Search results for: cleaner production audit
2211 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 762210 Methane versus Carbon Dioxide Mitigation Prospects
Authors: Alexander J. Severinsky, Allen L. Sessoms
Abstract:
Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total.Keywords: methane leakages, methane radiative forcing, methane mitigation, methane net zero
Procedia PDF Downloads 1462209 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials
Authors: N. Z. van Hierden, Q. Yu, F. Gauvin
Abstract:
Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction
Procedia PDF Downloads 852208 Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal
Authors: Rana Bilal, Faiz-Ul-Hassan, Moazzam Jameel
Abstract:
There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.Keywords: egg quality, immunity, layers, performance
Procedia PDF Downloads 2332207 Stability Optimization of NABH₄ via PH and H₂O:NABH₄ Ratios for Large Scale Hydrogen Production
Authors: Parth Mehta, Vedasri Bai Khavala, Prabhu Rajagopal, Tiju Thomas
Abstract:
There is an increasing need for alternative clean fuels, and hydrogen (H₂) has long been considered a promising solution with a high calorific value (142MJ/kg). However, the storage of H₂ and expensive processes for its generation have hindered its usage. Sodium borohydride (NaBH₄) can potentially be used as an economically viable means of H₂ storage. Thus far, there have been attempts to optimize the life of NaBH₄ (half-life) in aqueous media by stabilizing it with sodium hydroxide (NaOH) for various pH values. Other reports have shown that H₂ yield and reaction kinetics remained constant for all ratios of H₂O to NaBH₄ > 30:1, without any acidic catalysts. Here we highlight the importance of pH and H₂O: NaBH₄ ratio (80:1, 40:1, 20:1 and 10:1 by weight), for NaBH₄ stabilization (half-life reaction time at room temperature) and corrosion minimization of H₂ reactor components. It is interesting to observe that at any particular pH>10 (e.g., pH = 10, 11 and 12), the H₂O: NaBH₄ ratio does not have the expected linear dependence with stability. On the contrary, high stability was observed at the ratio of 10:1 H₂O: NaBH₄ across all pH>10. When the H₂O: NaBH₄ ratio is increased from 10:1 to 20:1 and beyond (till 80:1), constant stability (% degradation) is observed with respect to time. For practical usage (consumption within 6 hours of making NaBH₄ solution), 15% degradation at pH 11 and NaBH₄: H₂O ratio of 10:1 is recommended. Increasing this ratio demands higher NaOH concentration at the same pH, thus requiring a higher concentration or volume of acid (e.g., HCl) for H₂ generation. The reactions are done with tap water to render the results useful from an industrial standpoint. The observed stability regimes are rationalized based on complexes associated with NaBH₄ when solvated in water, which depend sensitively on both pH and NaBH₄: H₂O ratio.Keywords: hydrogen, sodium borohydride, stability optimization, H₂O:NaBH₄ ratio
Procedia PDF Downloads 1202206 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health
Authors: E. Cintura, M. I. Gomes
Abstract:
Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.Keywords: hygroscopicity, hygrothermal comfort, mortar, plaster
Procedia PDF Downloads 1402205 Identification of Indices to Quantify Gentrification
Authors: Sophy Ann Xavier, Lakshmi A
Abstract:
Gentrification is the process of altering a neighborhood's character through the influx of wealthier people and establishments. This idea has subsequently been expanded to encompass brand-new, high-status construction projects that involve regenerating brownfield sites or demolishing and rebuilding residential neighborhoods. Inequality is made worse by Gentrification in ways that go beyond socioeconomic position. The elderly, members of racial and ethnic minorities, individuals with disabilities, and mental health all suffer disproportionately when they are displaced. Cities must cultivate openness, diversity, and inclusion in their collaborations, as well as cooperation on objectives and results. The papers compiled in this issue concentrate on the new gentrification discussions, the rising residential allure of central cities, and the indices to measure this process according to its various varieties. The study makes an effort to fill the research gap in the area of gentrification studies, which is the absence of a set of indices for measuring Gentrification in a specific area. Studies on Gentrification that contain maps of historical change highlight trends that will aid in the production of displacement risk maps, which will guide future interventions by allowing residents and policymakers to extrapolate into the future. Additionally, these maps give locals a glimpse into the future of their communities and serve as a political call to action in areas where residents are expected to be displaced. This study intends to pinpoint metrics and approaches for measuring Gentrification that can then be applied to create a spatiotemporal map of a region and tactics for its inclusive planning. An understanding of various approaches will enable planners and policymakers to select the best approach and create the appropriate plans.Keywords: gentrification, indices, methods, quantification
