Search results for: flow direction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6186

Search results for: flow direction

5646 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 209
5645 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 407
5644 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube

Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev

Abstract:

A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.

Keywords: two phase flow, bubble growth, mini-channel, generation frequency

Procedia PDF Downloads 421
5643 Flow Separation Control on an Aerofoil Using Grooves

Authors: Neel K. Shah

Abstract:

Wind tunnel tests have been performed at The University of Manchester to investigate the impact of surface grooves of a trapezoidal planform on flow separation on a symmetrical aerofoil. A spanwise array of the grooves has been applied around the maximum thickness location of the upper surface of an NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. A laminar separation bubble developed on the aerofoil at low AoA. It has been found that the grooves shorten the streamwise extent of the separation bubble by shedding a pair of counter-rotating vortices. However, the increase in leading-edge suction due to the shorter bubble is not significant since the creation of the grooves results in a decrease of surface curvature and an increase in blockage (increase in surface pressure). Additionally, the increased flow mixing by the grooves thickens the boundary layer near the trailing edge of the aerofoil also contributes to this limitation. As a result of these competing effects, the improvement in the pressure-lift and pressure-drag coefficients are small, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. Crosswire anemometry shows that the grooves increase turbulence intensity and Reynolds stresses in the wake, thus indicating an increase in viscous drag.

Keywords: aerofoil flow control, flow separation, grooves, vortices

Procedia PDF Downloads 297
5642 Investigating the Effect of Different Design Factors on the Required Length of the Ambient Air Vaporizer

Authors: F. S. Alavi

Abstract:

In this study, MATLAB engineering software was used in order to model an industrial Ambient Air Vaporizer (AAV), considering combined convection and conduction heat transfers from the fins and the tube. The developed theoretical model was then used to investigate the effects of various design factors such as gas flow rate, ambient air temperature, fin thickness and etc. on total vaporizer ‘s length required. Cryogenic liquid nitrogen was selected as an input fluid, in all cases. According to the results, increasing the inlet fluid flow rate has direct linear effect on the total required length of vaporizer. Vaporizer’s required length decreases by increasing the size of fin radius or size of fin thickness. The dependency of vaporizer’s length on fin thickness’ size reduces at higher values of thickness and gradually converge to zero. For low flow rates, internal convection heat transfer coefficient depends directly on gas flow rate but it becomes constant, independent on flow rate after a specific value. As the ambient air temperature increases, the external heat transfer coefficient also increases and the total required length of vaporizer decreases.

Keywords: heat exchanger, modeling, heat transfer, design

Procedia PDF Downloads 100
5641 Improved Structure and Performance by Shape Change of Foam Monitor

Authors: Tae Gwan Kim, Hyun Kyu Cho, Young Hoon Lee, Young Chul Park

Abstract:

Foam monitors are devices that are installed on cargo tank decks to suppress cargo area fires in oil tankers or hazardous chemical ship cargo ships. In general, the main design parameter of the foam monitor is the distance of the projection through the foam monitor. In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. Numerical techniques for fluid analysis of foam monitors have been developed for prediction. The flow pattern of the fluid varies depending on the shape of the flow path of the foam monitor, as the flow losses affecting projection distance were calculated through numerical analysis. The basic shape of the foam monitor was an L shape designed by N Company. The modified model increased the length of the flow path and used the S shape model. The calculation result shows that the L shape, which is the basic shape, has a problem that the force is directed to one side and the vibration and noise are generated there. In order to solve the problem, S-shaped model, which is a change model, was used. As a result, the problem is solved, and the projection distance from the nozzle is improved.

Keywords: CFD, foam monitor, projection distance, moment

Procedia PDF Downloads 324
5640 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

Authors: N. P. Yadav, Deepti Verma

Abstract:

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid

Procedia PDF Downloads 403
5639 Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim, In Jae Song

Abstract:

The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer.

Keywords: pressure drop, selective catalytic reduction, static mixer, turbulent mixing, uniformity index

Procedia PDF Downloads 917
5638 Numerical Investigation of Flow Characteristics inside the External Gear Pump Using Urea Liquid Medium

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In selective catalytic reduction (SCR) unit, the injection system is provided with unique dosing pump to govern the urea injection phenomenon. The urea based operating liquid from the AdBlue tank links up directly with the dosing pump unit to furnish appropriate high pressure for examining the flow characteristics inside the liquid pump. This work aims in demonstrating the importance of external gear pump to provide pertinent high pressure and respective mass flow rate for each rotation. Numerical simulations are conducted using immersed solid method technique for better understanding of unsteady flow characteristics within the pump. Parametric analyses have been carried out for the gear speed and mass flow rate to find the behavior of pressure fluctuations. In the simulation results, the outlet pressure achieves maximum magnitude with the increase in rotational speed and the fluctuations grow higher.

