and multimedia content in the digital learning landscape. Introduction: The conference aims to blur the traditional boundaries between education and entertainment, inspiring learners of diverse ages and backgrounds to actively engage in their online learning journeys. By leveraging the captivating elements of games and entertainment, educators can enhance motivation, retention, and deep understanding among virtual classroom participants. Conference Highlights: Commencing with an exploration of theoretical foundations drawing from educational psychology, instructional design, and the latest pedagogical research, participants will gain valuable insights into the ways gamified elements elevate the quality of online education. Attendees can expect interactive sessions, workshops, and case studies showcasing best practices and innovative strategies, including game-based assessments and virtual reality simulations. Inclusivity and Diversity: The conference places a strong emphasis on inclusivity, accessibility, and diversity in the integration of games and entertainment for educational purposes. Discussions will revolve around accommodating diverse learning styles, overcoming potential challenges, and ensuring equitable access to engaging educational content for all learners. Educational Transformation: Educators, instructional designers, and e-learning professionals attending "Game On" will acquire practical techniques to elevate the quality of their online courses. The conference promises a stimulating and informative exploration of blending education with entertainment, unlocking the untapped potential of games and entertainment in online education. Conclusion: "Game On" invites participants to embark on a journey that transforms online education by harnessing the power of entertainment. This event promises to be a cornerstone in the evolution of virtual learning, offering valuable insights for those seeking to create a more engaging and effective online educational experience. Join us as we explore new horizons, pushing the boundaries of online education through the fusion of games and entertainment.Keywords: online education, games, entertainment, psychology, therapy, pop culture
Procedia PDF Downloads 5515567 A Schema of Building an Efficient Quality Gate throughout the Software Development with Tools
Authors: Le Chen
Abstract:
This paper presents an efficient tool platform scheme to ensure quality protection throughout the software development process. The main principle is to manage the information of requirements, design, development, testing, operation and maintenance process with proper tools, and to set up the quality standards of each process. Through the tools’ display and summary of quality standards, the quality standards can be visualizad and ready for policy decision, which is called Quality Gate in this paper. In addition, the tools are also integrated to achieve the exchange and relation of information which highly improving operational efficiency. In this paper, the feasibility of the scheme is verified by practical application of development projects, and the overall information display and data mining are proposed to be further improved.Keywords: efficiency, quality gate, software process, tools
Procedia PDF Downloads 35915566 The Moderation Effect of Critical Item on the Strategic Purchasing: Quality Performance Relationship
Authors: Kwong Yeung
Abstract:
Theories about strategic purchasing and quality performance are underdeveloped. Understanding the evolving role of purchasing from reactive to proactive is a pressing strategic issue. Using survey responses from 176 manufacturing and electronics industry professionals, we study the relationships between strategic purchasing and supply chain partners’ quality performance to answer the following questions: Can transaction cost economics be used to elucidate the strategic purchasing-quality performance relationship? Is this strategic purchasing-quality performance relationship moderated by critical item analysis? The findings indicate that critical item analysis positively and significantly moderates the strategic purchasing-quality performance relationship.Keywords: critical item analysis, moderation, quality performance, strategic purchasing, transaction cost economics
Procedia PDF Downloads 56415565 The Impact of Artificial Intelligence on Qualty Conrol and Quality
Authors: Mary Moner Botros Fanawel
Abstract:
Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 6315564 The Determinants of Senior Students, Behavioral Intention on the Blended E-Learning for the Ceramics Teaching Course at the Active Aging University
Authors: Horng-Jyh Chen, Yi-Fang Chen, Chien-Liang Lin
Abstract:
In this paper, the authors try to investigate the determinants of behavioral intention of the blended e-learning course for senior students at the Active Ageing University in Taiwan. Due to lower proficiency in the use of computers and less experience on learning styles of the blended e-learning course for senior students will be expected quite different from those for most young students. After more than five weeks course for two years the questionnaire survey is executed to collect data for statistical analysis in order to understand the determinants of the behavioral intention for senior students. The object of this study is at one of the Active Ageing University in Taiwan total of 84 senior students in the blended e-learning for the ceramics teaching course. The research results show that only the perceived usefulness of the blended e-learning course has significant positive relationship with the behavioral intention.Keywords: Active Aging University, blended e-learning, ceramics teaching course, behavioral intention
Procedia PDF Downloads 41015563 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework
Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love
Abstract:
With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati.’ Several studies have used the Decomposed Theory of Planned Behaviour (DTPB)to examineindividuals’ intention behavior in many fields. However, there is a lack of studies investigating the determinants of teachers’ continued intention touseMadrasati platform. The purpose of this paper is to present a conceptual model in light of DTPB. To enhance the predictability of the model, the study incorporates other variables, including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioral control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.Keywords: madrasati, decomposed theory of planned behaviour, continuance intention, attitude, subjective norms, perceived behavioural control