Procedia PDF Downloads 762204 Scientific Production on Lean Supply Chains Published in Journals Indexed by SCOPUS and Web of Science Databases: A Bibliometric Study
Authors: T. Botelho de Sousa, F. Raphael Cabral Furtado, O. Eduardo da Silva Ferri, A. Batista, W. Augusto Varella, C. Eduardo Pinto, J. Mimar Santa Cruz Yabarrena, S. Gibran Ruwer, F. Müller Guerrini, L. Adalberto Philippsen Júnior
Abstract:
Lean Supply Chain Management (LSCM) is an emerging research field in Operations Management (OM). As a strategic model that focuses on reduced cost and waste with fulfilling the needs of customers, LSCM attracts great interest among researchers and practitioners. The purpose of this paper is to present an overview of Lean Supply Chains literature, based on bibliometric analysis through 57 papers published in indexed journals by SCOPUS and/or Web of Science databases. The results indicate that the last three years (2015, 2016, and 2017) were the most productive on LSCM discussion, especially in Supply Chain Management and International Journal of Lean Six Sigma journals. India, USA, and UK are the most productive countries; nevertheless, cross-country studies by collaboration among researchers were detected, by social network analysis, as a research practice, appearing to play a more important role on LSCM studies. Despite existing limitation, such as limited indexed journal database, bibliometric analysis helps to enlighten ongoing efforts on LSCM researches, including most used technical procedures and collaboration network, showing important research gaps, especially, for development countries researchers.Keywords: Lean Supply Chains, Bibliometric Study, SCOPUS, Web of Science
Procedia PDF Downloads 3472203 Estimation of Natural Pozzolan Reserves in the Volcanic Province of the Moroccan Middle Atlas Using a Geographic Information System in Order to Valorize Them
Authors: Brahim Balizi, Ayoub Aziz, Abdelilah Bellil, Abdellali El Khadiri, Jamal Mabrouki
Abstract:
Mio-polio-quaternary volcanism of the Tabular Middle Atlas, which corresponds to prospective levels of exploitable usable raw minerals, is a feature of Morocco's Middle Atlas, especially the Azrou-Timahdite region. Given their importance in national policy in terms of human development by supporting the sociological and economic component, this area has consequently been the focus of various research and prospecting of these levels in order to develop these reserves. The outcome of this labor is a massive amount of data that needs to be managed appropriately because it comes from multiple sources and formats, including side points, contour lines, geology, hydrogeology, hydrology, geological and topographical maps, satellite photos, and more. In this regard, putting in place a Geographic Information System (GIS) is essential to be able to offer a side plan that makes it possible to see the most recent topography of the area being exploited, to compute the volume of exploitation that occurs every day, and to make decisions with the fewest possible restrictions in order to use the reserves for the realization of ecological light mortars The three sites' mining will follow the contour lines in five steps that are six meters high and decline. It is anticipated that each quarry produces about 90,000 m3/year. For a single quarry, this translates to a daily production of about 450 m3 (200 days/year). About 3,540,240 m3 and 10,620,720 m3, respectively, represent the possible net exploitable volume in place for a single quarry and the three exploitable zones.Keywords: GIS, topography, exploitation, quarrying, lightweight mortar
Procedia PDF Downloads 262202 Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract
Authors: Sharareh Mohseni
Abstract:
Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially.Keywords: Crocus sativus L., saffron extract, solvent extraction, distilled water
Procedia PDF Downloads 4482201 A Power Management System for Indoor Micro-Drones in GPS-Denied Environments
Authors: Yendo Hu, Xu-Yu Wu, Dylan Oh
Abstract:
GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements.Keywords: micro-drone, battery swap, battery replacement, battery recharge, landing pad, power management
Procedia PDF Downloads 1192200 Interaction of Dietary Protein and Vitamin E Supplementation on Gastrointestinal Nematode (Gnt) Parasitism of Naturally Infected Lambs
Authors: Ayobami Adeyemo, Michael Chimonyo, Munyaradzi Marufu
Abstract:
Gastrointestinal nematode (GNT) infection significantly hinder sustainable and profitable sheep production on rangelands. While vitamin E and protein supplementation have individually proven to improve host immunity to parasitism in lambs, to our knowledge, there is no information on the interaction of dietary vitamin E and protein supplementation on lamb growth and GIN faecal egg counts in naturally infected lambs. Therefore, the current study investigated the interaction of dietary protein and vitamin E supplementation on faecal egg counts (FEC) and growth performance of lambs. Twenty four Dohne Merino lambs aged 12 months were allocated equally to each of four treatment combinations, with six lambs in each treatment group for a period of eight weeks. Treatment one lambs received dietary protein and vitamin E (PE), treatment two lambs received dietary protein and no vitamin E (PNE), treatment three received dietary vitamin E and no protein (NPE), and treatment four received no dietary protein and vitamin E supplementation (NPNE). The lambs were allowed to graze on Pennisetum clandestinum contaminated with a heavy load of nematodes. Dietary protein supplementation increased (P < 0.01) average daily gain (ADG) and body condition scores (BCS). Dietary vitamin E supplementation had no effect (P > 0.05) on ADG and BCS. There was no interaction (P > 0.05) between dietary protein and vitamin E supplementation on ADG and BCS. Combined supplementation of dietary protein and vitamin E supplementation significantly reduced (P < 0.01) faecal egg counts and larval counts, respectively. Also, dietary protein and vitamin E supplementation reduced GNT faecal egg counts over the exposure period. The current findings support the hypothesis that the interaction of dietary protein and vitamin E supplementation reduced faecal egg counts and larval counts in lambs. This necessitates future findings on the interaction of dietary protein and vitamin E supplementation on blood associated profiles.Keywords: gastrointestinal nematodes, nematode eggs, Haemonchus, Trichostrongylus
Procedia PDF Downloads 2092199 'Utopian Performatives' for Peace: A Radical Approach to Evaluating the Value of Documentary Theatre in Northern Ireland
Authors: Harry Mccallum
Abstract:
In the last decade, there has been an upsurge in documentary theatre projects that seek to address issues arising from ‘the Troubles’ by theatre and community organisations such as The Playhouse, Kabosh, and The Verbal Arts Centre. This movement has been supported by a variety of funding agencies who have identified the importance of the instrumental use of theatre for generating societal development. However, with this upsurge in interest comes complications surrounding the subjectivity of evaluations and an understanding of their empirical impact on society. This largely theoretical led-discussion promotes the engagement of Jill Dolan’s ‘utopian performatives’ (2005) within the remit of documentary theatre for peacebuilding practices in Northern Ireland.‘Utopian Performatives’ are described as being profound moments in a theatre production that transforms audience members into a state of ‘hopeful feeling’.As a concept, they are situated within the discourse surrounding audience reception and the ‘affective turn’ (Brennan, 2004; Clough and Halley, 2007; Ahmed, 2014), which indicates its persistence on a short-term ephemeral outlook. It is therefore important to understand how this short-term ‘affect’ can expand into a longer-term ‘effect.’ Through this interdisciplinary study between ‘peace’ and ‘theatre’ studies, I am proposinga theoretical framework that examines how these individual ‘utopian performatives’ at the personal level can lead to a change at the societal level. The framework understands that ‘utopian performatives’ have the capacity to generate discussion and empower audience members to actively strive for a ‘positive peace’; something which is evidently absent in a contemporary Northern Ireland.Keywords: theatre, peacebuilding, conflict transformation, northern Ireland
Procedia PDF Downloads 1312198 Lime Based Products as a Maintainable Option for Repair And Restoration of Historic Buildings in India
Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola
Abstract:
This research aims to study the use of traditional building materials for the repair and refurbishment of historic buildings in India and to provide an authentic treatment of historical buildings that will be highly considered by taking into consideration the new standards of rehabilitating process. This can be proven to be an effective solution over modern impervious material due to its compatibility with traditional building methods and materials. For example, their elastoplastic properties allow accommodating movement due to settlement or moisture/temperature changes without cracking. The use of lime also enhances workability, water retention and bond characteristics. Lime is considered to be a natural, traditional material, but it is also sustainable and energy-efficient, with production powered by biomass and emissions up to 25% less than cementitious materials. However, there is a lack of comprehensive data on the impact