Search results for: commercially available milk
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 950

Search results for: commercially available milk

410 Polysorb®-A Versatile Monomer for Improving Thermoplastics and Thermosetting Properties: Case Study of Polyesters

Authors: R. Saint-Loup, H. Amedro, N. Jacquel, S. Legrand, F. Fenouillot, J. P. Pascault, A. Rousseau

Abstract:

Isosorbide or 1,4-3,6 dianhydrohexitol has been developped for several years as a new biobased monomer. It is commercially available as a starch derivative, more precisely obtained derivated from starch and more precisely from sorbitol. Isosorbide can find several applications, directly as a monomer or after chemical modification, in different polymer fields like thermoplastics (obtained from polycondensation or from radical polymerization of unsaturated monomers) or like Thermosetting resins (like cross linked PU, or after modification like acrylates or epoxy coatings) Concerning aliphatic or semi-aromatic polyesters, the addition of isosorbide improves thermal stability an,d optical properties, allowing a large range of applications as semi-crystalline or amorphous polymers. The preparation of poly (ethylene-co-isosorbide) terephthalate with different ratios of isosorbide will be particularly detailed. The structure – properties relationship will permit a focus on the obtention of polyesters with semi-crystalline or amorphous structures. The influence of isosorbide on the polymerization, on the processing of the resulting polyester as well as the modification of the final properties will be enlightened. The properties of Poly (ethylene-co-isosorbide) terephthlate will be emphasized and related to their applications. The evolutions related to Isosorbide with the replacement of ethylene glycol by Cyclohexanedimethanol allowed to drastically change the properties of the resulting polyester, with a large gap on the properties and new potential applications.

Keywords: modified PET, poly(ethylene-co-isosorbide)terephthalate, specialy polyester, poly(isosorbide_co_cyclohexanediol)terephthalate

Procedia PDF Downloads 64
409 Isolation and Screening of Fungal Strains for β-Galactosidase Production

Authors: Parmjit S. Panesar, Rupinder Kaur, Ram S. Singh

Abstract:

Enzymes are the biocatalysts which catalyze the biochemical processes and thus have a wide variety of applications in the industrial sector. β-Galactosidase (E.C. 3.2.1.23) also known as lactase, is one of the prime enzymes, which has significant potential in the dairy and food processing industries. It has the capability to catalyze both the hydrolytic reaction for the production of lactose hydrolyzed milk and transgalactosylation reaction for the synthesis of prebiotics such as lactulose and galactooligosaccharides. These prebiotics have various nutritional and technological benefits. Although, the enzyme is naturally present in almonds, peaches, apricots and other variety of fruits and animals, the extraction of enzyme from these sources increases the cost of enzyme. Therefore, focus has been shifted towards the production of low cost enzyme from the microorganisms such as bacteria, yeast and fungi. As compared to yeast and bacteria, fungal β-galactosidase is generally preferred as being extracellular and thermostable in nature. Keeping the above in view, the present study was carried out for the isolation of the β-galactosidase producing fungal strain from the food as well as the agricultural wastes. A total of more than 100 fungal cultures were examined for their potential in enzyme production. All the fungal strains were screened using X-gal and IPTG as inducers in the modified Czapek Dox Agar medium. Among the various isolated fungal strains, the strain exhibiting the highest enzyme activity was chosen for further phenotypic and genotypic characterization. The strain was identified as Rhizomucor pusillus on the basis of 5.8s RNA gene sequencing data.