Procedia PDF Downloads 10615562 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 13415561 Immersive Learning in University Classrooms
Authors: Raminder Kaur
Abstract:
This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.Keywords: virtual reality, anthropology, immersive learning, university
Procedia PDF Downloads 8315560 Transformative Pedagogy and Online Adult Education
Authors: Glenn A. Palmer, Lorenzo Bowman, Juanita Johnson-Bailey
Abstract:
The ubiquitous economic upheaval that has gripped the global environment in the past few years displaced many workers through unemployment or underemployment. Globally, this disruption has caused many adult workers to seek additional education or skills to remain competitive, and acquire the ability and options to find gainful employment. While many learners have availed themselves of some opportunities to be retrained and retooled at locations within their communities, others have explored those options through the online learning environment. This paper examines the empirical research that explores the various strategies that are used in the adult online learning community that could also foster transformative learning.Keywords: online learning, transformational learning, adult education, economic crisis, unemployment
Procedia PDF Downloads 46515559 An Investigation of Surface Water Quality in an Industrial Area Using Integrated Approaches
Authors: Priti Saha, Biswajit Paul
Abstract:
Rapid urbanization and industrialization has increased the pollution load in surface water bodies. However, these water bodies are major source of water for drinking, irrigation, industrial activities and fishery. Therefore, water quality assessment is paramount importance to evaluate its suitability for all these purposes. This study focus to evaluate the surface water quality of an industrial city in eastern India through integrating interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking, irrigation as well as fishery of forty-eight sampling locations, where 8.33% have excellent water quality (WQI:0-25) for fishery and 10.42%, 20.83% and 45.83% have good quality (WQI:25-50), which represents its suitability for drinking irrigation and fishery respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 6.25% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). Integration of these statistical analysis with geographical information system (GIS) helps in spatial assessment. It identifies of the regions where the water quality is suitable for its use in drinking, irrigation, fishery as well as industrial activities. This research demonstrates the effectiveness of statistical and GIS techniques for water quality assessment.Keywords: surface water, water quality assessment, water quality index, spatial assessment
Procedia PDF Downloads 18215558 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches
Authors: Chaima Babi, Said Gadri
Abstract:
The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification
Procedia PDF Downloads 9615557 Using Short Learning Programmes to Develop Students’ Digital Literacies in Art and Design Education
Authors: B.J. Khoza, B. Kembo
Abstract:
Global socioeconomic developments and ever-growing technological advancements of the art and design industry indicate the pivotal importance of lifelong learning. There exists a discrepancy between competencies, personal ambition, and workplace requirements. There are few , if at all, institutions of higher learning in South Africa which offer Short Learning Programmes (SLP) in Art and Design Education. Traditionally, Art and Design education is delivered face to face via a hands-on approach. In this way the enduring perception among educators is that art and design education does not lend itself to online delivery. Short Learning programmes (SLP) are a concentrated approach to make revenue and lure potential prospective students to embark on further education study, this is often of weighted value to both students and employers. SLPs are used by Higher Education institutions to generate income in support of the core academic programmes. However, there is a gap in terms of the translation of art and design studio pedagogy into SLPs which provide quality education, are adaptable and delivered via a blended mode. In our paper, we propose a conceptual framework drawing on secondary research to analyse existing research to SLPs for arts and design education. We aim to indicate a new dimension to the process of using a design-based research approach for short learning programmes in art and design education. The study draws on a conceptual framework, a qualitative analysis through the lenses of Herrington, McKenney, Reeves and Oliver (2005) principles of the design-based research approach. The results of this study indicate that design-based research is not only an effective methodological approach for developing and deploying arts and design education curriculum for 1st years in Higher Education context but it also has the potential to guide future research. The findings of this study propose that the design-based research approach could bring theory and praxis together regarding a common purpose to design context-based solutions to educational problems.Keywords: design education, design-based research, digital literacies, multi-literacies, short learning programme
Procedia PDF Downloads 16515556 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 9715555 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 1715554 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact
Authors: Tom O'Mahony
Abstract:
This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.Keywords: deep approaches, formative assessment, project-based learning, student-centered learning
Procedia PDF Downloads 11215553 The Development of the Website Learning the Local Wisdom in Phra Nakhon Si Ayutthaya Province
Authors: Bunthida Chunngam, Thanyanan Worasesthaphong
Abstract:
This research had objective to develop of the website learning the local wisdom in Phra Nakhon Si Ayutthaya province and studied satisfaction of system user. This research sample was multistage sample for 100 questionnaires, analyzed data to calculated reliability value with Cronbach’s alpha coefficient method α=0.82. This system had 3 functions which were system using, system feather evaluation and system accuracy evaluation which the statistics used for data analysis was descriptive statistics to explain sample feature so these statistics were frequency, percentage, mean and standard deviation. This data analysis result found that the system using performance quality had good level satisfaction (4.44 mean), system feather function analysis had good level satisfaction (4.11 mean) and system accuracy had good level satisfaction (3.74 mean).Keywords: website, learning, local wisdom, Phra Nakhon Si Ayutthaya province
Procedia PDF Downloads 12215552 Addressing Differentiation Using Mobile-Assisted Language Learning
Authors: Ajda Osifo, Fatma Elshafie
Abstract:
Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning
Procedia PDF Downloads 41915551 The Relationship between Spiritual Well-Being and the Quality of Life among Older Adults Who Live in Aged Institutions
Authors: Li-Fen Wu
Abstract:
Spiritual well-being is one aspect of quality of life that can significantly improve the quality of life of individuals. However, the reports of older adults’ spiritual well-being that live in aged institutions were few. This study aims to identify the relationship between spiritual well-being and quality of life among older adults residing in aged institutions in Taiwan. The correlative study design is used. Data collected by basic personal information, Spiritual Index of Well-being Scale and EuroQol-5D-3L. Case managers help participants complete the questionnaires. This study uses descriptive statistics and correlation test analysis data. The study finds the positive correlation between spiritual well-being and quality of life. According to the correlation between spiritual well-being and quality-of-life score, awareness of the importance of spiritual well-being in caring for these people is recommended.Keywords: older adult, spiritual well-being, quality of life, aged institution
Procedia PDF Downloads 26115550 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix
Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod
Abstract:
In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX
Procedia PDF Downloads 60715549 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 7815548 Survey Study of Key Motivations and Drivers for Students to Enroll in Online Programs of Study
Authors: Tina Stavredes
Abstract:
Increasingly borderless learning opportunities including online learning are expanding. Singapore University of Social Science (SUSS) conducted research in February of 2017 to determine the level of consumer interest in undertaking a completely online distance learning degree program across three countries in the Asian Pacific region. The target audience was potential bachelor degree and post-degree students from Malaysia, Indonesia, and Vietnam. The results gathered were used to assess the market size and ascertain the business potential of online degree programs in Malaysia, Indonesia and Vietnam. Secondly, the results were used to determine the most receptive markets to prioritise entry and identify the most receptive student segments. In order to achieve the key outcomes, the key points of understanding were as follows: -Motivations for higher education & factors that influence the choice of institution, -Interest in online learning, -Interest in online learning from a Singapore university relative to other foreign institutions, -Key drivers and barriers of interest in online learning. An online survey was conducted from from 7th Feb 2017 to 27th Feb 2017 amongst n=600 respondents aged 21yo-45yo, who have a basic command of English, A-level qualifications and above, and who have an intent to further their education in the next 12 months. Key findings from the study regarding enrolling in an online program include the need for a marriage between intrinsic and extrinsic motivation factors and the flexibility and support offered in an online program. Overall, there was a high interest for online learning. Survey participants stated they are intrinsically motivated to learn because of their interest in the program of study and the need for extrinsic rewards including opportunities for employment or salary increment in their current job. Seven out of ten survey participants reported they are motivated to further their education and expand their knowledge to become more employable. Eight in ten claims that the feasibility of furthering their education depends on cost and maintaining a work-life balance. The top 2 programs of interest are business and information and communication technology. They describe their choice of university as a marriage of both motivational and feasibility factors including cost, choice, quality of support facilities, and the reputation of the institution. Survey participants reported flexibility as important and stated that appropriate support assures and grows their intent to enrol in an online program. Respondents also reported the importance of being able to work while studying as the main perceived advantage of online learning. Factors related to the choice of an online university emphasized the quality of support services. Despite concerns, overall there was a high interest for online learning. One in two expressed strong intent to enrol in an online programme of study. However, unfamiliarity with online learning is a concern including the concern with the lack of face-to-face interactions. Overall, the findings demonstrated an interest in online learning. A main driver was the ability to earn a recognised degree while still being able to be with the family and the ability to achieve a ‘better’ early career growth.Keywords: distance education, student motivations, online learning, online student needs
Procedia PDF Downloads 12415547 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education
Authors: Joseph Osodo, Motsa Thobekani Phila
Abstract:
The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.Keywords: e-learning, performance, COVID-19, history, connectivism
Procedia PDF Downloads 7715546 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, social networking, education, Malaysia
Procedia PDF Downloads 42715545 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 24515544 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 18215543 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable
Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack
Abstract:
In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32
Procedia PDF Downloads 128