Keywords: AdBlue tank, external gear pump, immersed solid method, selective catalytic reduction

Procedia PDF Downloads 254
5637 The Influence of Educational Board Games on Chinese Learning Motivation and Flow Experience

Authors: Ju May Wen, Chun Hung Lin, Eric Zhi Feng Liu

Abstract:

Flow theory implies that people are persuaded by happiness. By focusing on an activity, people turn a blind eye to external factors. This study explores the influence of educational board games and fundamental Chinese language teaching on students’ learning motivation and flow experience. Fifty-three students studying Chinese language fundamental courses were used in the study. These students were divided into three groups: (1) flash card teaching group; (2) educational original board game teaching group; and (3) educational Chinese board game teaching group. Chinese language teaching was integrated with the educational board game titled ‘Transportation GO.’ The students were observed playing this game as the teacher collected quantitative and qualitative data. Quantitative data was collected from the learning motivation scale and flow experience scale. Qualitative data was collected through observing, recording, and visiting. The first result found that the three groups integrated with Chinese language teaching could maintain students’ high learning motivation and high flow experience. Second, there was no significant difference between the flow experience of the flash card group and the educational original board game group. Third, there was a significant difference in the flow experience and learning motivation of the educational Chinese board game group vs. the other groups. This study suggests that the experimental model can be applied to advanced Chinese language teaching. Apart from oral and literacy skills, the study of educational board games integrated with Chinese language teaching to enforce student writing skills will be continued.

Keywords: Chinese language instruction, educational board game, learning motivation, flow experience

Procedia PDF Downloads 162
5636 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions

Authors: Rahul Saraswat

Abstract:

More recently, a focus has been given to replacing machined stainless steel metal flow fields with inexpensive wire mesh current collectors. The flow fields are based on simple woven wire mesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. The objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction, and the following methodology was used. 1. The passive direct methanol fuel cell (DMFC) can be made more compact, lighter, and less costly by changing the material used in its construction. 2. Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell (DMFC) was fabricated using a given MEA (Membrane Electrode Assembly) and tested for different current collector structures. Mesh current collectors of different mesh densities along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure, and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points: Area specific resistance (ASR) of wire mesh current collectors is lower than the ASR of stainless steel current collectors. Also, the power produced by wire mesh current collectors is always more than that produced by stainless steel current collectors. 1. Low or moderate methanol concentrations should be used for better and stable DMFC performance. 2. Wiremesh is a good substitute for stainless steel for current collector plates of passive DMFC because of its lower cost (by about 27 %), flexibility, and light in weight characteristics of wire mesh.

Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration, support structure

Procedia PDF Downloads 64
5635 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 120
5634 Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests

Authors: Tarcisio F. Leao, Bruno Utiyama, Jeison Fonseca, Eduardo Bock, Aron Andrade

Abstract:

This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD.

Keywords: blood pump, flow estimator, left ventricular assist device, look-up-table

Procedia PDF Downloads 167
5633 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques

Authors: Edwin Javier Cortes, Surupa Shaw

Abstract:

In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.

Keywords: flow control, efficiency, passive control, active control

Procedia PDF Downloads 45
5632 Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal

Authors: C. Bateira, J. Fernandes, A. Costa

Abstract:

The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06.

Keywords: agricultural terraces, cartography, landslides, SHALSTAB, vineyards

Procedia PDF Downloads 159
5631 Brinkman Flow Past an Impervious Spheroid under Stokesian Assumption

Authors: D. Satish Kumar, T. K. V. Iyengar

Abstract:

In this paper, we study the Brinkman flow, under Stokesian assumption, past an impervious prolate spheroid and obtain the expressions for the velocity and pressure fields in terms of Legendre functions, Associated Legendre functions, prolate radial and angular spheroidal wave functions. We further obtain an expression for the drag experienced by the spheroid and numerically study its variation with respect to the flow parameters and display the results through graphs.

Keywords: prolate spheoid, porous medium, stokesian assumption, brinkman model, velocity, pressure, drag

Procedia PDF Downloads 516
5630 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu

Abstract:

This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.