Keywords: beta-galactosidase, enzyme, fungal, isolation

Procedia PDF Downloads 243
408 Product Development of Standard Multi-Layer Sweet (Khanom- Chan) Recipe to Healthy for Thai Dessert

Authors: Tidarat Sanphom

Abstract:

Aim of this research is to development of Standard Layer pudding (Khanom-Chan) recipe to healthy Thai dessert. The objective are to study about standard recipe in multi-layer sweet. It was found that the appropriate recipe in multi-layer sweet, was consisted of rice starch 56 grams, tapioca starch 172 grams, arrowroot flour 98 grams, mung been-flour 16 grams, coconut milk 774 grams, fine sugar 374 grams, pandan leaf juice 47 grams and oil 5 grams.Then the researcher studied about the ratio of rice-berries flour to rice starch in multi-layer sweet at level of 30:70, 50:50, and only rice-berry flour 100 percentage. Result sensory evaluation, it was found the ratio of rice-berry flour to rice starch 30:70 had well score. The result of multi-layer sweet with rice-berry flour reduced sugar 20, 40 and 60 percentage found that 20 percentage had well score. Calculated total calories and calories from fat in Sweet layer cake with rice-berry flour reduced sugar 20 percentage had 250.04 kcal and 65.16 kcal.

Keywords: multi-layer sweet (Khanom-Chan), rice-berry flour, leaf juice, desert

Procedia PDF Downloads 419
407 Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants

Authors: Robert van Ling, Alexander Schwahn, Shanhua Lin, Ken Cook, Frank Steiner, Rowan Moore, Mauro de Pra

Abstract:

Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput.

Keywords: charge variants, ion exchange chromatography, monoclonal antibody, UHPLC

Procedia PDF Downloads 433
406 Understanding Seismic Behavior of Masonry Buildings in Earthquake

Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi

Abstract:

Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.

Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column

Procedia PDF Downloads 240
405 Comparison of Bioactive Compound Content in Egg Yolk Oil Extracted from Eggs Obtained from Different Laying Hen Housing Systems

Authors: Aleksandrs Kovalcuks

Abstract:

Egg yolk oil is a natural source of bioactive compounds such as unsaturated fatty acids, oil soluble vitamins, pigments and others. Bioactive compound content in egg yolk oil depends from its content in eggs, from which oil was extracted. Many studies show that bioactive compound content in egg is correlated to the content of these compounds in hen feed, but there is also an opinion that hen housing systems also have influence on egg chemical content. The aim of this study was to determine which factor, laying hen housing system or hen diet, has a primary influence on bioactive compound content in egg yolk oil. The egg yolk oil was extracted from eggs obtained from 4 different hen housing systems: cage, barn and two groups of free range. All hens were fed with commercially produced compound feed except one group of free range hens which get free diet – pastured hens. Extracted egg yolk oils were analyzed for fatty acids, oil soluble vitamins and β-carotene content. α-tocopherol, ergocalcipherol and polyunsaturated fatty acid content in egg yolk oil was higher from eggs obtained from all housing systems where hens were fed with commercial compound feed. β-carotene and retinol content in egg yolk oils from free range free diet eggs was significantly (p>0.05) higher that from other eggs because hens have access to green forage. Hen physical activity in free range housing systems decreases content of some bioactive compound in egg yolk oil.

Keywords: egg yolk oil, vitamins, caged eggs, free range

Procedia PDF Downloads 453
404 Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting

Authors: Vishwas Goel, Kapil Surve, Somnath Basu

Abstract:

In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters.

Keywords: alloying element, chromite, electro-slag remelting, ferrochrome

Procedia PDF Downloads 210
403 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 110
402 RP-HPLC Method Development and Its Validation for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil Combination in Bulk and Tablet Dosage Form

Authors: S. Jain, R. Savalia, V. Saini

Abstract:

A simple, accurate, precise, sensitive and specific RP-HPLC method was developed and validated for simultaneous estimation of Metoprolol Succinate and Olmesartan Medoxomil in bulk and tablet dosage form. The RP-HPLC method has shown adequate separation for Metoprolol Succinate and Olmesartan Medoxomil from its degradation products. The separation was achieved on a Phenomenex luna ODS C18 (250mm X 4.6mm i.d., 5μm particle size) with an isocratic mixture of acetonitrile: 50mM phosphate buffer pH 4.0 adjusted with glacial acetic acid in the ratio of 55:45 v/v. The mobile phase at a flow rate of 1.0ml/min, Injection volume 20μl and wavelength of detection was kept at 225nm. The retention time for Metoprolol Succinate and Olmesartan Medoxomil was 2.451±0.1min and 6.167±0.1min, respectively. The linearity of the proposed method was investigated in the range of 5-50μg/ml and 2-20μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively. Correlation coefficient was 0.999 and 0.9996 for Metoprolol Succinate and Olmesartan Medoxomil, respectively. The limit of detection was 0.2847μg/ml and 0.1251μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively and the limit of quantification was 0.8630μg/ml and 0.3793μg/ml for Metoprolol and Olmesartan, respectively. Proposed methods were validated as per ICH guidelines for linearity, accuracy, precision, specificity and robustness for estimation of Metoprolol Succinate and Olmesartan Medoxomil in commercially available tablet dosage form and results were found to be satisfactory. Thus the developed and validated stability indicating method can be used successfully for marketed formulations.

Keywords: metoprolol succinate, olmesartan medoxomil, RP-HPLC method, validation, ICH

Procedia PDF Downloads 303
401 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 100
400 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh

Abstract:

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.

Keywords: β-galactosidase, fungus, yeast, whey

Procedia PDF Downloads 318
399 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations

Authors: I. S. R. Butswat, D. Zahraddeen

Abstract:

This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.

Keywords: animal, agriculture, entreprenurship, wealth

Procedia PDF Downloads 235
398 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic

Abstract:

3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.

Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering

Procedia PDF Downloads 242
397 Finite Element Analysis and Design Optimization of Stent and Balloon System

Authors: V. Hashim, P. N. Dileep

Abstract:

Stent implantation is being seen as the most successful method to treat coronary artery diseases. Different types of stents are available in the market these days and the success of a stent implantation greatly depends on the proper selection of a suitable stent for a patient. Computer numerical simulation is the cost effective way to choose the compatible stent. Studies confirm that the design characteristics of stent do have great importance with regards to the pressure it can sustain, the maximum displacement it can produce, the developed stress concentration and so on. In this paper different designs of stent were analyzed together with balloon to optimize the stent and balloon system. Commercially available stent Palmaz-Schatz has been selected for analysis. Abaqus software is used to simulate the system. This work is the finite element analysis of the artery stent implant to find out the design factors affecting the stress and strain. The work consists of two phases. In the first phase, stress distribution of three models were compared - stent without balloon, stent with balloon of equal length and stent with balloon of extra length than stent. In second phase, three different design models of Palmaz-Schatz stent were compared by keeping the balloon length constant. The results obtained from analysis shows that, the design of the strut have strong effect on the stress distribution. A design with chamfered slots found better results. The length of the balloon also has influence on stress concentration of the stent. Increase in length of the balloon will reduce stress, but will increase dog boning effect.

Keywords: coronary stent, finite element analysis, restenosis, stress concentration

Procedia PDF Downloads 617
396 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel

Authors: Rishabh Pandey, Umang Kumar Yadav

Abstract:

In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.

Keywords: fuel, gas, generator, water

Procedia PDF Downloads 320
395 Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)

Authors: S. M. Jogdand, D. D. Jagtap, N. R. Dalal

Abstract:

Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF.

Keywords: sweet orange, fertigation, irrigation, interactions

Procedia PDF Downloads 165
394 Anti-Nutritional Factors, In-Vitro Trypsin, Chymotrypsin and Peptidase Multi Enzyme Protein Digestibility of Some Melon (Egusi) Seeds and Their Protein Isolates

Authors: Joan O. Ogundele, Aladesanmi A. Oshodi, Adekunle I. Amoo

Abstract:

Abstract In-vitro multi-enzyme protein digestibility (IVMPD) and some anti-nutritional factors (ANF) of five melon (egusi) seed flours (MSF) and their protein isolates (PI) were carried out. Their PI have potentials comparable to that of soya beans. It is important to know the IVMPD and ANF of these protein sources as to ensure their safety when adapted for use as alternate protein sources to substitute for cow milk, which is relatively expensive in Nigeria. Standard methods were used to produce PI of Citrullus colocynthis, Citrullus vulgaris, African Wine Kettle gourd (Lageneria siceraria I), Basket Ball gourd (Lagenaria siceraria II) and Bushel Giant Gourd (Lageneria siceraria III) seeds and to determine the ANF and IVMPD of the MSF and PI unheated and at 37oC. Multi-enzymes used were trypsin, chymotrypsin and peptidase. IVMPD of MSF ranged from (70.67±0.70) % (C. vulgaris) to (72.07± 1.79) % (L.siceraria I) while for their PI ranged from 74.33% (C.vulgaris) to 77.55% (L.siceraria III). IVMPD of the PI were higher than those of MSF. Heating increased IVMPD of MSF with average value of 79.40% and those of PI with average of 84.14%. ANF average in MSF are tannin (0.11mg/g), phytate (0.23%). Differences in IVMPD of MSF and their PI at different temperatures may arise from processing conditions that alter the release of amino acids from proteins by enzymatic processes. ANF in MSF were relatively low, but were found to be lower in the PI, therefor making the PI safer for human consumption as an alternate source of protein.

Keywords: Anti-nutrients, Enzymatic protein digestibility, Melon (egusi)., Protein Isolates.

Procedia PDF Downloads 108
393 Wastewater Treatment Sludge as a Potential Source of Heavy Metal Contamination in Livestock

Authors: Glynn K. Pindihama, Rabelani Mudzielwana, Ndamulelo Lilimu

Abstract:

Wastewater treatment effluents, particularly sludges, are known to be potential sources of heavy metal contamination in the environment, depending on how the sludge is managed. Maintenance of wastewater treatment infrastructure in developing countries such as South Africa has become an issue of grave concern, with many wastewater treatment facilities in dilapidating states. Among the problems is the vandalism of the periphery fence to many wastewater treatment facilities, resulting in livestock, such as cows from neighboring villages, grazing within the facilities. This raises human health risks since dried sludge from the treatment plants is usually spread on the grass around the plant, resulting in heavy metal contamination. Animal products such as meat and milk from these cows thus become an indirect route to heavy metals to humans. This study assessed heavy metals in sludges from 3 wastewater treatment plants in Limpopo Province of South Africa. In addition, cow dung and sludge liquors were collected from these plants and evaluated for their heavy metal content. The sludge and cow dung were microwave-digested using the aqua-regia method, and all samples were analyzed for heavy metals using ICP-OES. The loadings of heavy metals in the sludge were in the order Cu>Zn>Ni>Cr>Cd>As>Hg. In cow dung, the heavy metals were in the order Fe>Cu>Mn>Zn>Cr>Pb>Co>Cd. The levels of Zn and Cu in the sludge liquors where the animals were observed drinking were, in some cases, above the permissible limit for livestock consumption. Principal component and correlation analysis are yet to be done to determine if there is a correlation between the heavy metals in the cow dung and sludge and sludge liquors.

Keywords: cow dung, heavy metals, sludge, wastewater treatment plants, sludge.

Procedia PDF Downloads 48
392 Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis

Authors: Abdel-Tawab H. Mossa

Abstract:

Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure.

Keywords: natural pesticides, toxicity, safety, genotoxicity, ecosystem, biochemical

Procedia PDF Downloads 160
391 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 355
390 Relationship of Trace Minerals Nutritional Status of Camel (Camelus dromedarius) to Their Contents in Egyptian Feedstuff

Authors: Maha Mohamed Hady Ali, M. A. El-Sayed

Abstract:

Camel (Camelus dromedarius) is very important animal in many arid and semi-arid zones of tropical and subtropical regions as it serves as dual purpose providing meat and milk for human and as draft animal. Camel, like other animal must receive all essential nutrients despite the hostile environment. A study was conducted to evaluate the nutritional status of some micro-minerals of camel under Egyptian environmental condition. Forty five blood samples were collected from apparently healthy male camels with an average age between 2-6 years at the slaughter house in Cairo province, Egypt. The animals were fed mainly on berseem (Trifolium alexandrinum) or concentrate with straw before slaughtering. The collected serum and feedstuff samples were subjected to copper, iron, selenium and zinc analysis using Atomic absorption spectrophotometer. The data showed variation in the level of copper, iron, selenium and zinc in the serum of the dromedary camel as well as in the feedstuffs. Furthermore, the results indicated that the micro- minerals status of feeds may not always reflected as such in camel blood suggesting some role of bioavailability. The main reason for the lack of such reflection seems to be the wide diversity exists in the surrounding environment (forages and plants) as well as the bioavailability of such minerals. Since the requirement of micro-minerals have not been established for camel, more researches must be focused on this topic.

Keywords: camel, copper, egypt, feed stuff, iron, selenium, zinc

Procedia PDF Downloads 513
389 Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry

Authors: Schirin Hanf, Carlos Lizandara-Pueyo, Timmo P. Emmert, Ivana Jevtovikj, Roger Gläser, Stephan A. Schunk

Abstract:

Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy.

Keywords: metal alkoxides, metal carbonates, metal hydroxycarbonates, CO₂ insertion, solubilization

Procedia PDF Downloads 177
388 Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere

Authors: Vatasta Koul, Vaibhav Sharma, Ayush Gupta, Rajesh Yadav

Abstract:

Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.

Keywords: aerodynamics, dynamic stall, E387, SD7003

Procedia PDF Downloads 126
387 Detection and Dissemination of Putative Virulence Genes from Brucella Species Isolated from Livestock in Eastern Cape Province of South Africa

Authors: Rudzani Manafe, Ezekiel Green

Abstract:

Brucella, has many different virulence factors that act as a causative agent of brucellosis, depending on the environment and other factors, some factors may play a role more than others during infection and as a result, play a role in becoming a causative agent for pathogenesis. Brucella melitensis and Brucella abortus are considered to be pathogenic to humans. The genetic regularity of nine potential causes of virulence of two Brucella species in Eastern Cape livestock have been examined. A hundred and twenty isolates obtained from Molecular Pathogenesis and Molecular Epidemiology Research Group (MPMERG) were used for this study. All isolates were grown on Brucella agar medium. Nine primer pairs were used for the detection of virB2, virB5, vceC, btpA, btpB, prpA, betB, bpe275, and bspB virulence factors using Polymerase chain reaction (PCR). Approximately 100% was observed for genes BecC and BetB from B. arbotus. While the lowest gene observed was PrpA at 4.6% from B. arbotus. BetB was detected in 34.7%, while virB2 and prpA (0%) were not detected in B. melitensis. The results from this research suggest that most isolates of Brucella have virulence-related genes associated with disease pathogenesis. Finally, our findings showed that Brucella strains in the Eastern Cape Province are extremely virulent as virulence characteristics exist in most strains investigated.

Keywords: putative virulence genes, brucella, polymerase chain reaction, milk

Procedia PDF Downloads 124
386 Immunoinformatic Design and Evaluation of an Epitope-Based Tetravalent Vaccine against Human Hand, Foot, and Mouth Disease

Authors: Aliyu Maje Bello, Yaowaluck Maprang Roshorm

Abstract:

Hand, foot, and mouth disease (HFMD) is a highly contagious viral infection affecting mostly infants and children. Although the Enterovirus A71 (EV71) is usually the major causative agent of HFMD, other enteroviruses such as coxsackievirus A16, A10, and A6 are also found in some of the recent outbreaks. The commercially available vaccines have demonstrated their effectiveness against only EV71 infection but no protection against other enteroviruses. To address the limitation of the monovalent EV71 vaccine, the present study thus designed a tetravalent vaccine against the four major enteroviruses causing HFMD and primarily evaluated the designed vaccine using an immunoinformatics approach. The immunogen was designed to contain the EV71 VP1 protein and multiple reported epitopes from all four distinct enteroviruses and thus designated a tetravalent vaccine. The 3D structure of the designed tetravalent vaccine was modeled, refined, and validated. Epitope screening showed the presence of B-cell, CTL, CD4 T cell, and IFN epitopes with vast application among the Asian population. Docking analysis confirmed the stable and strong binding interactions between the immunogen and immune receptor B-cell receptor (BCR). In silico cloning and immune simulation analyses guaranteed high efficiency and sufficient expression of the vaccine candidate in humans. Overall, the promising results obtained from the in-silico studies of the proposed tetravalent vaccine make it a potential candidate worth further experimental validation.

