Search results for: social learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15631

Search results for: social learning

10051 Ranking of Employability Skills from Employers' Perspective against Outcome Based Education Criteria for Engineering Graduates: A Case Study of Pakistan

Authors: Mohammad Pervez Mughal, Huma Shazadi

Abstract:

Pakistan became a full signatory to the Washington Accord in June 2017, with the expectation that undergraduate engineering programs will be recognized by other signatory countries. Pakistan's accrediting body, the Pakistan Engineering Council (PEC), has distributed 12 Program Learning Outcomes (PLOs) under Outcome Based Education (OBE) criteria for engineering institutions in Pakistan to follow. However, no research has been conducted to rank graduates' employability skills in relation to these PLOs from the perspective of potential employers. The current work makes a concerted effort to rank the skills required by employers, which include both technical and non-technical skill sets. A survey was conducted throughout Pakistan to validate the relative importance of employability skills. 198 HR personnel, 1554 graduating students, 1540 alumni, and 267 faculty members provided valid responses, which were analyzed. According to the findings, ethics, communication, and lifelong learning are the most important attributes of engineering graduates' employability in the eyes of employers. Graduating students, alumni, and faculty's differential prospects are also presented and compared to employers' perspectives.

Keywords: employability skills, employers' perspective, outcome-based education, engineering graduates, Pakistan

Procedia PDF Downloads 127
10050 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 205
10049 Social Studies Teaching Methods: Approaches and Techniques in Teaching History in Primary Education

Authors: Tonguc Basaran

Abstract:

History is a record of a people’s past based on a critical examination of documents and other facts. The essentials of this historical method are not beyond the grasp of even young children. Concrete examples, such as the story of the Rosetta stone, which enabled Champollion to establish the first principles of the deciphering of Egyptian hieroglyphics, vividly illustrate the fundamental processes involved. This search for the facts can be used to illustrate one side of the search for historic truth. The other side is the truth of historic interpretation. The facts cannot be changed, but the interpretation of them can and does change.

Keywords: history, primary education, teaching methods, social studies

Procedia PDF Downloads 303
10048 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 222
10047 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 378
10046 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta

Authors: Christiana Gauci-Sciberras

Abstract:

The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.

Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition

Procedia PDF Downloads 211
10045 The Effect of Gender on the Three Types of Aggression among Kuwaiti Children

Authors: Hend Almaseb

Abstract:

Child aggression is a serious social problem that affects children’s lives. This study examines the relationship between three types of aggressive behaviors–physical, verbal, and indirect aggression–from sociocultural and social work perspectives. Also, it investigates the effect of gender on the three types of aggressive behaviors and the most frequently used aggressive behaviors among a sample of 329 Kuwaiti children. The results show that there is a positive correlation between the three types of aggression and gender.

Keywords: child aggression, indirect aggression, physical aggression, verbal aggression

Procedia PDF Downloads 374
10044 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 232
10043 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management

Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh

Abstract:

An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.

Keywords: crowdsourcing, facility maintenance management, social networks

Procedia PDF Downloads 180
10042 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering

Authors: Zelalem Fantahun

Abstract:

Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.

Keywords: POS tagging, Amharic, unsupervised learning, k-means

Procedia PDF Downloads 454
10041 Big Data’s Mechanistic View of Human Behavior May Displace Traditional Library Missions That Empower Users

Authors: Gabriel Gomez

Abstract:

The very concept of information seeking behavior, and the means by which librarians teach users to gain information, that is information literacy, are at the heart of how libraries deliver information, but big data will forever change human interaction with information and the way such behavior is both studied and taught. Just as importantly, big data will orient the study of behavior towards commercial ends because of a tendency towards instrumentalist views of human behavior, something one might also call a trend towards behaviorism. This oral presentation seeks to explore how the impact of big data on understandings of human behavior might impact a library information science (LIS) view of human behavior and information literacy, and what this might mean for social justice aims and concomitant community action normally at the center of librarianship. The methodology employed here is a non-empirical examination of current understandings of LIS in regards to social justice alongside an examination of the benefits and dangers foreseen with the growth of big data analysis. The rise of big data within the ever-changing information environment encapsulates a shift to a more mechanistic view of human behavior, one that can easily encompass information seeking behavior and information use. As commercial aims displace the important political and ethical aims that are often central to the missions espoused by libraries and the social sciences, the very altruism and power relations found in LIS are at risk. In this oral presentation, an examination of the social justice impulses of librarians regarding power and information demonstrates how such impulses can be challenged by big data, particularly as librarians understand user behavior and promote information literacy. The creeping behaviorist impulse inherent in the emphasis big data places on specific solutions, that is answers to question that ask how, as opposed to larger questions that hint at an understanding of why people learn or use information threaten library information science ideals. Together with the commercial nature of most big data, this existential threat can harm the social justice nature of librarianship.

Keywords: big data, library information science, behaviorism, librarianship

Procedia PDF Downloads 387
10040 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia

Authors: Rohan Bhasin

Abstract:

Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.

Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM

Procedia PDF Downloads 168
10039 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 143
10038 The Study of the Quality of Dissertation in Humanities and Social Sciences between 2007-2013 in Thai Private Universities

Authors: Thanyasinee Laosum, Sirichai Kanjanawasee, Taweewat Pitayanon

Abstract:

The purpose of this study was to investigate the quality of dissertation in humanities and social sciences in Thai private universities.Seven hundred and fifty dissertations of students graduating between 2007-2013 from 12 private universities were randomly sampled. The 5-point rating scale for the evaluation of the dissertations was developed. The rubric method was used in scoring. The overall content validity of the scale was .92. The individual content validities of the scale were ranged from .71 to 1.00. The concurrent validities were significant at the .01 level with the value from .849 to .959. The inter-rater reliabilities were significant related at the .01 level with the value from .810 to .959. The test-retest method was used to find the reliabilities and significant related at the .01 level with the value from .944 to .966. The descriptive statistics was used in the analysis of the collected data. The study found that, among 750 dissertations, those that were rated as excellent, above average, average standard, below standard, and need to be improved were, 0.1 %, 13.3 %, 74.7 %, 11.7 %, and 0.1 % respectively. It was, therefore, concluded that the overall quality of the dissertations was in accordance with the principle of the research methodology and the quality of the majority of the dissertations is closely related.

Keywords: quality of dissertation, quality of dissertation in humanities and social sciences, private university, reliability

Procedia PDF Downloads 516
10037 Improving Literacy Level Through Digital Books for Deaf and Hard of Hearing Students

Authors: Majed A. Alsalem

Abstract:

In our contemporary world, literacy is an essential skill that enables students to increase their efficiency in managing the many assignments they receive that require understanding and knowledge of the world around them. In addition, literacy enhances student participation in society improving their ability to learn about the world and interact with others and facilitating the exchange of ideas and sharing of knowledge. Therefore, literacy needs to be studied and understood in its full range of contexts. It should be seen as social and cultural practices with historical, political, and economic implications. This study aims to rebuild and reorganize the instructional designs that have been used for deaf and hard-of-hearing (DHH) students to improve their literacy level. The most critical part of this process is the teachers; therefore, teachers will be the center focus of this study. Teachers’ main job is to increase students’ performance by fostering strategies through collaborative teamwork, higher-order thinking, and effective use of new information technologies. Teachers, as primary leaders in the learning process, should be aware of new strategies, approaches, methods, and frameworks of teaching in order to apply them to their instruction. Literacy from a wider view means acquisition of adequate and relevant reading skills that enable progression in one’s career and lifestyle while keeping up with current and emerging innovations and trends. Moreover, the nature of literacy is changing rapidly. The notion of new literacy changed the traditional meaning of literacy, which is the ability to read and write. New literacy refers to the ability to effectively and critically navigate, evaluate, and create information using a range of digital technologies. The term new literacy has received a lot of attention in the education field over the last few years. New literacy provides multiple ways of engagement, especially to those with disabilities and other diverse learning needs. For example, using a number of online tools in the classroom provides students with disabilities new ways to engage with the content, take in information, and express their understanding of this content. This study will provide teachers with the highest quality of training sessions to meet the needs of DHH students so as to increase their literacy levels. This study will build a platform between regular instructional designs and digital materials that students can interact with. The intervention that will be applied in this study will be to train teachers of DHH to base their instructional designs on the notion of Technology Acceptance Model (TAM) theory. Based on the power analysis that has been done for this study, 98 teachers are needed to be included in this study. This study will choose teachers randomly to increase internal and external validity and to provide a representative sample from the population that this study aims to measure and provide the base for future and further studies. This study is still in process and the initial results are promising by showing how students have engaged with digital books.