of lime‐based materials on the energy efficiency and thermal properties of traditional buildings and structures. Although lime mortars, renders and plasters were largely superseded by cement-based products in the first half of the 20th century, lime has a long and proven track record dating back to ancient times. This was used by the Egyptians in 4000BC to construct the pyramids. This doesn't mean that lime is an outdated technology, nor is it difficult to be used as a material. In fact, lime has a growing place in modern construction, with increasing numbers of designers choosing to use lime-based products because of their special properties. To carry out this research, some historic buildings will be surveyed and information will be derived from the textbooks and journals related to Architectural restoration.Keywords: lime, materials, historic, buildings, sustainability
Procedia PDF Downloads 1662197 In silico and in vitro Investigation of the Role of Acinetobacter baumannii in the Pathogenesis of Multiple Sclerosis
Authors: Kieren Luellman, Makenzi Rockwell, Eduardo Callegari, Nichole Haag, Chun Wu
Abstract:
Multiple sclerosis (MS) is an autoimmune disorder that damages the myelin sheath of neurons in the central nervous system. The presence of Acinetobacter bacteria and anti-Acinetobacter antibodies in MS patients has led to the hypothesis that the bacteria may contribute to MS pathogenesis. In this study, the protein sequences of Acinetobacter baumannii were compared to five peptides from three mammalian myelin proteins, i.e., Proteolipid Protein (PLP): PLP 139-151, PLP 178-191, Myelin Basic Protein (MBP): MBP 84-104 and Myelin Oligodendrocyte Glycoprotein (MOG): MOG 35-55 and MOG 92-106 respectively, known to induce experimental autoimmune encephalomyelitis (EAE), a condition similar to MS. We found 11 hits (i.e., with five or more amino acid sequence similarity) in Acinetobacter baumannii, which are identical or similar to PLP139-151, 32 hits to PLP178-191, 35 to MBP 84-104, 41 hits to MOG 35-55 and 26 hits to MOG92-106. In addition, Western blotting was used to assess possible interaction between the bacterial proteins and human anti-MBP, anti-MOG, and anti-PLP antibodies produced in rabbits, corresponding to MBP 84-104, MOG 35-55, and PLP 139-151, respectively. We found that both human Polyclonal anti-MOG antibody and anti-PLP antibody recognized a protein or more proteins of the same molecular mass of around 25 kDa. in Acinetobacter baumannii. The results suggested that this/these protein(s) might potentially serve as antigen(s) to induce anti-MOG antibody and anti-PLP antibody production in mammalian B cells. The proteomic study identified 433 hits, among which the sequence of Acinetobacter baumannii protein 491 subunit A matches a previously published enzyme Acinetobacter 3-Oxoadipate CoA-Transferase, in which a fragment of its peptide was observed to recognize MS patient serum via ELISA method. Our findings might pave the road to understanding one of the pathogenesis mechanisms of MS.Keywords: multiple sclerosis, pathogenesis, Acinetobacter baumannii, antibody recognition
Procedia PDF Downloads 1212196 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate
Authors: Ambalika Ekka
Abstract:
In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43 MJ.Keywords: energy efficient, embodied energy, EPI, building materials
Procedia PDF Downloads 1962195 Green Concrete for Sustainable Indonesia Structures: Lightweight Concrete Using Oil Palm Shell as Coarse Aggregate with Superplasticizer and Fly Ash
Authors: Feny Acelia Silaban
Abstract:
The development of Indonesia’s infrastructure in many islands is significantly increased through the years. Based on this condition, concrete materials which are extracted from natural resources are over exploited and slowly becoming rare, thus the demand for alternative materials becomes so urgently crucial. Oil Palm is one of the biggest commodities in Indonesia with the total amount of 31 million tons in the last 2014. The production of palm oil also generates lots of solid wastes in the form of Oil Palm Shell (OPS). Constructing more environmentally sustainable structures can be achieved by producing lightweight concrete using the Oil Palm Shell (OPS). This paper investigated the effects of OPS and combination of Superplasticizer and fly ash proportion of lightweight concrete mix design to the compressive strength, flexure strength, modulus of elasticity, shrinkage behavior, and water absorption. The Oil Palm Shell had undergone special treatment by washing it with hot water and soap to reduce the oil content. This experiment used four different proportions of Superplasticizer with fly ash and 30 % OPS proportion from the weight of total compositions mixture by the result of trial mix. The experiment result showed that using OPS coarse aggregates and Superplasticizer with fly ash, the average of 28-day compressive strength reached 30-35 MPa. The highest 28-day compressive strength comes from 1.2 % Superplasticizer with 5 % fly ash proportion samples with the strength by 33 MPa. The sample with proportion of 1 % Superplasticizer and 7.5 % fly ash has the highest shrinkage value compared to other proportions. The characteristic of OPS as coarse aggregates is in a standard range of natural coarse aggregates. In general, this lightweight concrete using OPS coarse aggregate and Superplasticizer has high potential to be green-structural lightweight concrete alternative in Indonesia.Keywords: lightweight concrete, oil palm shell, waste materials, superplasticizer