Keywords: enteroviruses, coxsackieviruses, hand foot and mouth disease, immunoinformatics, tetravalent vaccine

Procedia PDF Downloads 60
385 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 367
384 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 144
383 Rheology and Structural Arrest of Dense Dairy Suspensions: A Soft Matter Approach

Authors: Marjan Javanmard

Abstract:

The rheological properties of dairy products critically depend on the underlying organisation of proteins at multiple length scales. When heated and acidified, milk proteins form particle gel that is viscoelastic, solvent rich, ‘soft’ material. In this work recent developments on the rheology of soft particles suspensions were used to interpret and potentially define the properties of dairy gel structures. It is discovered that at volume fractions below random close packing (RCP), the Maron-Pierce-Quemada (MPQ) model accurately predicts the viscosity of the dairy gel suspensions without fitting parameters; the MPQ model has been shown previously to provide reasonable predictions of the viscosity of hard sphere suspensions from the volume fraction, solvent viscosity and RCP. This surprising finding demonstrates that up to RCP, the dairy gel system behaves as a hard sphere suspension and that the structural aggregates behave as discrete particulates akin to what is observed for microgel suspensions. At effective phase volumes well above RCP, the system is a soft solid. In this region, it is discovered that the storage modulus of the sheared AMG scales with the storage modulus of the set gel. The storage modulus in this regime is reasonably well described as a function of effective phase volume by the Evans and Lips model. Findings of this work has potential to aid in rational design and control of dairy food structure-properties.

Keywords: dairy suspensions, rheology-structure, Maron-Pierce-Quemada Model, Evans and Lips Model

Procedia PDF Downloads 213
382 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls

Authors: Akhila Palat, B. Umashankar

Abstract:

Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.

Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement

Procedia PDF Downloads 296
381 Effect of Fat Percentage and Prebiotic Composition on Proteolysis, ACE-Inhibitory and Antioxidant Activity of Probiotic Yogurt

Authors: Mohammad B. HabibiNajafi, Saeideh Sadat Fatemizadeh, Maryam Tavakoli

Abstract:

In recent years, the consumption of functional foods, including foods containing probiotic bacteria, has come to notice. Milk proteins have been identified as a source of angiotensin-I-converting enzyme )ACE( inhibitory peptides and are currently the best-known class of bioactive peptides. In this study, the effects of adding prebiotic ingredients (inulin and wheat fiber) and fat percentage (0%, 2% and 3.5%) in yogurt containing probiotic Lactobacillus casei on physicochemical properties, degree of proteolysis, antioxidant and ACE-inhibitory activity within 21 days of storage at 5 ± 1 °C were evaluated. The results of statistical analysis showed that the application of prebiotic compounds led to a significant increase in water holding capacity, proteolysis and ACE-inhibitory of samples. The degree of proteolysis in yogurt increases as storage time elapses (P < 0.05) but when proteolysis exceeds a certain threshold, this trend begins to decline. Also, during storage time, water holding capacity reduced initially but increased thereafter. Moreover, based on our findings, the survival of Lactobacillus casei in samples treated with inulin and wheat fiber increased significantly in comparison to the control sample (P < 0.05) whereas the effect of fat percentage on the survival of probiotic bacteria was not significant (P = 0.095). Furthermore, the effect of prebiotic ingredients and the presence of probiotic cultures on the antioxidant activity of samples was significant (P < 0.05).

Keywords: probiotic yogurt, proteolysis, ACE-inhibitory, antioxidant activity

Procedia PDF Downloads 240