Search results for: hybrid project-based learning
8187 Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems
Authors: Ameni Mejri, Moufida Hajjaj, Salem Hasnaoui, Ridha Bouallegue
Abstract:
The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure.Keywords: alternating minimization, hybrid precoding, iterative hard thresholding, low-complexity, millimeter wave communication, partially-connected structure
Procedia PDF Downloads 3218186 A Comparative Study of Mechanisms across Different Online Social Learning Types
Authors: Xinyu Wang
Abstract:
In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration
Procedia PDF Downloads 468185 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight
Procedia PDF Downloads 1498184 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka
Authors: Selvavinayagan Babiharan
Abstract:
This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.Keywords: information technology, education, machine learning, mathematics
Procedia PDF Downloads 838183 Reactive Learning about Food Waste Reduction in a Food Processing Plant in Gauteng Province, South Africa
Authors: Nesengani Elelwani Clinton
Abstract:
This paper presents reflective learning as an opportunity commonly available and used for food waste learning in a food processing company in the transition to sustainable and just food systems. In addressing how employees learn about food waste during food processing, the opportunities available for food waste learning were investigated. Reflective learning appeared to be the most used approach to learning about food waste. In the case of food waste learning, reflective learning was a response after employees wasted a substantial amount of food, where process controllers and team leaders would highlight the issue to employees who wasted food and explain how food waste could be reduced. This showed that learning about food waste is not proactive, and there continues to be a lack of structured learning around food waste. Several challenges were highlighted around reflective learning about food waste. Some of the challenges included understanding the language, lack of interest from employees, set times to reach production targets, and working pressures. These challenges were reported to be hindering factors in understanding food waste learning, which is not structured. A need was identified for proactive learning through structured methods. This is because it was discovered that in the plant, where food processing activities happen, the signage and posters that are there are directly related to other sustainability issues such as food safety and health. This indicated that there are low levels of awareness about food waste. Therefore, this paper argues that food waste learning should be proactive. The proactive learning approach should include structured learning materials around food waste during food processing. In the structuring of the learning materials, individual trainers should be multilingual. This will make it possible for those who do not understand English to understand in their own language. And lastly, there should be signage and posters in the food processing plant around food waste. This will bring more awareness around food waste, and employees' behaviour can be influenced by the posters and signage in the food processing plant. Thus, will enable a transition to a just and sustainable food system.Keywords: sustainable and just food systems, food waste, food waste learning, reflective learning approach
Procedia PDF Downloads 1298182 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 3818181 A Qualitative Student-Perspective Study of Student-Centered Learning Practices in the Context of Irish Teacher Education
Authors: Pauline Logue
Abstract:
In recent decades, the Irish Department of Education and Skills has pro-actively promoted student-center learning methodologies. Similarly, the National Forum for the Enhancement of Teaching and Learning has advocated such strategies, aligning them with student success. These developments have informed the author’s professional practice as a teacher educator. This qualitative student-perspective study focuses on a review of one pilot initiative in the academic year 2020-2021, namely, the implementation of universal design for learning strategies within teacher education, employing student-centered learning strategies. Findings included: that student-centered strategies enhanced student performance and success overall, with some minor evidence of student resistance. It was concluded that a dialogical review with student teachers on prior learning experiences (from intellectual and affective perspectives) and learning environments (physical, virtual, and emotional) could facilitate greater student ownership of learning. It is recommended to more formally structure such a dialogical review in a future delivery.Keywords: professional practice, student-centered learning, teacher education, universal design for learning
Procedia PDF Downloads 1958180 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction
Authors: Samah Laalej, Abdelfattah Bouatem
Abstract:
In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach
Procedia PDF Downloads 648179 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 3228178 Recognising and Managing Haematoma Following Thyroid Surgery: Simulation Teaching is Effective
Authors: Emily Moore, Dora Amos, Tracy Ellimah, Natasha Parrott
Abstract:
Postoperative haematoma is a well-recognised complication of thyroid surgery with an incidence of 1-5%. Haematoma formation causes progressive airway obstruction, necessitating emergency bedside haematoma evacuation in up to ¼ of patients. ENT UK, BAETS and DAS have developed consensus guidelines to improve perioperative care, recommending that all healthcare staff interacting with patients undergoing thyroid surgery should be trained in managing post-thyroidectomy haematoma. The aim was to assess the effectiveness of a hybrid simulation model in improving clinician’s confidence in dealing with this surgical emergency. A hybrid simulation was designed, consisting of a standardised patient wearing a part-task trainer to mimic a post-thyroidectomy haematoma in a real patient. The part-task trainer was an adapted C-spine collar with layers of silicone representing the skin and strap muscles and thickened jelly representing the haematoma. Both the skin and strap muscle layers had to be opened in order to evacuate the haematoma. Boxes have been implemented into the appropriate post operative areas (recovery and surgical wards), which contain a printed algorithm designed to assist in remembering a sequence of steps for haematoma evacuation using the ‘SCOOP’ method (skin exposure, cut sutures, open skin, open muscles, pack wound) along with all the necessary equipment to open the front of the neck. Small-group teaching sessions were delivered by ENT and anaesthetic trainees to members of the multidisciplinary team normally involved in perioperative patient care, which included ENT surgeons, anaesthetists, recovery nurses, HCAs and ODPs. The DESATS acronym of signs and symptoms to recognise (difficulty swallowing, EWS score, swelling, anxiety, tachycardia, stridor) was highlighted. Then participants took part in the hybrid simulation in order to practice this ‘SCOOP’ method of haematoma evacuation. Participants were surveyed using a Likert scale to assess their level of confidence pre- and post teaching session. 30 clinicians took part. Confidence (agreed/strongly agreed) in recognition of post thyroidectomy haematoma improved from 58.6% to 96.5%. Confidence in management improved from 27.5% to 89.7%. All participants successfully decompressed the haematoma. All participants agreed/strongly agreed, that the sessions were useful for their learning. Multidisciplinary team simulation teaching is effective at significantly improving confidence in both the recognition and management of postoperative haematoma. Hybrid simulation sessions are useful and should be incorporated into training for clinicians.Keywords: thyroid surgery, haematoma, teaching, hybrid simulation
Procedia PDF Downloads 968177 An Experimental Investigation of the Variation of Evaporator Efficiency According to Load Amount and Textile Type in Hybrid Heat Pump Dryers
Authors: Gokhan Sir, Muhammed Ergun, Onder Balioglu
Abstract:
Nowadays, laundry dryers containing heaters and heat pumps are used to provide fast and efficient drying. In this system, as the drying capacity changes, the sensible and latent heat transfer rate in the evaporator changes. Therefore, the drying time measured for the unit capacity increases as the drying capacity decreases. The objective of this study is to investigate the evaporator efficiency according to load amount and textile type in hybrid heat pump dryers. Air side flow rate and system temperatures (air side and refrigeration side) were monitored instantly, and the specific moisture extraction rate (SMER), evaporator efficiency, and heat transfer mechanism between the textile and hybrid heat pump system were examined. Evaporator efficiency of heat pump dryers for cotton and synthetic based textile types in load amounts of 2, 5, 8 and 10 kg were investigated experimentally. As a result, the maximum evaporator efficiency (%72) was obtained in drying cotton and synthetic based textiles with a capacity of 5 kg; the minimum evaporator efficiency (%40) was obtained in drying cotton and synthetic based textiles with a capacity of 2 kg. The experimental study also reveals that capacity-dependent flow rate changes are the major factor for evaporator efficiency.Keywords: evaporator, heat pump, hybrid, laundry dryer, textile
Procedia PDF Downloads 1398176 A Case Study of Meaningful Learning in Play for Young Children
Authors: Baoliang Xu
Abstract:
The future of education should focus on creating meaningful learning for learners. Play is a basic form and an important means of carrying out kindergarten educational activities, which promotes the creation and development of meaningful learning and is of great importance in the harmonious physical and mental development of young children. Through literature research and case studies, this paper finds that: meaningful learning has the characteristics of contextuality, interaction and constructiveness; teachers should pay great attention to the guidance of children's games, fully respect children's autonomy and create a prepared game environment; children's meaningful learning exists in games and hidden in things that interest them, and "the generation of questions The "generation of questions" fuels the depth of children's meaningful learning, and teachers' professional support helps children's meaningful learning to develop continuously. In short, teachers' guidance of young children's play should be emphasized to effectively provide scaffolding instruction to promote meaningful learning in a holistic manner.Keywords: meaningful learning, young childhood, game, case study
Procedia PDF Downloads 718175 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton
Authors: Alison Power
Abstract:
Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork
Procedia PDF Downloads 1268174 AI-Powered Conversation Tools - Chatbots: Opportunities and Challenges That Present to Academics within Higher Education
Authors: Jinming Du
Abstract:
With the COVID-19 pandemic beginning in 2020, many higher education institutions and education systems are turning to hybrid or fully distance online courses to maintain social distance and provide a safe virtual space for learning and teaching. However, the majority of faculty members were not well prepared for the shift to blended or distance learning. Communication frustrations are prevalent in both hybrid and full-distance courses. A systematic literature review was conducted by a comprehensive analysis of 1688 publications that focused on the application of the adoption of chatbots in education. This study aimed to explore instructors' experiences with chatbots in online and blended undergraduate English courses. Language learners are overwhelmed by the variety of information offered by many online sites. The recently emerged chatbots (e.g.: ChatGPT) are slightly superior in performance as compared to those traditional through previous technologies such as tapes, video recorders, and websites. The field of chatbots has been intensively researched, and new methods have been developed to demonstrate how students can best learn and practice a new language in the target language. However, it is believed that among the many areas where chatbots are applied, while chatbots have been used as effective tools for communicating with business customers, in consulting and targeting areas, and in the medical field, chatbots have not yet been fully explored and implemented in the field of language education. This issue is challenging enough for language teachers; they need to study and conduct research carefully to clarify it. Pedagogical chatbots may alleviate the perception of a lack of communication and feedback from instructors by interacting naturally with students through scaffolding the understanding of those learners, much like educators do. However, educators and instructors lack the proficiency to effectively operate this emerging AI chatbot technology and require comprehensive study or structured training to attain competence. There is a gap between language teachers’ perceptions and recent advances in the application of AI chatbots to language learning. The results of the study found that although the teachers felt that the chatbots did the best job of giving feedback, the teachers needed additional training to be able to give better instructions and to help them assist in teaching. Teachers generally perceive the utilization of chatbots to offer substantial assistance to English language instruction.Keywords: artificial intelligence in education, chatbots, education and technology, education system, pedagogical chatbot, chatbots and language education
Procedia PDF Downloads 668173 Hybrid Method Development for the Removal of Crystal Violet Dye from Aqueous Medium
Authors: D. Nareshyadav, K. Anand Kishore, D. Bhagawan
Abstract:
Water scarcity is the much-identified issue all over the world. The available sources of water need to be reused to sustainable future. The present work explores the treatment of dye wastewater using combinative photocatalysis and ceramic nanofiltration membrane. Commercial ceramic membrane and TiO₂ catalyst were used in this study to investigate the removal of crystal violet dye from the aqueous solution. The effect of operating parameters such as inlet pressure, initial concentration of crystal violet dye, catalyst (TiO₂) loading, initial pH was investigated in the individual system as well as the combined system. In this study, 95 % of dye water was decolorized and 89 % of total organic carbon (TOC) was removed by the hybrid system for 500 ppm of dye and 0.75 g/l of TiO₂ concentrations at pH 9. The operation of the integrated photocatalytic reactor and ceramic membrane filtration has shown the maximum removal of crystal violet dye compared to individual systems. Hence this proposed method may be effective for the removal of Crystal violet dye from effluents.Keywords: advanced oxidation process, ceramic nanoporous membrane, dye degradation/removal, hybrid system, photocatalysis