Procedia PDF Downloads 2592194 Membrane Distillation Process Modeling: Dynamical Approach
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati
Abstract:
This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.Keywords: membrane distillation, dynamical modeling, advection-diffusion equation, thermal equilibrium, heat equation
Procedia PDF Downloads 2722193 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.
Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano
Abstract:
This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes
Procedia PDF Downloads 1772192 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer
Authors: Y. Baba, A. Archibong-Eso, H. Yeung
Abstract:
Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length
Procedia PDF Downloads 3292191 Development of an Integrated Route Information Management Software
Authors: Oluibukun G. Ajayi, Joseph O. Odumosu, Oladimeji T. Babafemi, Azeez Z. Opeyemi, Asaleye O. Samuel
Abstract:
The need for the complete automation of every procedure of surveying and most especially, its engineering applications cannot be overemphasized due to the many demerits of the conventional manual or analogue approach. This paper presents the summarized details of the development of a Route Information Management (RIM) software. The software, codenamed ‘AutoROUTE’, was encoded using Microsoft visual studio-visual basic package, and it offers complete automation of the computational procedures and plan production involved in route surveying. It was experimented using a route survey data (longitudinal profile and cross sections) of a 2.7 km road which stretches from Dama to Lunko village in Minna, Niger State, acquired with the aid of a Hi-Target DGPS receiver. The developed software (AutoROUTE) is capable of computing the various simple curve parameters, horizontal curve, and vertical curve, and it can also plot road alignment, longitudinal profile, and cross-section with a capability to store this on the SQL incorporated into the Microsoft visual basic software. The plotted plans with AutoROUTE were compared with the plans produced with the conventional AutoCAD Civil 3D software, and AutoROUTE proved to be more user-friendly and accurate because it plots in three decimal places whereas AutoCAD plots in two decimal places. Also, it was discovered that AutoROUTE software is faster in plotting and the stages involved is less cumbersome compared to AutoCAD Civil 3D software.Keywords: automated systems, cross sections, curves, engineering construction, longitudinal profile, route surveying
Procedia PDF Downloads 1482190 Border Trade Policy to Promote Thailand - Myanmar Mae Sai, Chiang Rai Province
Authors: Sakapas Saengchai, Pichamon Chansuchai
Abstract:
Research Thai- Myanmar Border Trade Promotion Policy, Mae Sai District, Chiang Rai Province The objectives of this study were to study the policy of promoting Thai- Myanmar border trade in Mae Sai district, Chiang Rai province. And suitable models for the development of border trade in Mae Sai. Chiang Rai province This research uses qualitative methodology. The method of collecting data from research papers. Participatory Observation In-depth interviews in which the information is important, the governor of Chiang Rai. Chiang Rai Customs Service Executive Office of Mae Sai Immigration Bureau Maesai Chamber of Commerce and Private Entrepreneurs By specific sampling Data analysis uses content analysis. The study indicated that Border Trade Promotion Policy The direction taken by the government to focus on developing 1. Security is further reducing crime. Smuggling and human trafficking Including the preparation to protect people from terrorism and natural disasters. And cooperation with Burma on border security. 2. The development of wealth is the promotion of investment. The transport links, logistics value chain. Products and services across the Thai-Myanmar border. Improve the regulations and laws to promote fair trade. Convenient and fast 3. Sustainable development is the ability to generate income, quality of life of people in the Thai border to increase continuously. By using balanced natural resources, production and consumption are environmentally friendly. Which featured the participation of all sectors of the public and private sectors in the region to drive the development of the border with Thailand. Chiang Rai province To be more competitive .Keywords: Border, Trade, Policy, Promote