Keywords: deaf and hard of hearing, digital books, literacy, technology

Procedia PDF Downloads 493
10036 Schoolwide Implementation of Schema-Based Instruction for Mathematical Problem Solving: An Action Research Investigation

Authors: Sara J. Mills, Sally Howell

Abstract:

The field of special education has long struggled to bridge the research to practice gap. There is ample evidence from research of effective strategies for students with special needs, but these strategies are not routinely implemented in schools in ways that yield positive results for students. In recent years, the field of special education has turned its focus to implementation science. That is, discovering effective methods of implementing evidence-based practices in school settings. Teacher training is a critical factor in implementation. This study aimed to successfully implement Schema-Based Instruction (SBI) for math problem solving in four classrooms in a special primary school serving students with language deficits, including students with Autism Spectrum Disorders (ASD) and Intellectual Disabilities (ID). Using an action research design that allowed for adjustments and modification to be made over the year-long study, two cohorts of teachers across the school were trained and supported in six-week learning cycles to implement SBI in their classrooms. The learning cycles included a one-day training followed by six weeks of one-on-one or team coaching and three fortnightly cohort group meetings. After the first cohort of teachers completed the learning cycle, modifications and adjustments were made to lesson materials in an attempt to improve their effectiveness with the second cohort. Fourteen teachers participated in the study, including master special educators (n=3), special education instructors (n=5), and classroom assistants (n=6). Thirty-one students participated in the study (21 boys and 10 girls), ranging in age from 5 to 12 years (M = 9 years). Twenty-one students had a diagnosis of ASD, 20 had a diagnosis of mild or moderate ID, with 13 of these students having both ASD and ID. The remaining students had diagnosed language disorders. To evaluate the effectiveness of the implementation approach, both student and teacher data was collected. Student data included pre- and post-tests of math word problem solving. Teacher data included fidelity of treatment checklists and pre-post surveys of teacher attitudes and efficacy for teaching problem solving. Finally, artifacts were collected throughout the learning cycle. Results from cohort 1 and cohort 2 revealed similar outcomes. Students improved in the number of word problems they answered correctly and in the number of problem-solving steps completed independently. Fidelity of treatment data showed that teachers implemented SBI with acceptable levels of fidelity (M = 86%). Teachers also reported increases in the amount of time spent teaching problem solving, their confidence in teaching problem solving and their perception of students’ ability to solve math word problems. The artifacts collected during instruction indicated that teachers made modifications to allow their students to access the materials and to show what they knew. These findings are in line with research that shows student learning can improve when teacher professional development is provided over an extended period of time, actively involves teachers, and utilizes a variety of learning methods in classroom contexts. Further research is needed to evaluate whether these gains in teacher instruction and student achievement can be maintained over time once the professional development is completed.

Keywords: implementation science, mathematics problem solving, research-to-practice gap, schema based instruction

Procedia PDF Downloads 128
10035 Neo-liberalism and Theoretical Explanation of Poverty in Africa: The Nigerian Perspective

Authors: Omotoyosi Bilikies Ilori, Adekunle Saheed Ajisebiyawo

Abstract:

After the Second World War, there was an emergence of a new stage of capitalist globalization with its Neo-liberal ideology. There were global economic and political restructurings that affected third-world countries like Nigeria. Neo-liberalism is the driving force of globalization, which is the latest manifestation of imperialism that engenders endemic poverty in Nigeria. Poverty is severe and widespread in Nigeria. Poverty entails a situation where a person lives on less than one dollar per day and has no access to basic necessities of life. Poverty is inhuman and a breach of human rights. The Nigerian government initiated some strategies in the past to help in poverty reduction. Neo-liberalism manifested in the Third World, such as Nigeria, through the privatization of public enterprises, trade liberalization, and the rollback of the state investments in providing important social services. These main ideas of Neo-liberalism produced poverty in Nigeria and also encouraged the abandonment of the social contract between the government and the people. There is thus a gap in the provision of social services and subsidies for the masses, all of which Neo-liberal ideological positions contradict. This paper is a qualitative study which draws data from secondary sources. The theoretical framework is anchored on the market theory of capitalist globalization and public choice theory. The objectives of this study are to (i) examine the impacts of Neo-liberalism on poverty in Nigeria as a typical example of a Third World country and (ii) find out the effects of Neo-liberalism on the provision of social services and subsidies and employment. The findings from this study revealed that (i) the adoption of the Neo-liberal ideology by the Nigerian government has led to increased poverty and poor provision of social services and employment in Nigeria; and (ii) there is an increase in foreign debts which compounds poverty situation in Nigeria. This study makes the following recommendations: (i) Government should adopt strategies that are pro-poor to eradicate poverty; (ii) The Trade Unions and the masses should develop strategies to challenge Neo-liberalism and reject Neo-liberal ideology.

Keywords: neo-liberalism, poverty, employment, poverty reduction, structural adjustment programme

Procedia PDF Downloads 91
10034 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 167
10033 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy

Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge

Abstract:

There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.

Keywords: bioeconomy, forestry, innovation, entrepreneurship

Procedia PDF Downloads 123
10032 Understanding Rural Teachers’ Perceived Intention of Using Play in ECCE Mathematics Classroom: Strength-Based Approach

Authors: Nyamela M. ‘Masekhohola, Khanare P. Fumane

Abstract:

The Lesotho downward trend in mathematics attainment at all levels is compounded by the absence of innovative approaches to teaching and learning in Early Childhood. However, studies have shown that play pedagogy can be used to mitigate the challenges of mathematics education. Despite the benefits of play pedagogy to rural learners, its full potential has not been realized in early childhood care and education classrooms to improve children’s performance in mathematics because the adoption of play pedagogy depends on a strength-based approach. The study explores the potential of play pedagogy to improve mathematics education in early childhood care and education in Lesotho. Strength-based approach is known for its advocacy of recognizing and utilizing children’s strengths, capacities and interests. However, this approach and its promisingattributes is not well-known in Lesotho. In particular, little is known about the attributes of play pedagogy that are essential to improve mathematic education in ECCE programs in Lesotho. To identify such attributes and strengthen mathematics education, this systematic review examines evidence published on the strengths of play pedagogy that supports the teaching and learning of mathematics education in ECCE. The purpose of this review is, therefore, to identify and define the strengths of play pedagogy that supports mathematics education. Moreover, the study intends to understand the rural teachers’ perceived intention of using play in ECCE math classrooms through a strength-based approach. Eight key strengths were found (cues for reflection, edutainment, mathematics language development, creativity and imagination, cognitive promotion, exploration, classification, and skills development). This study is the first to identify and define the strength-based attributes of play pedagogy to improve the teaching and learning of mathematics in ECCE centers in Lesotho. The findings reveal which opportunities teachers find important for improving the teaching of mathematics as early as in ECCE programs. We conclude by discussing the implications of the literature for stimulating dialogues towards formulating strength-based approaches to teaching mathematics, as well as reflecting on the broader contributions of play pedagogy as an asset to improve mathematics in Lesotho and beyond.

Keywords: early childhood education, mathematics education, lesotho, play pedagogy, strength-based approach.

