Search results for: work overload
8156 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser
Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen
Abstract:
Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.Keywords: automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator
Procedia PDF Downloads 2518155 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: piezoelectric, acoustic, energy harvester
Procedia PDF Downloads 2828154 Numerical Simulation of Structured Roughness Effect on Fluid Flow Characteristics and Heat Transfer in Minichannels
Authors: R. Chouatah, E. G. Filali, B. Zouzou
Abstract:
It has been well established that there are no differences between microscale and macroscale flows of incompressible liquids. However, surface roughness has been known to impact the transport phenomena. The effect of structured roughness on the dynamics and heat transfer of water flowing through minichannel was numerically investigated in this study. Our study consists in characterizing the dynamic field and heat transfer aspect of a flow in circular minichannel equipped with structured roughness using CFD software, CFX. The study is performed to understand the effect of various roughness elements (rectangular, triangular), roughness height and roughness pitch on the friction factor and heat transfer coefficient. Our work focuses on a water flow inside a circular mini-channel of 1 mm in diameter and 10 cm in length. The speed entry into the mini-channel varies from 0.1 m/s to 25 m/s. The wall of the mini-channel is submitted to a constant heat flux; q=100,000 W/m². The simulations results are compared to those obtained with smooth minichannel and the existing experimental and numerical results in the literature.Keywords: heat transfer, laminar and turbulent flow, minichannel, structured roughness
Procedia PDF Downloads 3438153 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.Keywords: nanomaterials, SiO₂, carbon black, mechanical properties
Procedia PDF Downloads 1408152 Performance of CALPUFF Dispersion Model for Investigation the Dispersion of the Pollutants Emitted from an Industrial Complex, Daura Refinery, to an Urban Area in Baghdad
Authors: Ramiz M. Shubbar, Dong In Lee, Hatem A. Gzar, Arthur S. Rood
Abstract:
Air pollution is one of the biggest environmental problems in Baghdad, Iraq. The Daura refinery located nearest the center of Baghdad, represents the largest industrial area, which transmits enormous amounts of pollutants, therefore study the gaseous pollutants and particulate matter are very important to the environment and the health of the workers in refinery and the people whom leaving in areas around the refinery. Actually, some studies investigated the studied area before, but it depended on the basic Gaussian equation in a simple computer programs, however, that kind of work at that time is very useful and important, but during the last two decades new largest production units were added to the Daura refinery such as, PU_3 (Power unit_3 (Boiler 11&12)), CDU_1 (Crude Distillation unit_70000 barrel_1), and CDU_2 (Crude Distillation unit_70000 barrel_2). Therefore, it is necessary to use new advanced model to study air pollution at the region for the new current years, and calculation the monthly emission rate of pollutants through actual amounts of fuel which consumed in production unit, this may be lead to accurate concentration values of pollutants and the behavior of dispersion or transport in study area. In this study to the best of author’s knowledge CALPUFF model was used and examined for first time in Iraq. CALPUFF is an advanced non-steady-state meteorological and air quality modeling system, was applied to investigate the pollutants concentration of SO2, NO2, CO, and PM1-10μm, at areas adjacent to Daura refinery which located in the center of Baghdad in Iraq. The CALPUFF modeling system includes three main components: CALMET is a diagnostic 3-dimensional meteorological model, CALPUFF (an air quality dispersion model), CALPOST is a post processing package, and an extensive set of preprocessing programs produced to interface the model to standard routinely available meteorological and geophysical datasets. The targets of this work are modeling and simulation the four pollutants (SO2, NO2, CO, and PM1-10μm) which emitted from Daura refinery within one year. Emission rates of these pollutants were calculated for twelve units includes thirty plants, and 35 stacks by using monthly average of the fuel amount consumption at this production units. Assess the performance of CALPUFF model in this study and detect if it is appropriate and get out predictions of good accuracy compared with available pollutants observation. CALPUFF model was investigated at three stability classes (stable, neutral, and unstable) to indicate the dispersion of the pollutants within deferent meteorological conditions. The simulation of the CALPUFF model showed the deferent kind of dispersion of these pollutants in this region depends on the stability conditions and the environment of the study area, monthly, and annual averages of pollutants were applied to view the dispersion of pollutants in the contour maps. High values of pollutants were noticed in this area, therefore this study recommends to more investigate and analyze of the pollutants, reducing the emission rate of pollutants by using modern techniques and natural gas, increasing the stack height of units, and increasing the exit gas velocity from stacks.Keywords: CALPUFF, daura refinery, Iraq, pollutants