Procedia PDF Downloads 1712189 Korean Smart Cities: Strategic Foci, Characteristics and Effects
Authors: Sang Ho Lee, Yountaik Leem
Abstract:
This paper reviews Korean cases of smart cities through the analysis framework of strategic foci, characteristics and effects. Firstly, national strategies including c(cyber), e(electronic), u(ubiquitous) and s(smart) Korea strategies were considered from strategic angles. Secondly, the characteristics of smart cities in Korea were looked through the smart cities examples such as Seoul, Busan, Songdo and Sejong cities etc. from the views on the by STIM (Service, Technology, Infrastructure and Management) analysis. Finally, the effects of smart cities on socio-economies were investigated from industrial perspective using the input-output model and structural path analysis. Korean smart city strategies revealed that there were different kinds of strategic foci. c-Korea strategy focused on information and communications network building and user IT literacy. e-Korea strategy encouraged e-government and e-business through utilizing high-speed information and communications network. u-Korea strategy made ubiquitous service as well as integrated information and communication operations center. s-Korea strategy is propelling 4th industrial platform. Smart cities in Korea showed their own features and trends such as eco-intelligence, high efficiency and low cost oriented IoT, citizen sensored city, big data city. Smart city progress made new production chains fostering ICTs (Information Communication Technologies) and knowledge intermediate inputs to industries.Keywords: Korean smart cities, Korean smart city strategies, STIM, smart service, infrastructure, technologies, management, effect of smart city
Procedia PDF Downloads 3662188 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks
Authors: Yen-Luan Chen
Abstract:
Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability
Procedia PDF Downloads 2752187 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation
Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa
Abstract:
Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol
Procedia PDF Downloads 1872186 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing
Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin
Abstract:
Garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, and also a complicated sewing operation. Due to these reasons, garment manufacturers created systems to monitor and control the product’s quality regularly by conducting quality approaches to minimize variation. The aims of this research were to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas-quality systems and tools; quality control and types of inspection; sampling procedures chosen for garment inspection. The focus of this research also aimed to distinguish quality approaches used by companies that supplied the finished garments to both domestic and international markets. The feedback from each of company’s representatives was obtained using the online survey, which comprised of five sections and 44 questions on the organizational profile and quality approaches used in the garment industry. The results revealed that almost all companies had established their own mechanism of process control by conducting a series of quality inspection for daily production either it was formally been set up or vice versa. Quality inspection was the predominant quality control activity in the garment manufacturing and the level of complexity of these activities was substantially dictated by the customers. AQL-based sampling was utilized by companies dealing with the export market, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. This research provides an insight into the implementation of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.Keywords: garment manufacturing, quality approaches, quality control, inspection, Acceptance Quality Limit (AQL), sampling
Procedia PDF Downloads 4432185 Rapid Weight Loss in Athletes: A Look at Suppressive Effects on Immune System
Authors: Nazari Maryam, Gorji Saman
Abstract:
For most competitions, athletes usually engage in a process called rapid weight loss (RWL) and subsequent rapid weight gain (RWG) in the days preceding the event. Besides the perfection of performance, weight regulation mediates a self-image of being “a real athlete” which is mentally important as a part of the pre-competition preparation. This feeling enhances the focus and commitment of the athlete. There is a large body of evidence that weight loss, particularly in combat sports, results in several health benefits. However, intentional weight loss beyond normal levels might have unknown negative special effects on the immune system. As the results show, a high prevalence (50%) of RWL is happening among combat athletes. It seems that energy deprivation and intense exercise to reach RWL results in altered