Procedia PDF Downloads 147
10031 Effect of Classroom Acoustic Factors on Language and Cognition in Bilinguals and Children with Mild to Moderate Hearing Loss

Authors: Douglas MacCutcheon, Florian Pausch, Robert Ljung, Lorna Halliday, Stuart Rosen

Abstract:

Contemporary classrooms are increasingly inclusive of children with mild to moderate disabilities and children from different language backgrounds (bilinguals, multilinguals), but classroom environments and standards have not yet been adapted adequately to meet these challenges brought about by this inclusivity. Additionally, classrooms are becoming noisier as a learner-centered as opposed to teacher-centered teaching paradigm is adopted, which prioritizes group work and peer-to-peer learning. Challenging listening conditions with distracting sound sources and background noise are known to have potentially negative effects on children, particularly those that are prone to struggle with speech perception in noise. Therefore, this research investigates two groups vulnerable to these environmental effects, namely children with a mild to moderate hearing loss (MMHLs) and sequential bilinguals learning in their second language. In the MMHL study, this group was assessed on speech-in-noise perception, and a number of receptive language and cognitive measures (auditory working memory, auditory attention) and correlations were evaluated. Speech reception thresholds were found to be predictive of language and cognitive ability, and the nature of correlations is discussed. In the bilinguals study, sequential bilingual children’s listening comprehension, speech-in-noise perception, listening effort and release from masking was evaluated under a number of different ecologically valid acoustic scenarios in order to pinpoint the extent of the ‘native language benefit’ for Swedish children learning in English, their second language. Scene manipulations included target-to-distractor ratios and introducing spatially separated noise. This research will contribute to the body of findings from which educational institutions can draw when designing or adapting educational environments in inclusive schools.

Keywords: sequential bilinguals, classroom acoustics, mild to moderate hearing loss, speech-in-noise, release from masking

Procedia PDF Downloads 331
10030 Internalized HIV Stigma, Mental Health, Coping, and Perceived Social Support among People Living with HIV/AIDS in Aizawl District, Mizoram

Authors: Mary Ann L. Halliday, Zoengpari Gohain

Abstract:

The stigma associated with HIV-AIDS negatively affect mental health and ability to effectively manage the disease. While the number of People living with HIV/AIDS (PLHIV) has been increasing day by day in Mizoram (a small north-eastern state in India), research on HIV/AIDS stigma has so far been limited. Despite the potential significance of Internalized HIV Stigma (IHS) in the lives of PLHIV, there has been very limited research in this area. It was therefore, felt necessary to explore the internalized HIV stigma, mental health, coping and perceived social support of PLHIV in Aizawl District, Mizoram. The present study was designed with the objectives to determine the degree of IHS, to study the relationship between the socio-demographic characteristics and level of IHS, to highlight the mental health status, coping strategies and perceived social support of PLHIV and to elucidate the relationship between these psychosocial variables. In order to achieve the objectives of the study, six hypotheses were formulated and statistical analyses conducted accordingly. The sample consisted of 300 PLWHA from Aizawl District, 150 males and 150 females, of the age group 20 to 70 years. Two- way classification of “Gender” (male and female) and three-way classification of “Level of IHS” (High IHS, Moderate IHS, Low IHS) on the dependent variables was employed, to elucidate the relationship between Internalized HIV Stigma, mental health, coping and perceived social support of PLHIV. The overall analysis revealed moderate level of IHS (67.3%) among PLHIV in Aizawl District, with a small proportion of subjects reporting high level of IHS. IHS was found to be significantly different on the basis of disclosure status, with the disclosure status of PLHIV accounting for 9% variability in IHS.  Results also revealed more or less good mental health among the participants, which was assessed by minimal depression (50.3%) and minimal anxiety (45%), with females with high IHS scoring significantly higher in both depression and anxiety (p<.01). Examination of the coping strategies of PLHIV found that the most frequently used coping styles were Acceptance (91%), Religion (84.3%), Planning (74.7%), Active Coping (66%) and Emotional Support (52.7%). High perception of perceived social support (48%) was found in the present study. Correlation analysis revealed significant positive relationships between IHS and depression as well as anxiety (p<.01), thus revealing that IHS negatively affects the mental health of PLHIV. Results however revealed that this effect may be lessened by the use of various coping strategies by PLHIV as well as their perception of social support.