Procedia PDF Downloads 1768172 Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression
Authors: Ercan Karadogan, Fatih Usta
Abstract:
Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures.Keywords: auxetic materials, compressive behavior, metamaterials, negative Poisson’s ratio
Procedia PDF Downloads 978171 Disparity of Learning Styles and Cognitive Abilities in Vocational Education
Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong
Abstract:
This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences
Procedia PDF Downloads 4028170 E–Learning System in Virtual Learning Environment to Develop Problem Solving Ability and Team Learning for Learners in Higher Education
Authors: Noawanit Songkram
Abstract:
This paper is a report on the findings of a study conducted on e–learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education. The methodology of this study was R&D research. The subjects were 18 undergraduate students in Faculty of Education, Chulalongkorn University in the academic year of 2013. The research instruments were a problem solving ability assessment, a team learning evaluation form, and an attitude questionnaire. The data was statistically analyzed using mean, standard deviation, one way repeated measure ANOVA and t–test. The research findings discovered the e –learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education consisted of five components:(1) online collaborative tools, (2) active learning activities, (3) creative thinking, (4) knowledge sharing process, (5) evaluation and nine processes which were (1) preparing in group working, (2) identifying interested topic, (3) analysing interested topic, (4) collecting data, (5) concluding idea (6) proposing idea, (7) creating workings, (8) workings evaluation, (9) sharing knowledge from empirical experience.Keywords: e-learning system, problem solving ability, team leaning, virtual learning environment
Procedia PDF Downloads 4388169 E-Learning Approaches Based on Artificial Intelligence Techniques: A Survey
Authors: Nabila Daly, Hamdi Ellouzi, Hela Ltifi
Abstract:
In last year’s, several recent researches’ that focus on e-learning approaches having as goal to improve pedagogy and student’s academy level assessment. E-learning-related works have become an important research file nowadays due to several problems that make it impossible for students join classrooms, especially in last year’s. Among those problems, we note the current epidemic problems in the word case of Covid-19. For those reasons, several e-learning-related works based on Artificial Intelligence techniques are proposed to improve distant education targets. In the current paper, we will present a short survey of the most relevant e-learning based on Artificial Intelligence techniques giving birth to newly developed e-learning tools that rely on new technologies.Keywords: artificial intelligence techniques, decision, e-learning, support system, survey
Procedia PDF Downloads 2248168 The Link Between Knowledge Management, Organizational Learning and Collective Competence
Authors: Amira Khelil, Habib Affes
Abstract:
The XXIst century is characterized by promoting teamwork as one of the main drivers of firms` performance. Collective competence is becoming crucial in developing and maintaining a firm’s competitive advantage, as well as its contributions to organizational innovation. In other words, the improvement of collective competence for a firm is no longer a choice, but rather an obligation. Learning capabilities of a firm in the context of knowledge management are assumed to be the main drivers of collective competence. Although there are some efforts to consider these concepts together; they are mostly discussed separately in the management theory. Thus, this paper aims to offer a holistic approach for development collective competence on the basis of Knowledge Management and Organizational Learning Capabilities. A theoretical model that defines a relationship between knowledge management, organizational learning and collective competence is presented at the end of this paper.Keywords: collective competence, exploitation learning, exploration learning, knowledge management, organizational learning capabilities
Procedia PDF Downloads 5078167 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 2638166 Pros and Cons of Distance Learning in Europe and Perspective for the Future
Authors: Aleksandra Ristic
Abstract:
The Coronavirus Disease – 2019 hit Europe in February 2020, and infections took place in four waves. It left consequences and demanded changes for the future. More than half of European countries responded quickly by declaring a state of emergency and introducing various containment measures that have had a major impact on individuals’ lives in recent years. Closing public lives was largely achieved by limited access and/or closing public institutions and services, including the closure of educational institutions. Teaching in classrooms converted to distance learning. In the research, we used a quantitative study to analyze various factors of distance learning that influenced pupils in different segments: teachers’ availability, family support, entire online conference learning, successful distance learning, time for themselves, reliable sources, teachers’ feedback, successful distance learning, online participation classes, motivation and teachers’ communication and theoretical review of the importance of digital skills, e-learning Index, World comparison of e-learning in the past, digital education plans for the field of Europe. We have gathered recommendations and distance learning solutions to improve the learning process by strengthening teachers and creating more tiered strategies for setting and achieving learning goals by the children.Keywords: availability, digital skills, distance learning, resources
Procedia PDF Downloads 1028165 Learning Environments in the Early Years: A Case Study of an Early Childhood Centre in Australia
Authors: Mingxi Xiao
Abstract:
Children’s experiences in the early years build and shape the brain. The early years learning environment plays a significantly important role in children’s development. A well-constructed environment will facilitate children’s physical and mental well-being. This case study used an early learning centre in Australia called SDN Hurstville as an example, describing the learning environment in the centre, as well as analyzing the functions of the affordances. In addition, this report talks about the sustainability of learning in the centre, and how the environment supports cultural diversity and indigenous learning. The early years for children are significant. Different elements in the early childhood centre should work together to help children develop better. This case study found that the natural environment and the artificial environment are both critical to children; only when they work together can children have better development in physical and mental well-being and have a sense of belonging when playing and learning in the centre.Keywords: early childhood center, early childhood education, learning environment, Australia
Procedia PDF Downloads 2408164 Analysis of Exponential Distribution under Step Stress Partially Accelerated Life Testing Plan Using Adaptive Type-I Hybrid Progressive Censoring Schemes with Competing Risks Data
Authors: Ahmadur Rahman, Showkat Ahmad Lone, Ariful Islam
Abstract:
In this article, we have estimated the parameters for the failure times of units based on the sampling technique adaptive type-I progressive hybrid censoring under the step-stress partially accelerated life tests for competing risk. The failure times of the units are assumed to follow an exponential distribution. Maximum likelihood estimation technique is used to estimate the unknown parameters of the distribution and tampered coefficient. Confidence interval also obtained for the parameters. A simulation study is performed by using Monte Carlo Simulation method to check the authenticity of the model and its assumptions.Keywords: adaptive type-I hybrid progressive censoring, competing risks, exponential distribution, simulation, step-stress partially accelerated life tests
Procedia PDF Downloads 3438163 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1368162 A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network
Authors: M. S. Jimah, A. C. Achuenu, M. Momodu
Abstract:
Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM.Keywords: group communications, multicast, PIM SM, PIM DM, encryption
Procedia PDF Downloads 1628161 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 1958160 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria
Authors: Victor Oluwaseyi Olowonisi
Abstract:
The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.Keywords: e-learning, education, higher education, increasing literacy
Procedia PDF Downloads 2688159 Students Perception of a Gamified Student Engagement Platform as Supportive Technology in Learning
Authors: Pinn Tsin Isabel Yee
Abstract:
Students are increasingly turning towards online learning materials to supplement their education. One such approach would be the gamified student engagement platforms (GSEPs) to instill a new learning culture. Data was collected from closed-ended questions via content analysis techniques. About 81.8% of college students from the Monash University Foundation Year agreed that GSEPs (Quizizz) was an effective tool for learning. Approximately 85.5% of students disagreed that games were a waste of time. GSEPs were highly effective among students to facilitate the learning process.Keywords: engagement, gamified, Quizizz, technology
Procedia PDF Downloads 1078158 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 150