Keywords: tooling condition, machining stability, milling machine, chatter

Procedia PDF Downloads 415
5629 A Combined CFD Simulation of Plateau Borders including Films and Transitional Areas of Liquid Foams

Authors: Abdolhamid Anazadehsayed, Jamal Naser

Abstract:

An integrated computational fluid dynamics model is developed for a combined simulation of Plateau borders, films, and transitional areas between the film and the Plateau borders to reduce the simplifications and shortcomings of available models for foam drainage in micro-scale. Additionally, the counter-flow related to the Marangoni effect in the transitional area is investigated. The results of this combined model show the contribution of the films, the exterior Plateau borders, and Marangoni flow in the drainage process more accurately since the inter-influence of foam's elements is included in this study. The exterior Plateau borders flow rate can be four times larger than the interior ones. The exterior bubbles can be more prominent in the drainage process in cases where the number of the exterior Plateau borders increases due to the geometry of container. The ratio of the Marangoni counter-flow to the Plateau border flow increases drastically with an increase in the mobility of air-liquid interface. However, the exterior bubbles follow the same trend with much less intensity since typically, the flow is less dependent on the interface of air-liquid in the exterior bubbles. Moreover, the Marangoni counter-flow in a near-wall transition area is less important than an internal one. The influence of air-liquid interface mobility on the average velocity of interior foams is attained with more accuracy with more realistic boundary condition. Then it has been compared with other numerical and analytical results. The contribution of films in the drainage is significant for the mobile foams as the velocity of flow in the film has the same order of magnitude as the velocity in the Plateau border. Nevertheless, for foams with rigid interfaces, film's contribution in foam drainage is insignificant, particularly for the films near the wall of the container.

Keywords: foam, plateau border, film, Marangoni, CFD, bubble

Procedia PDF Downloads 330
5628 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros

Authors: Rezvan Khavari

Abstract:

The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.

Keywords: DEM, chamshir dam, zohreh river, satellite images

Procedia PDF Downloads 467
5627 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept

Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.

Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel

Procedia PDF Downloads 111
5626 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor

Authors: Asad Islam, Khalid Parvez

Abstract:

Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.

Keywords: axial compressor, distortions, angle, CFD, ANSYS-CFX®, bladegen®

Procedia PDF Downloads 435
5625 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: anisotropy, deep drawing, earing, finite element simulation

Procedia PDF Downloads 361
5624 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 301
5623 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect

Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop

Abstract:

In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.

Keywords: heat transfer, radiation effect, shrinking sheet unsteady flow

Procedia PDF Downloads 367
5622 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 415
5621 Unsteady Forced Convection Flow and Heat Transfer Past a Blunt Headed Semi-Circular Cylinder at Low Reynolds Numbers

Authors: Y. El Khchine, M. Sriti

Abstract:

In the present work, the forced convection heat transfer and fluid flow past an unconfined semi-circular cylinder is investigated. The two-dimensional simulation is employed for Reynolds numbers ranging from 10 ≤ Re ≤ 200, employing air (Pr = 0.71) as an operating fluid with Newtonian constant physics property. Continuity, momentum, and energy equations with appropriate boundary conditions are solved using the Computational Fluid Dynamics (CFD) solver Ansys Fluent. Various parameters flow such as lift, drag, pressure, skin friction coefficients, Nusselt number, Strouhal number, and vortex strength are calculated. The transition from steady to time-periodic flow occurs between Re=60 and 80. The effect of the Reynolds number on heat transfer is discussed. Finally, a developed correlation of Nusselt and Strouhal numbers is presented.

Keywords: forced convection, semi-circular cylinder, Nusselt number, Prandtl number

Procedia PDF Downloads 95
5620 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study

Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali

Abstract:

This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.

Keywords: PMV, thermal comfort, thermal environment, thermal sensation

Procedia PDF Downloads 241
5619 The Flotation Device Designed to Treat Phosphate Rock

Authors: Z. Q. Zhang, Y. Zhang, D. L. Li

Abstract:

To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.

Keywords: collophanite flotation, flotation columns, flotation machines, multi-impeller pump

Procedia PDF Downloads 244
5618 Using Power Flow Analysis for Understanding UPQC’s Behaviors

Authors: O. Abdelkhalek, A. Naimi, M. Rami, M. N. Tandjaoui, A. Kechich

Abstract:

This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done.

Keywords: UPQC, Power flow analysis, shunt filter, series filter.

Procedia PDF Downloads 555
5617 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller

Authors: K. Boumediene, S. E. Belhenniche

Abstract:

This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.

Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance

Procedia PDF Downloads 471