Procedia PDF Downloads 1988151 A New Family of Flying Wing Low Reynolds Number Airfoils
Authors: Ciro Sobrinho Campolina Martins, Halison da Silva Pereira, Vitor Mainenti Leal Lopes
Abstract:
Unmanned Aerial vehicles (UAVs) has been used in a wide range of applications, from precise agriculture monitoring for irrigation and fertilization to military attack missions. Long range performance is required for many of these applications. Tailless aircrafts are commonly used as long-range configurations and, due to its small amount of stability, the airfoil shape design of its wings plays a central role on the performance of the airplane. In this work, a new family of flying wing airfoils is designed for low Reynolds number flows, typical of small-middle UAVs. Camber, thickness and their maximum positions in the chord are variables used for the airfoil geometry optimization. Aerodynamic non-dimensional coefficients were obtained by the well-established Panel Method. High efficient airfoils with small pitch moment coefficient are obtained from the analysis described and its aerodynamic polars are plotted.Keywords: airfoil design, flying wing, low Reynolds number, tailless aircraft, UAV
Procedia PDF Downloads 6298150 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density
Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita
Abstract:
Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite
Procedia PDF Downloads 1048149 Experimentation and Analysis of Reinforced Basalt and Carbon Fibres Composite Laminate Mechanical Properties
Authors: Vara Prasad Vemu
Abstract:
The aim of the present work is to investigate the mechanical properties and water absorption capacity of carbon and basalt fibers mixed with matrix epoxy. At present, there is demand for nature friendly products. Basalt reinforced composites developed recently, and these mineral amorphous fibres are a valid alternative to carbon fibres for their lower cost and to glass fibres for their strength. The present paper describes briefly on basalt and carbon fibres (uni-directional) which are used as reinforcement materials for composites. The matrix epoxy (LY 556-HY 951) is taken into account to assess its influence on the evaluated parameters. In order to use reinforced composites for structural applications, it is necessary to perform a mechanical characterization. With this aim experiments like tensile strength, flexural strength, hardness and water absorption are performed. Later the mechanical properties obtained from experiments are compared with ANSYS software results.Keywords: carbon fibre, basalt fibre, uni-directional, reinforcement, mechanical tests, water absorption test, ANSYS
Procedia PDF Downloads 1978148 Investigation of Specific Wear Rate of Austenitic and Duplex Stainless Steel Alloys in High Temperatures
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
Wear as an unavoidable phenomenon in stainless steel contact sliding parts is investigated In this work. Two grades of austenitic AISI 304, and S31254, as well as duplexes of S32205, and AISI 2507, were chosen to compare their wear behavior in temperatures ranging from room temperature to 550°C. The experimental results show that AISI 304 austenitic and AISI 2205 duplex stainless steel had lower wear resistance compared with S31254 and AISI 2507 in various temperatures. When the temperature rose to 140°C, and the wear rate of all grades increased, AISI 304 had the highest at 7.028x10-4 mm3/Nm, and AISI 2507 had the lowest at 4.9033 x 10-4 mm3/Nm. At 300°C, the oxides began to form on the worn surfaces, causing the wear rate to slow. As a result, when temperatures exceeded 300°C, the specific wear rate decreased significantly in all specimens. According to the XRD patterns, the main types of oxides formed on worn surfaces were magnetite, hematite, and chromite.Keywords: wear, stainless steel, temperature, groove, oxide
Procedia PDF Downloads 758147 Investigation of Specific Wear Rate of Austenitic and Duplex Stainless Steel Alloys in High Temperatures
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
Wear as an unavoidable phenomenon in stainless steel contact sliding parts is investigated In this work. Two grades of austenitic AISI 304, and S31254, as well as duplexes of S32205, and AISI 2507, were chosen to compare their wear behavior in temperatures ranging from room temperature to 550°C. The experimental results show that AISI 304 austenitic and AISI 2205 duplex stainless steel had lower wear resistance compared with S31254 and AISI 2507 in various temperatures. When the temperature rose to 140°C, and the wear rate of all grades increased, AISI 304 had the highest at 7.028x10-4 mm3/Nm, and AISI 2507 had the lowest at 4.9033 x 10-4 mm3/Nm. At 300°C, the oxides began to form on the worn surfaces, causing the wear rate to slow. As a result, when temperatures exceeded 300°C, the specific wear rate decreased significantly in all specimens. According to the XRD patterns, the main types of oxides formed on worn surfaces were magnetite, hematite, and chromite.Keywords: wear, stainless steel, temperature, groove, oxide
Procedia PDF Downloads 728146 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity
Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad
Abstract:
Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.Keywords: biomass, electricity, thermal, generation
Procedia PDF Downloads 988145 Migrant Women’s Rights “with Chinese Characteristics: The State of Migrant Women in the People’s Republic of China
Authors: Leigha C. Crout
Abstract:
This paper will investigate the categorical disregard of the People’s Republic of China (PRC) in establishing and maintaining a baseline standard of civil guarantees for economic migrant women and their dependents. In light of the relative forward strides in terms of policy facilitating the ascension of female workers in China, this oft-invisible subgroup of women remains neglected from the modern-day “iron rice bowl” of the self-identified communist state. This study is being undertaken to rectify the absence of data on this subject and provide a baseline for future studies on the matter, as the human rights of migrants has become an established facet of transnational dialogue and debate. The basic methodology of this research will consist of the evaluation of China’s compliance with its own national guidelines, and the eight international human rights law treaties it has ratified. Data will be extracted and cross-checked from a number of relevant sources to monitor the extent of compliance, including but by no means limited to the United Nations Human Rights Council (UNHRC) Universal Periodic Review (UPR) reports and responses, submissions and responses of international human rights treaty bodies, local and international nongovernmental organizations (NGOs) and their annual reports, and articles and commentaries authored by specialists on the modern state and implementation of Chinese law. Together, these data will illuminate the vast network of compliance that has forced many migrant women to work within situations of extreme economic precarity. The structure will proceed as follows: first, an outline of the current status of migrant workers and the enforcement of stipulated protections will be provided; next, the analysis of the oft-debated regulations directing and the outline of mandatory services guaranteed to external and internal migrants; and finally, a conclusion incorporating various recommendations to improve transparency and gradually decrease the amount of migrant work turned forced labor that typifies the economic migrant experience, especially in the case of women. The internal and international migrant workers in China are bound by different and uncomplimentary systems. The first, which governs Chinese citizens moving to different regions or provinces to find more sustainable employment (internal migrants), is called the hukou (or huji) residency system. This law enforces strict regulation of the movement of peoples, while ensuring that residents of urban areas receive preferential benefits to those received by their so-called “agricultural” resident counterparts. Given the overwhelming presence of the Communist Party of China throughout the vast state, the management of internal migrants and the disregard for foreign domestic workers is, at minimum, a surprising oversight. This paper endeavors to provide a much-needed foundation for future commentary and discussion on the treatment of female migrant workers and their families in the People’s Republic of China.Keywords: female migrant worker’s rights, the People’s Republic of China, forced labor, Hukou residency system
Procedia PDF Downloads 1468144 Chemometric Estimation of Phytochemicals Affecting the Antioxidant Potential of Lettuce
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Aleksandra Tepic-Horecki, Zdravko Sumic
Abstract:
In this paper, the influence of six different phytochemical content (phenols, carotenoids, chlorophyll a, chlorophyll b, chlorophyll a + b and vitamin C) on antioxidant potential of Murai and Levistro lettuce varieties was evaluated. Variable selection was made by generalized pair correlation method (GPCM) as a novel ranking method. This method is used for the discrimination between two variables that almost equal correlate to a dependent variable. Fisher’s conditional exact and McNemar’s test were carried out. Established multiple linear (MLR) models were statistically evaluated. As the best phytochemicals for the antioxidant potential prediction, chlorophyll a, chlorophyll a + b and total carotenoids content stand out. This was confirmed through both GPCM and MLR, predictive ability of obtained MLR can be used for antioxidant potential estimation for similar lettuce samples. This article is based upon work from the project of the Provincial Secretariat for Science and Technological Development of Vojvodina (No. 114-451-347/2015-02).Keywords: antioxidant activity, generalized pair correlation method, lettuce, regression analysis
Procedia PDF Downloads 3888143 Biomedical Countermeasures to Category a Biological Agents
Authors: Laura Cochrane
Abstract:
The United States Centers for Disease Control and Prevention has established three categories of biological agents based on their ease of spread and the severity of the disease they cause. Category A biological agents are the highest priority because of their high degree of morbidity and mortality, ease of dissemination, the potential to cause social disruption and panic, special requirements for public health preparedness, and past use as a biological weapon. Despite the threat of Category A biological agents, opportunities for medical intervention exist. This work summarizes public information, consolidated and reviewed across the situational usefulness and disease awareness to offer discussion to three specific Category A agents: anthrax (Bacillus anthracis), botulism (Clostridium botulinum toxin), and smallpox (variola major), and provides an overview on the management of medical countermeasures available to treat these three (3) different types of pathogens. The medical countermeasures are discussed in the setting of pre-exposure prophylaxis, post-exposure prophylaxis, and therapeutic treatments to provide a framework for requirements in public health preparedness.Keywords: anthrax, botulism, smallpox, medical countermeasures