blood cell distribution through modification of body composition that, in turn, changes B and T-Lymphocyte and/or CD4 T-Helper response. Moreover, it may diminish IgG antibody levels and modulate IgG glycosylation after this course. On the other hand, some studies show suppression of signaling and regulation of IgE antibody and chemokine production are responsible for immunodeficiency following a period of low-energy availability. Some researchers hypothesize that severe glutamine depletion, which occurs during exercise and calorie restriction, is responsible for this immune system weakness. However, supplementation by this amino acid is not prescribed yet. Therefore, weight loss is achieved not only through chronic strategies (body fat losses) but also through acute manipulations prior to competition should be supervised by a sports nutritionist to minimize side effects on the immune system and other body systems.Keywords: athletes, immune system, rapid weight loss, weight loss strategies
Procedia PDF Downloads 1202184 Drying Kinetics of Okara (Soy Pulp) Using the Multi-Commodity Heat Pump Dryer (MCHPD)
Authors: Lorcelie B. Taclan, Jolly S. Balila, Maribel Balagtas, Eunice M. Aclan, Myrtle C. Orbon, Emson Y. Taclan, Irenea A. Centeno
Abstract:
Okara (soy pulp), a by-product and waste from the production of soymilk, tufo and tokwa and soybean-based vegan food products is readily available in the university thrice a week. The Food Factory owned and managed by AUP produces these food products weekly. Generally the study was conducted to determine the drying kinetics of soya pulp using the MCHPD. Specifically, it aimed to establish the time of drying; moisture loss per hour and percent moisture content of soya pulp and to establish the dried okara as an ingredient to other foods. The MCHPD is drying equipment that has an ideal drying condition of 50.00C and 10.0% relative humidity. Fresh and wet soya pulp were weighed at 1.0 kg per tray (21 drying trays), laid on the trays lined with cheese cloth. The MCHPD was set to desired drying conditions. Weight loss was monitored every hour and calculated using standard formulas. Research results indicated that the drying time for soya pulp was 19.0 hours; the % moisture content was reduced from 87.6.0% to 9.7.0% at an average moisture loss of 3.0 g/hr. The nutritional values of okara were favorably maintained with enhanced color. The dried okara was added as an ingredient to other healthy bakery products produced by the AUP Food Factory. Making use of okara would add nutritional values to other food products and would also help waste management concerns inside the university.Keywords: okara, MCHPD, drying kinetics, nutritional values, waste management
Procedia PDF Downloads 3952183 Magnetic Silica Nanoparticles as Viable Support for the Immobilization of Oxidative Enzymes
Authors: Y. Moldes-Diz, M. Gamallo, G. Eibes, C. Vazquez-Vazquez, G. Feijoo, J. M. Lema, M. T. Moreira
Abstract:
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are excellent biocatalysts for biotechnological and environmental applications because of their high activity, selectivity, and specificity. Specifically, these characteristics allow them to perform the oxidation of recalcitrant compounds with simple requirements for the catalysis (presence of molecular oxygen). Nevertheless, the low stability under unfavorable conditions (pH, inactivating agents or temperature) and high production costs still limits their use for practical applications. Immobilization of enzymes has proven particularly valuable to avoid some of the aforementioned drawbacks. Magnetic nanoparticles (MNPs) have received increasing attention as carriers for enzyme immobilization since they can potentially provide an easy recovery of the biocatalyst from the reaction medium under an external magnetic field. In the present work, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were prepared, characterized and used for laccase immobilization by covalent binding. The synthesis of Fe3O4@SiO2 was performed in a two-step procedure: co-precipitation and reverse microemulsion. The influence of immobilization conditions: concentrations of the functionalization agent (3-aminopropyl-triethoxy-silane) and the cross-linker (glutaraldehyde) as well as the influence of pH, T or inactivating agents were evaluated. In general, immobilized laccase showed superior stability compared to that of free enzyme. The reusability of the biocatalyst was demonstrated in successive batch reactions, where enzyme activity was maintained above 65% after 8 cycles of oxidation of the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate).Keywords: silica-coated magnetic nanoparticles, laccase, immobilization, regeneration
Procedia PDF Downloads 2182182 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber
Authors: Sharmili Routray, Kishor Chandra Biswal
Abstract:
The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening
Procedia PDF Downloads 292