Keywords: Aizawl, anxiety, depression, internalized HIV stigma, HIV/AIDS, mental health, mizoram, perceived social support

Procedia PDF Downloads 264
10029 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 593
10028 Various Factors Affecting Students Performances In A Saudi Medical School

Authors: Raneem O. Salem, Najwa Al-Mously, Nihal Mohamed Nabil, Abdulmohsen H. Al-Zalabani, Abeer F. Al-Dhawi, Nasser Al-Hamdan

Abstract:

Objective: There are various demographic and educational factors that affect the academic performance of undergraduate medical students. The objective of this study is to identify these factors and correlate them to the GPA of the students. Methods: A cross-sectional study design utilizing grade point averages (GPAs) of two cohorts of students in both levels of the pre-clinical phase. In addition, self-administered questionnaire was used to evaluate the effect of these factors on students with poor and good cumulative GPA. Results: Among the various factors studied, gender, marital status, and the transportation used to reach the faculty significantly affected academic performance of students. Students with a cumulative GPA of 3.0 or greater significantly differed than those with a GPA of less than 3.0 being higher in female students, in married students, and type of transportation used to reach the college. Factors including age, educational factors, and type of transportation used have shown to create a significant difference in GPA between male and females. Conclusion: Factors such as age, gender, marital status, learning resources, study time, and the transportation used have been shown to significantly affect medical student GPA as a whole batch as well as when they are tested for gender.

Keywords: academic performance, educational factors, learning resources, study time, gender, socio-demographic factors

Procedia PDF Downloads 281
10027 The Mask of Motherhood a Changing Identity During the Transition to Motherhood

Authors: Geraldine Mc Loughlin, Mary Horgan, Rosaleen Murphy

Abstract:

Childbirth is a life-changing event, a psychological transition for the mother that must be viewed in a social context. Much has been written and documented regarding the preparation for birth and the immediate postnatal period, but the full psychological impact on the mother is not clear. One aspect of the transition process is Identity. Depending on a person’s worldview, the concept of identity is viewed differently; the nature of reality and how they construct knowledge influence these perspectives. Becoming a mother is not just an event but a process that time and experience will help to shape the understanding of the woman. To explore the emotional and psychological aspects of first-time mother’s experience during the transition to new motherhood. To identify factors affecting women’s identities in the period of 36 weeks gestation to 12 weeks postpartum. Interpretative Phenomenological Analysis (IPA) was used. It explores how these women make sense of and give meaning to their experiences. IPA is underpinned by 3 key principles: phenomenology, hermeneutics and idiographics. A purposeful sample of 10 women was recruited for this longitudinal study, to enable data to be collected during the transition to motherhood. Individual identity was interpreted and viewed as developing in response to changing contexts, such as the birth event becoming a parent, enabling one to construct one’s own sense of a meaningful life. Women effectively differentiated themselves from their personal and social identities and took responsibility for their actions. Identity is culturally and socially shaped and experienced, though not experienced similarly by all women. The individualized perspective on identity recognizes that (a) social influences are seen as external to the individual and (b) the view that social influences are, in fact, internalized by the individual.

Keywords: motherhood, transition, identity, IPA

Procedia PDF Downloads 67
10026 The Role of the Linguistic Mediator in Relation to Culturally Oriented Crimes

Authors: Andreas Aceranti, Simonetta Vernocchi, Elisabetta Aldrovandi, Marco Colorato, Carolina Ascrizzi

Abstract:

Nowadays, especially due to an increasing flow of migration and uncontrolled globalisation, linguistic, cultural and religious differences can be a major obstacle for people belonging to different ethnic groups. Each group has its own traditional background, which, in addition to its positive aspects, also includes extremely unpleasant and dramatic situations: culture-related crimes. We analysed several cases belonging to this category of crime which is becoming more and more present in Europe, creating not only a strong social rift dictated by the misunderstanding between migrants and host populations but also by the isolation and ghettoisation of subjects classified as 'different'. Such social rejection, in fact, represents a great source of stress and frustration for those who seek to be part of the community and can generate phenomena of rebellion that result in violent acts. Similar situations must be addressed by the figure of the cultural-linguistic mediator who, thanks to his or her multidisciplinary knowledge, assumes the role of a 'bridge', thus helping the process of awareness and understanding within the social group through the use of various tools, including awareness-raising campaigns and interventions in both the school and social-health sectors. By analysing how the notions of culture and offense have evolved throughout history until they have merged into a single principle and, secondly, how the figure of the language mediator represents a fundamental role in the resolution of conflicts related to cultural diversity has helped us define the basis for new protocols in dealing with such crimes. Especially we have to define the directions of further investigations that we will carry out in the next months.

Keywords: cultural crimes, hatred crimes, immigration, cultural mediation

Procedia PDF Downloads 84
10025 Language Choice and Language Maintenance of Northeastern Thai Staff in Suan Sunandha Rajabhat University

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production, 2) product development, 3) the community strength, 4) marketing possibility, and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors, 2) evaluate the strategy based on Sufficiency Economic Philosophy, and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, language choice

Procedia PDF Downloads 242
10024 The Development of Research Based Model to Enhance Critical Thinking, Cognitive Skills and Culture and Local Wisdom Knowledge of Undergraduate Students

Authors: Nithipattara Balsiri

Abstract:

The purposes of this research was to develop instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge of undergraduate students. The sample consisted of 307 undergraduate students. Critical thinking and cognitive skills test were employed for data collection. Second-order confirmatory factor analysis, t-test, and one-way analysis of variance were employed for data analysis using SPSS and LISREL programs. The major research results were as follows; 1) the instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge should be consists of 6 sequential steps, namely (1) the setting research problem (2) the setting research hypothesis (3) the data collection (4) the data analysis (5) the research result conclusion (6) the application for problem solving, and 2) after the treatment undergraduate students possessed a higher scores in critical thinking and cognitive skills than before treatment at the 0.05 level of significance.

Keywords: critical thinking, cognitive skills, culture and local wisdom knowledge

Procedia PDF Downloads 372
10023 Application of Integrated Marketing Communications-Multiple, Case Studies

Authors: Yichen Lin, Hsiao-Han Chen, Chi-Chen Jan

Abstract:

Since 1990, the research area of Integrated Marketing Communications (IMC) has been presented from a different perspective. With advances in information technology and the rise of consumer consciousness, businesses are in a competitive environment. There is an urgent need to adopt more profitable and effective integrated marketing strategies to increase core competitiveness. The goal of the company's sustainable management is to increase consumers' willingness to purchase and to maximize profits. This research uses six aspects of IMC, which includes awareness integration, unified image, database integration, customer-based integration, stakeholders-based integration, and evaluation integration to examine the role of marketing strategies in the strengths and weaknesses of the six components of integrated marketing communications, their effectiveness, the most important components and the most important components that need improvement. At the same time, social media such as FaceBook, Instagram, Youtube, Line, or even TikTok have become marketing tools which firms adopt them more and more frequently in the marketing strategy. In the end of 2019, the outbreak of COVID-19 did really affect the global industries. Lockdown policies also accelerated closure of brick-mentor stores worldwide. Online purchases rose dramatically. Hence, the effectiveness of online marketing will be essential to maintain the business. This study uses multiple-case studies to extend the effects of social media and IMC. Moreover, the study would also explore the differences of social media and IMC during COVID-19. Through literature review and multiple-case studies, it is found that using social media combined with IMC did really help companies expand their business and make good connections with stakeholders. One of previous studies also used system theory to explore the interrelationship among Integrated Marketing Communication, collaborative marketing, and global brand building. Even during pandemic, firms could still maintain the operation and connect with their customers more tightly.

Keywords: integration marketing communications, multiple-case studies, social media, system theory

Procedia PDF Downloads 235
10022 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL

Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara

Abstract:

PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.

Keywords: cognition, database, PostgreSQL, text-editor, visual-editor

Procedia PDF Downloads 287