Procedia PDF Downloads 778142 Vibration Propagation in Structures Through Structural Intensity Analysis
Authors: Takhchi Jamal, Ouisse Morvan, Sadoulet-Reboul Emeline, Bouhaddi Noureddine, Gagliardini Laurent, Bornet Frederic, Lakrad Faouzi
Abstract:
Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths.Keywords: structural intensity, power flow, helmholt decomposition, irrotational intensity
Procedia PDF Downloads 1788141 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 1458140 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 3958139 The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline
Authors: W. Wang, Y. Zhang, J. Shuai, Z. Lv
Abstract:
The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed.Keywords: pipeline, adjacent defects, interaction between defects, failure pressure
Procedia PDF Downloads 2238138 Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle
Authors: H. F. Hozyen, A. M. Abo-El Maaty
Abstract:
Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo.Keywords: Buffalo, follicular fluid, vitamin C, nitric oxide, heat stress
Procedia PDF Downloads 3318137 Rapid Biosynthesis of Silver-Montmorillonite Nanocomposite Using Water Extract of Satureja hortensis L. and Evaluation of the Antibacterial Capacities
Authors: Sajjad Sedaghat
Abstract:
In this work, facile and green biosynthesis and characterization of silver–montmorillonite (MMT) nanocomposite is reported at room temperature. Silver nanoparticles (Ag–NPs) were synthesized into the interlamellar space of (MMT) by using water extract of Satureja hortensis L as reducing agent. The MMT was suspended in the aqueous AgNO₃ solution, and after the absorption of silver ions, Ag⁺ was reduced using water extract of Satureja hortensis L to Ag°. Evaluation of the antibacterial properties are also reported. The nanocomposite was characterized by ultraviolet-visible spectroscopy (UV–Vis), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM study showed the formation of nanocomposite using water extract of Satureja hortensis L in the 4.88 – 26.70 nm range and average particles size were 15.79 nm also the XRD study showed that the particles have a face-centered cubic (fcc) structure. The nanocomposite showed the antibacterial properties against Gram-positive and Gram-negative bacteria.Keywords: antibacterial effects, montmorillonite, Satureja hortensis l, transmission electron microscopy, nanocomposite
Procedia PDF Downloads 1698136 Performance-Based Quality Evaluation of Database Conceptual Schemas
Authors: Janusz Getta, Zhaoxi Pan
Abstract:
Performance-based quality evaluation of database conceptual schemas is an important aspect of database design process. It is evident that different conceptual schemas provide different logical schemas and performance of user applications strongly depends on logical and physical database structures. This work presents the entire process of performance-based quality evaluation of conceptual schemas. First, we show format. Then, the paper proposes a new specification of object algebra for representation of conceptual level database applications. Transformation of conceptual schemas and expression of object algebra into implementation schema and implementation in a particular database system allows for precise estimation of the processing costs of database applications and as a consequence for precise evaluation of performance-based quality of conceptual schemas. Then we describe an experiment as a proof of concept for the evaluation procedure presented in the paper.Keywords: conceptual schema, implementation schema, logical schema, object algebra, performance evaluation, query processing
Procedia PDF Downloads 2928135 A Case Study on Blended Pedagogical Approach by Leveraging on Digital Marketing Concepts towards Inculcating Concepts of Sustainability in Management Education
Authors: Narendra Babu Bommenahalli Veerabhadrappa
Abstract:
Teaching sustainability concepts along with profit maximizing philosophy of business in management education is a challenge. This paper explores and evaluates various learning models to inculcate sustainability concepts in management education. The paper explains about a new pedagogy that was tested in a business management school (Indus Business Academy, Bangalore, India) to teach sustainability. The pedagogy was designed by intertwining concepts related to sustainability with digital marketing concepts. As part of this experimental method, students (in groups) were assigned with various topics of sustainability and were asked to work with concepts of digital marketing and thus market the concepts of sustainability. The paper explains as a case study as to how sustainability was integrated with digital marketing tools and how learning towards sustainability was facilitated. It also explains the outcomes of this pedagogical method, in terms of inculcating sustainability concepts amongst management students as well as marketing and proliferation of sustainability concepts to bring about the behavioral changes amongst target audience towards sustainability.Keywords: management-education, pedagogy, sustainability, behavior
Procedia PDF Downloads 2468134 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energetic crisis that is hitting Europe, it becomes more and more necessary to change the energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy not only to satisfy energy needs and fulfill the required consumption but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energetic communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next ten years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.Keywords: ARIMA, electricity consumption, forecasting models, time series
Procedia PDF Downloads 1758133 Intensive Biological Control in Spanish Greenhouses: Problems of the Success
Authors: Carolina Sanchez, Juan R. Gallego, Manuel Gamez, Tomas Cabello
Abstract:
Currently, biological control programs in greenhouse crops involve the use, at the same time, several natural enemies during the crop cycle. Also, large number of plant species grown in greenhouses, among them, the used cultivars are also wide. However, the cultivar effects on entomophagous species efficacy (predators and parasitoids) have been scarcely studied. A new method had been developed, using the factitious prey or host Ephestia kuehniella. It allows us to evaluate, under greenhouse or controlled conditions (semi-field), the cultivar effects on the entomophagous species effectiveness. The work was carried out in greenhouse tomato crop. It has been found the biological and ecological activities of predatory species (Nesidiocoris tenuis) and egg-parasitoid (Trichogramma achaeae) can be well represented with the use of the factitious prey or host; being better in the former than the latter. The data found in the trial are shown and discussed. The developed method could be applied to evaluate new plant materials before making available to farmers as commercial varieties, at low costs and easy use.Keywords: cultivar effects, efficiency, predators, parasitoids
Procedia PDF Downloads 2748132 Investigation of Solar Concentrator Prototypes under Tunisian Conditions
Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani
Abstract:
Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation
Procedia PDF Downloads 2558131 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations
Authors: S. Meziane, H. I. Faraoun, C. Esling
Abstract:
Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides
Procedia PDF Downloads 1978130 Highly Sensitive and Selective H2 Gas Sensor Based on Pd-Pt Decorated Nanostructured Silicon Carbide Thin Films for Extreme Environment Application
Authors: Satyendra Mourya, Jyoti Jaiswal, Gaurav Malik, Brijesh Kumar, Ramesh Chandra
Abstract:
Present work describes the fabrication and sensing characteristics of the Pd-Pt decorated nanostructured silicon carbide (SiC) thin films on anodized porous silicon (PSi) substrate by RF magnetron sputtering. The gas sensing performance of Pd-Pt/SiC/PSi sensing electrode towards H2 gas under low (10–400 ppm) detection limit and high operating temperature regime (25–600 °C) were studied in detail. The chemiresistive sensor exhibited high selectivity, good sensing response, fast response/recovery time with excellent stability towards H2 at high temperature. The selectivity measurement of the sensing electrode was done towards different oxidizing and reducing gases and proposed sensing mechanism discussed in detail. Therefore, the investigated Pd-Pt/SiC/PSi structure may be a highly sensitive and selective hydrogen gas sensing electrode for deployment in extreme environment applications.Keywords: RF Sputtering, silicon carbide, porous silicon, hydrogen gas sensor
Procedia PDF Downloads 3068129 Analyzing On-Line Process Data for Industrial Production Quality Control
Authors: Hyun-Woo Cho
Abstract:
The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.Keywords: detection, filtering, monitoring, process data
Procedia PDF Downloads 5598128 The Impact of Living at Home during the COVID-19 on Young Children’s Disruptive Behaviours
Authors: Zhou Yuwei
Abstract:
This study used the multidimensional rating scale for disruptive behaviour in preschool children (parent version) to assess changes in the disruptive behaviour (tantrums, disobedience, aggression, and low level of concern for others) of 200 young children in Nanjing, Jiangsu Province, China, before and after living at home during the new crown epidemic, and five additional teachers of young children were selected to conduct interviews on the performance and changes in their disruptive behaviour at school. The following conclusions were drawn from the questionnaires and interviews: (1) 49% of the children showed a decrease in disruptive behaviour compared to the pre-epidemic period; (2) boys were more disruptive than girls due to individual factors; (3) children with a decrease in disruptive behaviour were more likely to have democratic and authoritative parenting styles due to parental education and upbringing; and the higher the level of parental education, the greater the decrease in disruptive behaviour. (4) For parents who worked outside the home during the epidemic and who did not work, disruptive behaviour scores were higher for their children. Meanwhile, disruptive behaviour was more pronounced the longer the child used electronic devices. The longer the parent-child interaction, the less disruptive behaviour was evident.Keywords: disruptive behaviour, home life, children, COVID-19
Procedia PDF Downloads 1038127 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture
Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla
Abstract:
Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution
Procedia PDF Downloads 169